https://github.com/ViCCo-Group/THINGS-data
Tip revision: 2d95c15d3a2cc5984ffd4a9a2c4ad3496847ca9d authored by Oliver Contier on 28 February 2023, 15:15:53 UTC
fixed howtocite
fixed howtocite
Tip revision: 2d95c15
step3e_validation_pairwise_decoding1854.m
function step3e_validation_pairwise_decoding1854(bids_dir, toolbox_dir, participant, blocknr, n_blocks)
%% Function to run pairwise decoding analysis for the 1854 object classes
%
% @ Lina Teichmann, 2022
%
% Usage:
% step3d_validation_pairwise_decoding200(bids_dir,participant, ...)
%
% Inputs:
% bids_dir path to the bids root folder
% toolbox_dir path to toolbox folder containtining CoSMoMVPA
% participant participant number
% blocknr number of the chunk you want to run this analysis for
% n_blocks how many blocks you want to run this analysis in (this is to make it faster by running stuff in parallel)
%
% Returns:
% decoding_acc file that has the decoding accuracy for each decoding block ('PX_pairwise)decoding_1854_blockX.mat')
% decoding_pairs file that contains which pairwise comparisons were run so it can be stacked back together ('PX_pairwise)decoding_1854_blockX_pairs.mat')
%% folders
preprocdir = [bids_dir '/derivatives/preprocessed/'];
res_dir = [bids_dir '/derivatives/output/'];
addpath(genpath([toolbox_dir '/CoSMoMVPA']))
load([preprocdir '/P' num2str(participant) '_cosmofile.mat'],'ds');
% make a pairwise decoding folder if it does not exist
if ~exist([res_dir '/pairwise_decoding'], 'dir')
mkdir([res_dir '/pairwise_decoding'])
end
outfn = [res_dir '/pairwise_decoding/P' num2str(participant) '_pairwise_decoding_1854_block' num2str(blocknr) '.mat'];
outfn_pairs = [res_dir '/pairwise_decoding/P' num2str(participant) '_pairwise_decoding_1854_block' num2str(blocknr) '_pairs.mat'];
%% pairwise decoding
ds = cosmo_slice(ds,strcmp(ds.sa.trial_type,'exp'));
ds.sa.targets = ds.sa.things_category_nr;
ds.sa.chunks = ds.sa.session_nr;
all_combinations = combnk(unique(ds.sa.targets),2);
all_targets = unique(ds.sa.targets);
all_chunks = unique(ds.sa.chunks);
% split into blocks
step = ceil(length(all_combinations)/n_blocks);
s = 1:step:length(all_combinations);
blocks = cell(length(s),1);
for b = 1:length(s)
blocks{b} = all_combinations(s(b):min(s(b)+step-1,length(all_combinations)),:);
end
combs = blocks{blocknr};
save(outfn_pairs, 'combs')
nproc = cosmo_parallel_get_nproc_available;
%% create RDM
% find the items belonging to the exemplars
target_idx = cell(1,length(all_targets));
for j=1:length(all_targets)
target_idx{j} = find(ds.sa.targets==all_targets(j));
end
% for each chunk, find items belonging to the test set
test_chunk_idx = cell(1,length(all_chunks));
for j=1:length(all_chunks)
test_chunk_idx{j} = find(ds.sa.chunks==all_chunks(j));
end
%% make blocks for parfor loop
step = ceil(length(combs)/nproc);
s = 1:step:length(combs);
comb_blocks = cell(1,length(s));
for b = 1:nproc
comb_blocks{b} = combs(s(b):min(s(b)+step-1,length(combs)),:);
end
%arguments for searchlight and crossvalidation
ma = struct();
ma.classifier = @cosmo_classify_lda;
ma.output = 'accuracy';
ma.check_partitions = false;
ma.nproc = 1;
ma.progress = 0;
ma.partitions = struct();
% set options for each worker process
nh = cosmo_interval_neighborhood(ds,'time','radius',0);
worker_opt_cell = cell(1,nproc);
for procs=1:nproc
worker_opt=struct();
worker_opt.ds=ds;
worker_opt.ma = ma;
worker_opt.uc = all_chunks;
worker_opt.worker_id=procs;
worker_opt.nproc=nproc;
worker_opt.nh=nh;
worker_opt.combs = comb_blocks{procs};
worker_opt.target_idx = target_idx;
worker_opt.test_chunk_idx = test_chunk_idx;
worker_opt_cell{procs}=worker_opt;
end
%% run the workers
tic
result_map_cell=cosmo_parcellfun(nproc,@run_block_with_worker,worker_opt_cell,'UniformOutput',false);
toc
%% cat the results
res=cosmo_stack(result_map_cell);
%% save
fprintf('Saving...');tic
save(outfn,'res','-v7.3')
fprintf('Saving finished in %i seconds\n',ceil(toc))
end
function res_block = run_block_with_worker(worker_opt)
ds=worker_opt.ds;
nh=worker_opt.nh;
ma=worker_opt.ma;
uc=worker_opt.uc;
target_idx=worker_opt.target_idx;
test_chunk_idx=worker_opt.test_chunk_idx;
worker_id=worker_opt.worker_id;
nproc=worker_opt.nproc;
combs=worker_opt.combs;
res_cell = cell(1,length(combs));
cc=clock();mm='';
for i=1:length(combs)
idx_ex = [target_idx{combs(i,1)}; target_idx{combs(i,2)}];
[ma.partitions.train_indices,ma.partitions.test_indices] = deal(cell(1,length(uc)));
for j=1:length(uc)
ma.partitions.train_indices{j} = setdiff(idx_ex,test_chunk_idx{j});
ma.partitions.test_indices{j} = intersect(test_chunk_idx{j},idx_ex);
end
res_cell{i} = cosmo_searchlight(ds,nh,@cosmo_crossvalidation_measure,ma);
res_cell{i}.sa.target1 = combs(i,1);
res_cell{i}.sa.target2 = combs(i,2);
if ~mod(i,10)
mm=cosmo_show_progress(cc,i/length(combs),sprintf('%i/%i for worker %i/%i\n',i,length(combs),worker_id,nproc),mm);
end
end
res_block = cosmo_stack(res_cell);
end