tensorflow_optimizer.py
# Copyright 2017 Artem Artemev @awav
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import tensorflow as tf
from . import optimizer
from .. import misc
from ..actions import Optimization
from ..models.model import Model
_REGISTERED_TENSORFLOW_OPTIMIZERS = {}
class _TensorFlowOptimizer(optimizer.Optimizer):
def __init__(self, *args, **kwargs):
name = self.__class__.__name__
tf_optimizer = _get_registered_optimizer(name)
self._model = None
super().__init__()
self._optimizer = tf_optimizer(*args, **kwargs)
self._minimize_operation = None
def make_optimize_tensor(self, model, session=None, var_list=None, **kwargs):
"""
Make Tensorflow optimization tensor.
This method builds optimization tensor and initializes all necessary variables
created by optimizer.
:param model: GPflow model.
:param session: Tensorflow session.
:param var_list: List of variables for training.
:param kwargs: Dictionary of extra parameters passed to Tensorflow
optimizer's minimize method.
:return: Tensorflow optimization tensor or operation.
"""
session = model.enquire_session(session)
objective = model.objective
full_var_list = self._gen_var_list(model, var_list)
# Create optimizer variables before initialization.
with session.as_default():
minimize = self.optimizer.minimize(objective, var_list=full_var_list, **kwargs)
model.initialize(session=session)
self._initialize_optimizer(session)
return minimize
def make_optimize_action(self, model, session=None, var_list=None, **kwargs):
"""
Build Optimization action task with Tensorflow optimizer.
:param model: GPflow model.
:param session: Tensorflow session.
:param var_list: List of Tensorflow variables to train.
:param feed_dict: Tensorflow feed_dict dictionary.
:param kwargs: Extra parameters passed to `make_optimize_tensor`.
:return: Optimization action.
"""
if model is None or not isinstance(model, Model):
raise ValueError('Unknown type passed for optimization.')
session = model.enquire_session(session)
feed_dict = kwargs.pop('feed_dict', None)
feed_dict_update = self._gen_feed_dict(model, feed_dict)
run_kwargs = {} if feed_dict_update is None else {'feed_dict': feed_dict_update}
optimizer_tensor = self.make_optimize_tensor(model, session, var_list=var_list, **kwargs)
opt = Optimization()
opt.with_optimizer(self)
opt.with_model(model)
opt.with_optimizer_tensor(optimizer_tensor)
opt.with_run_kwargs(**run_kwargs)
return opt
def minimize(self, model, session=None, var_list=None, feed_dict=None,
maxiter=1000, initialize=False, anchor=True, step_callback=None, **kwargs):
"""
Minimizes objective function of the model.
:param model: GPflow model with objective tensor.
:param session: Session where optimization will be run.
:param var_list: List of extra variables which should be trained during optimization.
:param feed_dict: Feed dictionary of tensors passed to session run method.
:param maxiter: Number of run interation.
:param initialize: If `True` model parameters will be re-initialized even if they were
initialized before for gotten session.
:param anchor: If `True` trained variable values computed during optimization at
particular session will be synchronized with internal parameter values.
:param step_callback: A callback function to execute at each optimization step.
The callback should accept variable argument list, where first argument is
optimization step number.
:type step_callback: Callable[[], None]
:param kwargs: This is a dictionary of extra parameters for session run method.
"""
if model is None or not isinstance(model, Model):
raise ValueError('The `model` argument must be a GPflow model.')
opt = self.make_optimize_action(model,
session=session,
var_list=var_list,
feed_dict=feed_dict, **kwargs)
self._model = opt.model
self._minimize_operation = opt.optimizer_tensor
session = model.enquire_session(session)
with session.as_default():
for step in range(maxiter):
opt()
if step_callback is not None:
step_callback(step)
if anchor:
opt.model.anchor(session)
def _initialize_optimizer(self, session: tf.Session):
var_list = self.optimizer.variables()
misc.initialize_variables(var_list, session=session, force=False)
@property
def minimize_operation(self):
return self._minimize_operation
@property
def model(self):
return self._model
@property
def optimizer(self):
return self._optimizer
@model.setter
def model(self, value):
self._model = value
self._optimizer = None
self._minimize_operation = None
def _get_registered_optimizer(name):
tf_optimizer = _REGISTERED_TENSORFLOW_OPTIMIZERS.get(name, None)
if tf_optimizer is None:
raise TypeError('Optimizer not found.')
return tf_optimizer
def _register_optimizer(name, optimizer_type):
if optimizer_type.__base__ is not tf.train.Optimizer:
raise ValueError('Wrong TensorFlow optimizer type passed: "{0}".'
.format(optimizer_type))
gp_optimizer = type(name, (_TensorFlowOptimizer, ), {})
_REGISTERED_TENSORFLOW_OPTIMIZERS[name] = optimizer_type
module = sys.modules[__name__]
setattr(module, name, gp_optimizer)
# Create GPflow optimizer classes with same names as TensorFlow optimizers
for key, train_type in tf.train.__dict__.items():
suffix = 'Optimizer'
if key != suffix and key.endswith(suffix):
_register_optimizer(key, train_type)
__all__ = list(_REGISTERED_TENSORFLOW_OPTIMIZERS.keys())