\name{MaxStableRF} \alias{MaxStableRF} \alias{InitMaxStableRF} \title{Max-Stable Random Fields} \description{ These functions simulate stationary and isotropic max-stable random fields with unit Frechet margins. } \usage{ MaxStableRF(x, y=NULL, z=NULL, grid, model, param, maxstable, method=NULL, n=1, register=0, gridtriple=FALSE,...) InitMaxStableRF(x, y=NULL, z=NULL, grid, model, param, maxstable, method=NULL, register=0, gridtriple=FALSE) } %- maybe also `usage' for other objects documented here. \arguments{ \item{x}{matrix of coordinates, or vector of x coordinates} \item{y}{vector of y coordinates} \item{z}{vector of z coordinates} \item{grid}{logical; determines whether the vectors \code{x}, \code{y}, and \code{z} should be interpreted as a grid definition, see Details.} \item{model}{string; see \code{\link{CovarianceFct}}, or type \code{\link{PrintModelList}()} to get all options; interpretation depends on the value of \code{maxstable}, see Details.} \item{param}{parameter vector: \code{param=c(mean, variance, nugget, scale,...)}; the parameters must be given in this order; further parameters are to be added in case of a parametrised class of covariance functions, see \code{\link{CovarianceFct}}, or be given in one of the extended forms, see Details} \item{maxstable}{string. Either 'extremalGauss' or 'BooleanFunction'; see Details.} \item{method}{\code{NULL} or string; method used for simulating, see \code{\link{RFMethods}}, or type \code{\link{PrintMethodList}()} to get all options; interpretation depends on the value of \code{maxstable}.} \item{n}{number of realisations to generate} \item{register}{0:9; place where intermediate calculations are stored; the numbers are aliases for 10 internal registers} \item{gridtriple}{logical; if \code{gridtriple==FALSE} ascending sequences for the parameters \code{x}, \code{y}, and \code{z} are expected; if \code{gridtriple==TRUE} triples of form \code{c(start,end,step)} expected; this parameter is used only if \code{grid==TRUE}} \item{...}{\code{\link{RFparameters}} that are locally used only.} } \details{ There are two different kinds of models for max-stable processes implemented: \itemize{ \item \code{maxstable="extremalGauss"}\cr Gaussian random fields are multiplied by independent random factors, and the maximum is taken. The random factors are such that the resulting random field has unit Frechet margins; the specification of the random factor is uniquely given by the specification of the random field. The parameter vector \code{param}, the \code{model}, and the \code{method} are interpreted in the same way as for Gaussian random fields, see \code{\link{GaussRF}}. \item \code{maxstable="BooleanFunction"}\cr Deterministic or random, upper semi-continuous \eqn{L_1}{L1}-functions are randomly centred and multiplied by suitable, independent random factors; the pointwise maximum over all these functions yields a max-stable random field. The simulation technique is related to the random coin method for Gaussian random field simulation, see \code{\link{RFMethods}}. Hence, only models that are suitable for the random coin method are suitable for this technique, see \code{\link{PrintModelList}()} for a complete list of suitable covariance models.\cr The only value allowed for \code{method} is 'max.MPP' (and \code{NULL}), see \code{\link{PrintMethodList}()}. In the parameter list \code{param} the first two entries, namely \code{mean} and \code{variance}, are ignored. If the nugget is positive, for each point an additional independent unit Frechet variable with scale parameter \code{nugget} is involved when building the maximum over all functions. The model may be defined alternatively in one of the two extended ways as introduced in \code{CovarianceFct} and \code{GaussRF}. However only a single model may be given! The model may be anisotropic. } } \value{ \code{InitMaxStableRF} returns 0 if no error has occurred, and a positive value if failed.\cr \code{MaxStableRF} and \code{\link{DoSimulateRF}} return \code{NULL} if an error has occurred; otherwise the returned object depends on the parameters:\cr \code{n==1}:\cr * \code{grid==FALSE}. A vector of simulated values is returned (independent of the dimension of the random field)\cr * \code{grid==TRUE}. An array of the dimension of the random field is returned.\cr \code{n>1}:\cr * \code{grid==FALSE}. A matrix is returned. The columns contain the repetitions.\cr * \code{grid==TRUE}. An array of dimension \eqn{d+1}{d+1}, where \eqn{d}{d} is the dimension of the random field, is returned. The last dimension contains the repetitions. } \references{ Schlather, M. (2002) Models for stationary max-stable random fields. \emph{Extremes} \bold{5}, 33-44. } \author{Martin Schlather, \email{schlath@hsu-hh.de} \url{http://www.unibw-hamburg.de/WWEB/math/schlath/schlather.html}} \seealso{ \code{\link{CovarianceFct}}, \code{\link{GaussRF}}, \code{\link{RandomFields}}, \code{\link{RFMethods}}, \code{\link{RFparameters}}, \code{\link{DoSimulateRF}}, . } \examples{ n <- 30 ## nicer, but time consuming if n <- 100 x <- y <- 1:n ms <- MaxStableRF(x, y, grid=TRUE, model="exponen", param=c(0,1,0,40), maxstable="extr" ,CE.force = TRUE ) image(x,y,ms) } \keyword{spatial}%-- one or more ...