Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/kangxue/P2P-NET
20 June 2024, 21:45:20 UTC
  • Code
  • Branches (1)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/master
    No releases to show
  • 4c40578
  • /
  • P2PNET.py
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:d48596e4ac4d0a2882bb13a080415ac3e8773694
origin badgedirectory badge Iframe embedding
swh:1:dir:4c4057811f8504d5ce7cefec85323da7f1dc373d
origin badgerevision badge
swh:1:rev:8f6ebc0ecad0eeba61e78371f9e5e33777c52608
origin badgesnapshot badge
swh:1:snp:c6364e884bc0a46f4662f99141548c9faef02489

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: 8f6ebc0ecad0eeba61e78371f9e5e33777c52608 authored by Kangxue Yin on 11 September 2020, 06:09:48 UTC
Update README.md
Tip revision: 8f6ebc0
P2PNET.py
import os
import sys
import collections
BASE_DIR = os.path.dirname(__file__)
sys.path.append(BASE_DIR)
sys.path.append(   BASE_DIR + "/pointnet_plusplus/utils")
sys.path.append(   BASE_DIR + "/pointnet_plusplus/tf_ops")
sys.path.append(   BASE_DIR + "/pointnet_plusplus/tf_ops/3d_interpolation")
sys.path.append(   BASE_DIR + "/pointnet_plusplus/tf_ops/grouping")
sys.path.append(   BASE_DIR + "/pointnet_plusplus/tf_ops/sampling")
import tensorflow as tf
import numpy as np
import tf_util
from pointnet_util import pointnet_sa_module, pointnet_fp_module

Model = collections.namedtuple("Model", \
                               "pointSet_A_ph,  pointSet_B_ph, \
                               is_training_ph,\
                               Predicted_A, Predicted_B, \
                               data_loss_A, shapeLoss_A, densityLoss_A, \
                               data_loss_B, shapeLoss_B, densityLoss_B, \
                               regul_loss, \
                               data_train, total_train, \
                               learning_rate,  global_step,  bn_decay, \
                               training_sum_ops, testing_sum_ops,\
                               train_dataloss_A_ph,  train_dataloss_B_ph, train_regul_ph, \
                               test_dataloss_A_ph,   test_dataloss_B_ph,  test_regul_ph"                    )

def create_model( FLAGS  ):

    ############################################################
    ####################  Hyper-parameters   ####################
    ##############################################################

    global_step = tf.train.get_or_create_global_step()

    learning_rate = tf.train.exponential_decay(
        0.001,  # base learning rate
        global_step   * FLAGS.batch_size,  # global_var indicating the number of steps
        FLAGS.example_num  * FLAGS.decayEpoch,  # step size
        0.5,  # decay rate
        staircase=True
    )
    learning_rate = tf.maximum(learning_rate, 1e-4)

    bn_momentum = tf.train.exponential_decay(
        0.5,
        global_step  * FLAGS.batch_size,  # global_var indicating the number of steps
        FLAGS.example_num * FLAGS.decayEpoch * 2,     # step size,
        0.5,   # decay rate
        staircase=True
    )
    bn_decay = tf.minimum(0.99,   1 - bn_momentum)


    ##############################################################
    ####################  Create the network  ####################
    ##############################################################

    pointSet_A_ph = tf.placeholder( tf.float32, shape=(FLAGS.batch_size, FLAGS.point_num, 3) )
    pointSet_B_ph = tf.placeholder( tf.float32, shape=(FLAGS.batch_size, FLAGS.point_num, 3) )
    is_training_ph = tf.placeholder( tf.bool, shape=() )

    noise1 = None
    noise2 = None
    if FLAGS.noiseLength > 0:
        noise1 = tf.random_normal(shape=[FLAGS.batch_size, FLAGS.point_num, FLAGS.noiseLength], mean=0.0, stddev=1, dtype=tf.float32)
        noise2 = tf.random_normal(shape=[FLAGS.batch_size, FLAGS.point_num, FLAGS.noiseLength], mean=0.0, stddev=1, dtype=tf.float32)

    with tf.variable_scope("p2pnet_A2B") as scope:
        displace_A2B = get_displacements( pointSet_A_ph, is_training_ph, noise1,  FLAGS, bn_decay  )

    with tf.variable_scope("p2pnet_B2A") as scope:
        displace_B2A = get_displacements( pointSet_B_ph, is_training_ph, noise2, FLAGS, bn_decay  )

    Predicted_A = pointSet_B_ph + displace_B2A
    Predicted_B = pointSet_A_ph + displace_A2B

    data_loss_A, shapeLoss_A, densityLoss_A = get_Geometric_Loss(Predicted_A, pointSet_A_ph, FLAGS)

    data_loss_B, shapeLoss_B, densityLoss_B = get_Geometric_Loss(Predicted_B, pointSet_B_ph, FLAGS)

    if FLAGS.regularWeight > 0:
        regul_loss = get_Regularizing_Loss(pointSet_A_ph, pointSet_B_ph,  Predicted_A, Predicted_B)
    else:
        regul_loss = tf.constant(0.0, dtype=tf.float32)

    DataLoss = data_loss_A + data_loss_B
    TotalLoss = DataLoss + regul_loss * FLAGS.regularWeight

    train_variables = tf.trainable_variables()
    trainer = tf.train.AdamOptimizer(learning_rate)

    data_train_op = trainer.minimize(DataLoss, var_list=train_variables, global_step=global_step)
    total_train_op = trainer.minimize(TotalLoss, var_list=train_variables, global_step=global_step)

    data_train  = data_train_op
    total_train = total_train_op

    ##############################################################
    ####################  Create summarizers  ####################
    ##############################################################

    train_dataloss_A_ph = tf.placeholder(tf.float32, shape=())
    train_dataloss_B_ph = tf.placeholder(tf.float32, shape=())
    train_regul_ph = tf.placeholder(tf.float32, shape=())

    test_dataloss_A_ph = tf.placeholder(tf.float32, shape=())
    test_dataloss_B_ph = tf.placeholder(tf.float32, shape=())
    test_regul_ph = tf.placeholder(tf.float32, shape=())


    lr_sum_op = tf.summary.scalar('learning rate', learning_rate)
    global_step_sum_op = tf.summary.scalar('batch_number', global_step)

    train_dataloss_A_sum_op = tf.summary.scalar('train_dataloss_A', train_dataloss_A_ph)
    train_dataloss_B_sum_op = tf.summary.scalar('train_dataloss_B', train_dataloss_B_ph)
    train_regul_sum_op = tf.summary.scalar('train_regul', train_regul_ph)

    test_dataloss_A_sum_op = tf.summary.scalar('test_dataloss_A', test_dataloss_A_ph)
    test_dataloss_B_sum_op = tf.summary.scalar('test_dataloss_B', test_dataloss_B_ph)
    test_regul_sum_op = tf.summary.scalar('test_regul', test_regul_ph)


    training_sum_ops = tf.summary.merge( \
        [lr_sum_op, train_dataloss_A_sum_op, train_dataloss_B_sum_op, train_regul_sum_op])

    testing_sum_ops = tf.summary.merge( \
        [test_dataloss_A_sum_op, test_dataloss_B_sum_op, test_regul_sum_op ])

    return Model(
        pointSet_A_ph=pointSet_A_ph,  pointSet_B_ph=pointSet_B_ph,
        is_training_ph=is_training_ph,
        Predicted_A=Predicted_A,   Predicted_B=Predicted_B,
        data_loss_A=data_loss_A,   shapeLoss_A=shapeLoss_A,     densityLoss_A=densityLoss_A,
        data_loss_B=data_loss_B,   shapeLoss_B=shapeLoss_B,     densityLoss_B=densityLoss_B,
        regul_loss=regul_loss,
        data_train=data_train,     total_train=total_train,
        learning_rate=learning_rate, global_step=global_step, bn_decay=bn_decay,
        training_sum_ops=training_sum_ops, testing_sum_ops=testing_sum_ops,
        train_dataloss_A_ph=train_dataloss_A_ph, train_dataloss_B_ph=train_dataloss_B_ph, train_regul_ph=train_regul_ph, \
        test_dataloss_A_ph=test_dataloss_A_ph, test_dataloss_B_ph=test_dataloss_B_ph, test_regul_ph=test_regul_ph
    )


def get_displacements(input_points, is_training, noise, FLAGS, bn_decay=None):
    """ Semantic segmentation PointNet, input is BxNx3, output Bxnum_class """

    batch_size = FLAGS.batch_size
    num_points = FLAGS.point_num

    point_cloud = input_points

    l0_xyz = point_cloud
    l0_points = None

    # Set Abstraction layers
    l1_xyz, l1_points, l1_indices = pointnet_sa_module(l0_xyz, l0_points, npoint=1024, radius=0.1 * FLAGS.radiusScal, nsample=64,
                                                       mlp=[64, 64, 128], mlp2=None, group_all=False,
                                                       is_training=is_training, bn_decay=bn_decay, scope='layer1')
    l2_xyz, l2_points, l2_indices = pointnet_sa_module(l1_xyz, l1_points, npoint=384, radius=0.2* FLAGS.radiusScal, nsample=64,
                                                       mlp=[128, 128, 256], mlp2=None, group_all=False,
                                                       is_training=is_training, bn_decay=bn_decay, scope='layer2')
    l3_xyz, l3_points, l3_indices = pointnet_sa_module(l2_xyz, l2_points, npoint=128, radius=0.4* FLAGS.radiusScal, nsample=64,
                                                       mlp=[256, 256, 512], mlp2=None, group_all=False,
                                                       is_training=is_training, bn_decay=bn_decay, scope='layer3')

    # PointNet
    l4_xyz, l4_points, l4_indices = pointnet_sa_module(l3_xyz, l3_points, npoint=None, radius=None, nsample=None,
                                                       mlp=[512, 512, 1024], mlp2=None, group_all=True,
                                                       is_training=is_training, bn_decay=bn_decay, scope='layer4')

    # Feature Propagation layers
    # l4_points = pointnet_fp_module(l4_xyz, l5_xyz, l4_points, l5_points, [512,512], is_training, bn_decay, scope='fa_layer0')
    l3_points = pointnet_fp_module(l3_xyz, l4_xyz, l3_points, l4_points, [512, 512], is_training, bn_decay, scope='fa_layer1')
    l2_points = pointnet_fp_module(l2_xyz, l3_xyz, l2_points, l3_points, [512, 256], is_training, bn_decay, scope='fa_layer2')
    l1_points = pointnet_fp_module(l1_xyz, l2_xyz, l1_points, l2_points, [256, 128], is_training, bn_decay, scope='fa_layer3')
    l0_points = pointnet_fp_module(l0_xyz, l1_xyz, l0_points, l1_points, [128, 128, 128], is_training, bn_decay, scope='fa_layer4')

    if noise is not None:
        l0_points = tf.concat(axis=2, values=[l0_points, noise])

    net = tf_util.conv1d(l0_points, 128, 1, padding='VALID', bn=True, is_training=is_training, scope='fc1', bn_decay=bn_decay )
    net = tf_util.conv1d(net, 64, 1, padding='VALID', bn=True, is_training=is_training, scope='fc2', bn_decay=bn_decay)
    net = tf_util.conv1d(net, 3, 1, padding='VALID', activation_fn=None, scope='fc3')

    displacements = tf.sigmoid(net) * FLAGS.range_max * 2 - FLAGS.range_max

    return displacements


def get_Geometric_Loss(predictedPts, targetpoints, FLAGS):

    # calculate shape loss
    square_dist = pairwise_l2_norm2_batch(targetpoints, predictedPts)
    dist = tf.sqrt( square_dist )
    minRow = tf.reduce_min(dist, axis=2)
    minCol = tf.reduce_min(dist, axis=1)
    shapeLoss = tf.reduce_mean(minRow) + tf.reduce_mean(minCol)
	

    # calculate density loss
    square_dist2 = pairwise_l2_norm2_batch(targetpoints, targetpoints)
    dist2 = tf.sqrt(square_dist2)
    knndis = tf.nn.top_k(tf.negative(dist), k=FLAGS.nnk)
    knndis2 = tf.nn.top_k(tf.negative(dist2), k=FLAGS.nnk)
    densityLoss = tf.reduce_mean(tf.abs(knndis.values - knndis2.values))

	
    data_loss = shapeLoss + densityLoss * FLAGS.densityWeight
    return data_loss, shapeLoss, densityLoss


def get_Regularizing_Loss(pointSet_A_ph, pointSet_B_ph,  Predicted_A, Predicted_B):

    displacements_A = tf.concat(axis=2, values=[pointSet_A_ph, Predicted_B])
    displacements_B = tf.concat(axis=2, values=[Predicted_A,   pointSet_B_ph])

    square_dist = pairwise_l2_norm2_batch( displacements_A,   displacements_B )
    dist = tf.sqrt(square_dist)

    minRow = tf.reduce_min(dist, axis=2)
    minCol = tf.reduce_min(dist, axis=1)
    RegularLoss = (tf.reduce_mean(minRow) + tf.reduce_mean(minCol))/2

    return RegularLoss


def pairwise_l2_norm2_batch(x, y, scope=None):
    with tf.op_scope([x, y], scope, 'pairwise_l2_norm2_batch'):
        nump_x = tf.shape(x)[1]
        nump_y = tf.shape(y)[1]

        xx = tf.expand_dims(x, -1)
        xx = tf.tile(xx, tf.stack([1, 1, 1, nump_y]))

        yy = tf.expand_dims(y, -1)
        yy = tf.tile(yy, tf.stack([1, 1, 1, nump_x]))
        yy = tf.transpose(yy, perm=[0, 3, 2, 1])

        diff = tf.subtract(xx, yy)
        square_diff = tf.square(diff)

        square_dist = tf.reduce_sum(square_diff, 2)

        return square_dist

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API