order.clusters.Rd
\name{order.clusters}
\alias{order.clusters}
\title{Orders clustered objects using hierarchical clustering}
\description{
Reorders objects so that similar (or high-merit) object pairs are adjacent.
The clusters argument specifies (possibly ordered) groups, and objects
within a group are kept together.
}
\usage{
order.clusters(merit,clusters,within.order = order.single,
between.order= order.single,...)
}
\arguments{
\item{merit}{is either a symmetric matrix of merit or similarity score,
or a \code{dist}.}
\item{clusters}{specifies a partial grouping. It should either be a list whose
ith element contains
the indices of the objects in the ith cluster, or a vector of integers whose ith element
gives the cluster membership of the ith object. Either representation may
be used to specify grouping, the first is preferrable to specify
adjacencies.}
\item{within.order}{is a function used to order the objects within each
cluster.}
\item{between.order}{is a function used to order the clusters.}
\item{...}{arguments are passed to \code{within.order}.}
}
\details{\code{within.order} may be NULL, in which case objects within a
cluster are assumed to be in order. Otherwise, \code{within.order}
should be one of the ordering functions
\code{order.single},\code{order.endlink} or \code{order.hclust}.
\code{between.order} may be NULL, in which case cluster order
is preserved.
Otherwise, \code{betweem.order}
should be one of the ordering functions that uses a partial ordering,
\code{order.single} or \code{order.endlink}.
}
\value{A permutation of the objects represented by \code{merit} is returned.
}
\author{ Catherine B. Hurley }
%\note{ ~~further notes~~ }
\seealso{\link{order.single},\link{order.endlink},\link{order.hclust}.}
\examples{
data(state)
state.d <- dist(state.x77)
# Order the states, keeping states in a division together.
state.o <- order.clusters(-state.d, as.numeric(state.division))
cmat <- dmat.color(as.matrix(state.d), rev(cm.colors(5)))
op <- par(mar=c(1,6,1,1))
rlabels <- state.name[state.o]
plotcolors(cmat[state.o,state.o], rlabels=rlabels)
par(op)
# Alternatively, use kmeans to place the states into 6 clusters
state.km <- kmeans(state.d,6)$cluster
# An ordering obtained from the kmeans clustering...
state.o <- unlist(memship2clus(state.km))
layout(matrix(1:2,nrow=1,ncol=2),widths=c(0.1,1))
op <- par(mar=c(1,1,1,.2))
state.colors <- cbind(state.km,state.km)
plotcolors(state.colors[state.o,])
par(mar=c(1,6,1,1))
rlabels <- state.name[state.o]
plotcolors(cmat[state.o,state.o], rlabels=rlabels)
par(op)
layout(matrix(1,1))
# In the ordering above, the ordering of clusters and the
# ordering of objects within the clusters is arbitrary.
# order.clusters gives an improved order but preserves the kmeans clusters.
state.o <- order.clusters(-state.d, state.km)
# and replot
layout(matrix(1:2,nrow=1,ncol=2),widths=c(0.1,1))
op <- par(mar=c(1,1,1,.2))
state.colors <- cbind(state.km,state.km)
plotcolors(state.colors[state.o,])
par(mar=c(1,6,1,1))
rlabels <- state.name[state.o]
plotcolors(cmat[state.o,state.o], rlabels=rlabels)
par(op)
layout(matrix(1,1))
}
\keyword{multivariate }
\keyword{cluster }