https://github.com/tao-aimi/DeepRecursiveEmbedding
Tip revision: 8e10ec8a3ec329222e32f6007d985623f44efa9a authored by Tao on 27 January 2022, 20:14:44 UTC
Update README.md
Update README.md
Tip revision: 8e10ec8
README.md
# Deep Recursive Embedding
Deep Recursive Embedding (DRE) is a novel demensionality reduction method based on a generic deep embedding network (DEN) framework, which is able to learn a parametric mapping from high-dimensional space to low-dimensional space, guided by a recursive training strategy. DRE makes use of the latent data representations for boosted embedding performance.
Lab github DRE page:
[Tao Lab](https://github.com/tao-aimi/DeepRecursiveEmbedding)
Maintainer's github DRE page:
[Xinrui Zu](https://github.com/zuxinrui/DeepRecursiveEmbedding)
## MNIST embedding result

## Installation
DRE can be installed with a simple PyPi command:
`pip install DRE`
The pre-requests of DRE are:
`numpy >= 1.19`
`scikit-learn >= 0.16`
`matplotlib`
`numba >= 0.34`
`torch >= 1.0`
## How to use DRE
DRE follows the form of `Scikit-learn` APIs, whose `fit_transform` function is for returning the embedding result and `fit` for the whole model:
```python
from DRE import DeepRecursiveEmbedding
dre = DeepRecursiveEmbedding()
# return the embedding result:
y = dre.fit_transform(x)
# or return the whole model:
dre.fit(x)
```
Copy and run `test_mnist.py` or `test_mnist.ipynb` to check the embedding procedure of MNIST dataset.
## Citation
Z. Zhou, X. Zu, Y. Wang, B. P. F. Lelieveldt and Q. Tao, "Deep Recursive Embedding for High-Dimensional Data," in IEEE Transactions on Visualization and Computer Graphics, vol. 28, no. 2, pp. 1237-1248, 1 Feb. 2022, doi: 10.1109/TVCG.2021.3122388.
@ARTICLE{DRE2022,
author={Zhou, Zixia and Zu, Xinrui and Wang, Yuanyuan and Lelieveldt, Boudewijn P. F. and Tao, Qian},
journal={IEEE Transactions on Visualization and Computer Graphics},
title={Deep Recursive Embedding for High-Dimensional Data},
year={2022},
volume={28},
number={2},
pages={1237-1248},
doi={10.1109/TVCG.2021.3122388}
}
## Link
https://ieeexplore.ieee.org/document/9585419
##