utils.pyx
# -*- mode: python; coding: utf-8 -*-
# Copyright (c) 2020 Radio Astronomy Software Group
# Licensed under the 2-clause BSD License
# distutils: language = c
# cython: linetrace=True
import enum
# python imports
import warnings
# cython imports
cimport cython
cimport numpy
from libc.math cimport atan2, cos, sin, sqrt
cdef class Ellipsoid:
cdef readonly numpy.float64_t gps_a, gps_b, e_squared, e_prime_squared, b_div_a2
@cython.cdivision
def __init__(self, numpy.float64_t gps_a, numpy.float64_t gps_b):
self.gps_a = gps_a
self.gps_b = gps_b
self.b_div_a2 = (self.gps_b / self.gps_a)**2
self.e_squared = (1 - self.b_div_a2)
self.e_prime_squared = (self.b_div_a2**-1 - 1)
# A python interface for different celestial bodies
class Body(enum.Enum):
Earth = Ellipsoid(6378137, 6356752.31424518)
try:
from lunarsky.moon import SELENOIDS
Moon_sphere = Ellipsoid(
SELENOIDS["SPHERE"]._equatorial_radius.to('m').value,
SELENOIDS["SPHERE"]._equatorial_radius.to('m').value * (1-SELENOIDS["SPHERE"]._flattening)
)
Moon_gsfc = Ellipsoid(
SELENOIDS["GSFC"]._equatorial_radius.to('m').value,
SELENOIDS["GSFC"]._equatorial_radius.to('m').value * (1-SELENOIDS["GSFC"]._flattening)
)
Moon_grail23 = Ellipsoid(
SELENOIDS["GRAIL23"]._equatorial_radius.to('m').value,
SELENOIDS["GRAIL23"]._equatorial_radius.to('m').value * (1-SELENOIDS["GRAIL23"]._flattening)
)
Moon_ce1lamgeo = Ellipsoid(
SELENOIDS["CE-1-LAM-GEO"]._equatorial_radius.to('m').value,
SELENOIDS["CE-1-LAM-GEO"]._equatorial_radius.to('m').value * (1-SELENOIDS["CE-1-LAM-GEO"]._flattening)
)
except:
# lunar sky not installed, don't add any moon bodies
pass
# expose up to python
# in order to not have circular dependencies
# define transformation parameters here
# parameters for transforming between xyz & lat/lon/alt
# keep for consistent API though these really shouldn't be used anymore
gps_a = Body.Earth.value.gps_a
gps_b = Body.Earth.value.gps_b
e_squared = Body.Earth.value.e_squared
e_prime_squared = Body.Earth.value.e_prime_squared
ctypedef fused int_or_float:
numpy.uint64_t
numpy.int64_t
numpy.int32_t
numpy.uint32_t
numpy.float64_t
numpy.float32_t
cdef inline int_or_float max(int_or_float a, int_or_float b):
return a if a > b else b
@cython.boundscheck(False)
@cython.wraparound(False)
cdef int_or_float arraymin(int_or_float[::1] array) nogil:
cdef int_or_float minval = array[0]
cdef Py_ssize_t i
for i in range(array.shape[0]):
if array[i] < minval:
minval = array[i]
return minval
@cython.boundscheck(False)
@cython.wraparound(False)
cdef int_or_float arraymax(int_or_float[::1] array) nogil:
cdef int_or_float maxval = array[0]
cdef Py_ssize_t i
for i in range(array.shape[0]):
if array[i] > maxval:
maxval = array[i]
return maxval
@cython.boundscheck(False)
@cython.wraparound(False)
cdef inline void _bl_to_ant_256(
numpy.uint64_t[::1] _bl,
numpy.uint64_t[:, ::1] _ants,
long nbls,
):
cdef Py_ssize_t i
for i in range(nbls):
_ants[1, i] = (_bl[i]) % 256
_ants[0, i] = (_bl[i] - (_ants[1, i])) // 256
return
@cython.boundscheck(False)
@cython.wraparound(False)
cdef inline void _bl_to_ant_2048(
numpy.uint64_t[::1] _bl,
numpy.uint64_t[:, ::1] _ants,
int nbls
):
cdef Py_ssize_t i
for i in range(nbls):
_ants[1, i] = (_bl[i] - 2 ** 16) % 2048
_ants[0, i] = (_bl[i] - 2 ** 16 - (_ants[1, i])) // 2048
return
# defining these constants helps cython not cast the large
# numbers as python ints
cdef numpy.uint64_t bl_large = 2 ** 16 + 2 ** 22
cdef numpy.uint64_t large_mod = 2147483648
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.cdivision(True)
cdef inline void _bl_to_ant_2147483648(
numpy.uint64_t[::1] _bl,
numpy.uint64_t[:, ::1] _ants,
int nbls
):
cdef Py_ssize_t i
for i in range(nbls):
_ants[1, i] = (_bl[i] - bl_large) % large_mod
_ants[0, i] = (_bl[i] - bl_large - (_ants[1, i])) // large_mod
return
@cython.boundscheck(False)
@cython.wraparound(False)
cpdef numpy.ndarray[dtype=numpy.uint64_t, ndim=2] baseline_to_antnums(
numpy.uint64_t[::1] _bl
):
cdef numpy.uint64_t _min = arraymin(_bl)
cdef long nbls = _bl.shape[0]
cdef int ndim = 2
cdef numpy.npy_intp * dims = [2, <numpy.npy_intp> nbls]
cdef numpy.ndarray[ndim=2, dtype=numpy.uint64_t] ants = numpy.PyArray_EMPTY(ndim, dims, numpy.NPY_UINT64, 0)
cdef numpy.uint64_t[:, ::1] _ants = ants
if _min >= (2 ** 16 + 2 ** 22):
_bl_to_ant_2147483648(_bl, _ants, nbls)
elif _min >= 2 ** 16:
_bl_to_ant_2048(_bl, _ants, nbls)
else:
_bl_to_ant_256(_bl, _ants, nbls)
return ants
@cython.boundscheck(False)
@cython.wraparound(False)
cdef inline void _antnum_to_bl_2147483648(
numpy.uint64_t[::1] ant1,
numpy.uint64_t[::1] ant2,
numpy.uint64_t[::1] baselines,
int nbls,
):
cdef Py_ssize_t i
for i in range(nbls):
baselines[i] = large_mod * (ant1[i]) + (ant2[i]) + bl_large
return
@cython.boundscheck(False)
@cython.wraparound(False)
cdef inline void _antnum_to_bl_2048(
numpy.uint64_t[::1] ant1,
numpy.uint64_t[::1] ant2,
numpy.uint64_t[::1] baselines,
int nbls,
):
cdef Py_ssize_t i
for i in range(nbls):
baselines[i] = 2048 * (ant1[i]) + (ant2[i]) + 2 ** 16
return
@cython.boundscheck(False)
@cython.wraparound(False)
cdef inline void _antnum_to_bl_2048_miriad(
numpy.uint64_t[::1] ant1,
numpy.uint64_t[::1] ant2,
numpy.uint64_t[::1] baselines,
int nbls,
):
cdef Py_ssize_t i
for i in range(nbls):
if ant2[i] >= 255:
baselines[i] = 2048 * (ant1[i]) + (ant2[i]) + 2 ** 16
else:
baselines[i] = 256 * (ant1[i]) + (ant2[i])
return
@cython.boundscheck(False)
@cython.wraparound(False)
cdef inline void _antnum_to_bl_256(
numpy.uint64_t[::1] ant1,
numpy.uint64_t[::1] ant2,
numpy.uint64_t[::1] baselines,
int nbls,
):
cdef Py_ssize_t i
# make views as c-contiguous arrays of a known dtype
# effectivly turns the numpy array into a c-array
for i in range(nbls):
baselines[i] = 256 * (ant1[i]) + (ant2[i])
return
cpdef numpy.ndarray[dtype=numpy.uint64_t] antnums_to_baseline(
numpy.uint64_t[::1] ant1,
numpy.uint64_t[::1] ant2,
bint attempt256=False,
bint nants_less2048=True,
bint use_miriad_convention=False
):
cdef int ndim = 1
cdef int nbls = ant1.shape[0]
cdef numpy.npy_intp * dims = [<numpy.npy_intp>nbls]
cdef numpy.ndarray[ndim=1, dtype=numpy.uint64_t] baseline = numpy.PyArray_EMPTY(ndim, dims, numpy.NPY_UINT64, 0)
cdef numpy.uint64_t[::1] _bl = baseline
cdef bint less255
cdef bint ants_less2048
# to ensure baseline numbers are unambiguous,
# use the 2048 calculation for antennas >= 256
# and use the 2147483648 calculation for antennas >= 2048
ants_less2048 = max(
arraymax(ant1),
arraymax(ant2),
) < 2048
# Some UVFITS readers (e.g. MWA and AAVS) expect the
# MIRIAD baseline convention.
if use_miriad_convention:
_antnum_to_bl_2048_miriad(ant1, ant2, _bl, nbls)
elif attempt256:
less256 = max(
arraymax(ant1),
arraymax(ant2),
) < 256
if less256:
_antnum_to_bl_256(ant1, ant2, _bl, nbls)
elif ants_less2048 and nants_less2048:
message = (
"antnums_to_baseline: found antenna numbers > 255, using "
"2048 baseline indexing."
)
warnings.warn(message)
_antnum_to_bl_2048(ant1, ant2, _bl, nbls)
else:
message = (
"antnums_to_baseline: found antenna numbers > 2047 or "
"Nants_telescope > 2048, using 2147483648 baseline indexing."
)
warnings.warn(message)
_antnum_to_bl_2147483648(ant1, ant2, _bl, nbls)
elif ants_less2048 and nants_less2048:
_antnum_to_bl_2048(ant1, ant2, _bl, nbls)
else:
_antnum_to_bl_2147483648(ant1, ant2, _bl, nbls)
return baseline
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.cdivision(True)
cpdef numpy.ndarray[dtype=numpy.float64_t, ndim=2] _lla_from_xyz(
numpy.float64_t[:, ::1] xyz,
Ellipsoid body,
):
cdef Py_ssize_t ind
cdef int ndim = 2
cdef int n_pts = xyz.shape[1]
cdef numpy.npy_intp * dims = [3, <numpy.npy_intp>n_pts]
cdef numpy.ndarray[dtype=numpy.float64_t, ndim=2] lla = numpy.PyArray_EMPTY(ndim, dims, numpy.NPY_FLOAT64, 0)
cdef numpy.float64_t[:, ::1] _lla = lla
cdef numpy.float64_t gps_p, gps_theta
# see wikipedia geodetic_datum and Datum transformations of
# GPS positions PDF in docs/references folder
for ind in range(n_pts):
gps_p = sqrt(xyz[0, ind] ** 2 + xyz[1, ind] ** 2)
gps_theta = atan2(xyz[2, ind] * body.gps_a, gps_p * body.gps_b)
_lla[0, ind] = atan2(
xyz[2, ind] + body.e_prime_squared * body.gps_b * sin(gps_theta) ** 3,
gps_p - body.e_squared * body.gps_a * cos(gps_theta) ** 3,
)
_lla[1, ind] = atan2(xyz[1, ind], xyz[0, ind])
_lla[2, ind] = (gps_p / cos(lla[0, ind])) - body.gps_a / sqrt(1.0 - body.e_squared * sin(lla[0, ind]) ** 2)
return lla
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.cdivision(True)
cpdef numpy.ndarray[dtype=numpy.float64_t, ndim=2] _xyz_from_latlonalt(
numpy.float64_t[::1] _lat,
numpy.float64_t[::1] _lon,
numpy.float64_t[::1] _alt,
Ellipsoid body,
):
cdef Py_ssize_t i
cdef int ndim = 2
cdef int n_pts = _lat.shape[0]
cdef numpy.npy_intp * dims = [3, <numpy.npy_intp>n_pts]
cdef numpy.ndarray[dtype=numpy.float64_t, ndim=2] xyz = numpy.PyArray_EMPTY(ndim, dims, numpy.NPY_FLOAT64, 0)
cdef numpy.float64_t[:, ::1] _xyz = xyz
cdef numpy.float64_t sin_lat, cos_lat, sin_lon, cos_lon, gps_n
for ind in range(n_pts):
sin_lat = sin(_lat[ind])
sin_lon = sin(_lon[ind])
cos_lat = cos(_lat[ind])
cos_lon = cos(_lon[ind])
gps_n = body.gps_a / sqrt(1.0 - body.e_squared * sin_lat ** 2)
_xyz[0, ind] = (gps_n + _alt[ind]) * cos_lat * cos_lon
_xyz[1, ind] = (gps_n + _alt[ind]) * cos_lat * sin_lon
_xyz[2, ind] = (body.b_div_a2 * gps_n + _alt[ind]) * sin_lat
return xyz
# this function takes memoryviews as inputs
# that is why _lat, _lon, and _alt are indexed below to get the 0th entry
@cython.boundscheck(False)
@cython.wraparound(False)
cpdef numpy.ndarray[numpy.float64_t, ndim=2] _ENU_from_ECEF(
numpy.float64_t[:, ::1] xyz,
numpy.float64_t[::1] _lat,
numpy.float64_t[::1] _lon,
numpy.float64_t[::1] _alt,
Ellipsoid body,
):
cdef Py_ssize_t i
cdef int ndim = 2
cdef int nblts = xyz.shape[1]
cdef numpy.npy_intp * dims = [3, <numpy.npy_intp> nblts]
cdef numpy.float64_t xyz_use[3]
cdef numpy.float64_t sin_lat, cos_lat, sin_lon, cos_lon
# we want a memoryview of the xyz of the center
# this looks a little silly but we don't have to define 2 different things
cdef numpy.float64_t[:] xyz_center = _xyz_from_latlonalt(_lat, _lon, _alt, body).T[0]
cdef numpy.ndarray[numpy.float64_t, ndim=2] _enu = numpy.PyArray_EMPTY(ndim, dims, numpy.NPY_FLOAT64, 0)
cdef numpy.float64_t[:, ::1] enu = _enu
sin_lat = sin(_lat[0])
cos_lat = cos(_lat[0])
sin_lon = sin(_lon[0])
cos_lon = cos(_lon[0])
for i in range(nblts):
xyz_use[0] = xyz[0, i] - xyz_center[0]
xyz_use[1] = xyz[1, i] - xyz_center[1]
xyz_use[2] = xyz[2, i] - xyz_center[2]
enu[0, i] = -sin_lon * xyz_use[0] + cos_lon * xyz_use[1]
enu[1, i] = (
- sin_lat * cos_lon * xyz_use[0]
- sin_lat * sin_lon * xyz_use[1]
+ cos_lat * xyz_use[2]
)
enu[2, i] = (
cos_lat * cos_lon * xyz_use[0]
+ cos_lat * sin_lon * xyz_use[1]
+ sin_lat * xyz_use[2]
)
return _enu
# this function takes memoryviews as inputs
# that is why _lat, _lon, and _alt are indexed below to get the 0th entry
@cython.boundscheck(False)
@cython.wraparound(False)
cpdef numpy.ndarray[dtype=numpy.float64_t] _ECEF_from_ENU(
numpy.float64_t[:, ::1] enu,
numpy.float64_t[::1] _lat,
numpy.float64_t[::1] _lon,
numpy.float64_t[::1] _alt,
Ellipsoid body,
):
cdef Py_ssize_t i
cdef int ndim = 2
cdef int nblts = enu.shape[1]
cdef numpy.npy_intp * dims = [3, <numpy.npy_intp>nblts]
cdef numpy.float64_t sin_lat, cos_lat, sin_lon, cos_lon
# allocate memory then make memory view for faster access
cdef numpy.ndarray[dtype=numpy.float64_t, ndim=2] _xyz = numpy.PyArray_EMPTY(ndim, dims, numpy.NPY_FLOAT64, 0)
cdef numpy.float64_t[:, ::1] xyz = _xyz
# we want a memoryview of the xyz of the center
# this looks a little silly but we don't have to define 2 different things
cdef numpy.float64_t[:] xyz_center = _xyz_from_latlonalt(_lat, _lon, _alt, body).T[0]
sin_lat = sin(_lat[0])
cos_lat = cos(_lat[0])
sin_lon = sin(_lon[0])
cos_lon = cos(_lon[0])
for i in range(nblts):
xyz[0, i] = (
- sin_lat * cos_lon * enu[1, i]
- sin_lon * enu[0, i]
+ cos_lat * cos_lon * enu[2, i]
+ xyz_center[0]
)
xyz[1, i] = (
- sin_lat * sin_lon * enu[1, i]
+ cos_lon * enu[0, i]
+ cos_lat * sin_lon * enu[2, i]
+ xyz_center[1]
)
xyz[2, i] = cos_lat * enu[1, i] + sin_lat * enu[2, i] + xyz_center[2]
return _xyz
# inital_uvw is a memoryviewed array as an input
@cython.boundscheck(False)
@cython.wraparound(False)
cpdef numpy.ndarray[dtype=numpy.float64_t, ndim=2] _old_uvw_calc(
numpy.float64_t ra,
numpy.float64_t dec,
numpy.float64_t[:, ::1] initial_uvw
):
cdef int i
cdef int ndim = 2
cdef int nuvw = initial_uvw.shape[1]
cdef numpy.npy_intp * dims = [3, <numpy.npy_intp>nuvw]
cdef numpy.ndarray[dtype=numpy.float64_t, ndim=2] uvw = numpy.PyArray_EMPTY(ndim, dims, numpy.NPY_FLOAT64, 0)
# make a memoryview for the numpy array in c
cdef numpy.float64_t[:, ::1] _uvw = uvw
cdef numpy.float64_t sin_ra, cos_ra, sin_dec, cos_dec
sin_ra = sin(ra)
cos_ra = cos(ra)
sin_dec = sin(dec)
cos_dec = cos(dec)
for i in range(nuvw):
_uvw[0, i] = - sin_ra * initial_uvw[0, i] + cos_ra * initial_uvw[1, i]
_uvw[1, i] = (
- sin_dec * cos_ra * initial_uvw[0, i]
- sin_dec * sin_ra * initial_uvw[1, i]
+ cos_dec * initial_uvw[2, i]
)
_uvw[2, i] = (
cos_dec * cos_ra * initial_uvw[0, i]
+ cos_dec * sin_ra * initial_uvw[1, i]
+ sin_dec * initial_uvw[2, i]
)
return uvw
# uvw is a memoryviewed array as an input
@cython.boundscheck(False)
@cython.wraparound(False)
cpdef numpy.ndarray[dtype=numpy.float64_t, ndim=2] _undo_old_uvw_calc(
numpy.float64_t ra,
numpy.float64_t dec,
numpy.float64_t[:, ::1] uvw
):
cdef int i
cdef int ndim = 2
cdef int nuvw = uvw.shape[1]
cdef numpy.npy_intp * dims = [3, <numpy.npy_intp>nuvw]
cdef numpy.ndarray[dtype=numpy.float64_t, ndim=2] unphased_uvw = numpy.PyArray_EMPTY(ndim, dims, numpy.NPY_FLOAT64, 0)
# make a memoryview for the numpy array in c
cdef numpy.float64_t[:, ::1] _u_uvw = unphased_uvw
cdef numpy.float64_t sin_ra, cos_ra, sin_dec, cos_dec
sin_ra = sin(ra)
cos_ra = cos(ra)
sin_dec = sin(dec)
cos_dec = cos(dec)
for i in range(nuvw):
_u_uvw[0, i] = (
- sin_ra * uvw[0, i]
- sin_dec * cos_ra * uvw[1, i]
+ cos_dec * cos_ra * uvw[2, i]
)
_u_uvw[1, i] = (
cos_ra * uvw[0, i]
- sin_dec * sin_ra * uvw[1, i]
+ cos_dec * sin_ra * uvw[2, i]
)
_u_uvw[2, i] = cos_dec * uvw[1, i] + sin_dec * uvw[2, i]
return unphased_uvw