library(FactoMineR) library(factoextra) library(jsonlite) myArgs <- commandArgs(trailingOnly = TRUE) data <- read.csv(myArgs) ######################################################################## #run FAMD run_FAMD <- function(data_frame) { data_types <- sapply(data_frame, class) run_type <- 'MCA' if ((any(data_types=="integer") || any(data_types == "numeric")) && (any(data_types == "factor") || any(data_types == "character"))) { run_type <- 'famd' } else if ((any(data_types=="integer") || any(data_types == "numeric")) && (!any(data_types == "factor") || !any(data_types == "character"))) { run_type <- 'PCA' } if(run_type == 'famd' || run_type == 'MCA') { ################################ # do FAMD in case of qualitative and quantitative data res.famd <- FAMD(data_frame, graph = FALSE) var <- get_famd_var(res.famd) # print(res.famd$eig) var_contrib <- res.famd[["var"]][["contrib"]] # Contribution to the first dimension # print(fviz_contrib(res.famd, "var", axes = 1)) # print(fviz_contrib(res.famd, "var", axes = 2)) data_frame_var_contribution <- as.data.frame(t(var_contrib)) return(list(data_frame_var_contribution, res.famd$eig, res.famd$ind$coord, res.famd$var$coord, -1)) } else if (run_type == 'PCA') { ########################## # in case of only numerical values use PCA res.famd = PCA(data_frame, scale.unit=TRUE, ncp=5, graph=FALSE) var <- res.famd$var # print(res.famd$eig) # print(fviz_contrib(res.famd, "var", axes = 1)) # print(fviz_contrib(res.famd, "var", axes = 2)) var_contrib <- var$contrib data_frame_var_contribution <- as.data.frame(t(var_contrib)) return(list(data_frame_var_contribution, res.famd$eig, res.famd$ind$coord, res.famd$var$coord, -1)) } } list_final_contributing <- run_FAMD(data) cat(jsonlite::toJSON(list_final_contributing, pretty=TRUE))