utilities.R
###########################################################
# check arguments
###########################################################
check.args.cplm <- function(call,n.obs){
## checking arguments
if (!is.null(call$weights)){
if (!is.numeric(call$weights))
stop("'weights' must be a numeric vector")
if (any(call$weights <= 0))
stop("negative or zero weights not allowed")
}
if (!is.null(call$offset)) {
if (length(call$offset) != n.obs)
stop(gettextf("number of 'offset' is %d should
equal %d (number of observations)",
length(call$offset), n.obs), domain = NA)
}
}
check.args.bcplm <- function(call, n.beta, n.chains){
n.iter <- eval(call$n.iter)
n.burnin <- eval(call$n.burnin)
# check counts related inputs
if (!is.null(call$n.chains) && (!is.numeric(call$n.chains)
|| call$n.chains < 1))
stop("'n.chains' must be greater than 1" )
if (!is.null(n.burnin) && !is.null(n.iter) &&
n.burnin >= n.iter)
stop("'n.burnin' should be less than 'n.iter'" )
if (!is.null(call$prior.beta.mean) &&
length(call$prior.beta.mean) != n.beta)
stop(gettextf("'prior.beta.mean' should be of length %d"), n.beta)
if (!is.null(call$prior.beta.mean) &&
length(call$prior.beta.mean) != n.beta)
stop(gettextf("'prior.beta.mean' should be of length %d"), n.beta)
}
###########################################################
# Check initial values
###########################################################
# check initial values in cpglm
check.inits.cpglm <- function(inits, n.beta){
if (any(is.na(match(c("beta", "phi", "p"), names(inits)))))
stop("'inits' must contain 'beta', 'phi' and 'p'!")
if (length(inits$beta) != n.beta)
stop(gettextf("number of 'beta' in 'inits' is %d, but should
equal %d (number of mean parameters)",
length(inits$beta), n.beta, domain = NA))
if (length(inits$phi) > 1 || inits$phi <= 0)
stop("'phi' in 'inits' should be of length 1 and greater than 0")
if (length(inits$p) > 1 || inits$p <= 1 || inits$p >= 2)
stop("'p' in 'inits' should be of length 1 and between 1 and 2")
}
# check initial values in cpglmm
check.inits.cpglmm <- function(inits, n.beta, n.term){
check.inits.cpglm(inits, n.beta)
if (!("Sigma" %in% names(inits)))
stop("the 'Sigma' component in 'inits' is missing")
if (length(inits$Sigma) != n.term)
stop(gettextf("'Sigma' in 'inits' should be of length %d", n.term))
}
# check initial values in bcplm
check.inits.bcplm <- function(inits, n.beta, n.term, n.chains, is.cpglmm){
if (length(inits) != n.chains)
stop(gettextf("'inits' should be of length %d", n.chains))
lapply(inits, function(x) {
if (any(is.na(match(c("beta", "phi", "p"), names(x)))))
stop("elements of 'inits' should contain 'beta', 'phi' and 'p'")
if (is.cpglmm && any(is.na(match(c("u", "Sigma"), names(inits)))))
stop("elements of 'inits' should contain 'u', and 'Sigma'")
if (!is.cpglmm){
check.inits.cpglm(x, n.beta)
} else {
check.inits.cpglmm(x, n.beta, n.term)
if (!("u" %in% names(x)))
stop("the 'u' component in 'inits' is missing")
}
})
}
###########################################################
# default control options
###########################################################
# set control parameters
cplm.control <- function(max.iter = 300L,
max.fun = 2000L,
bound.p = c(1.01, 1.99),
trace = 0,
PQL.init = TRUE){
if (!is.numeric(max.iter) || max.iter <= 0)
stop("value of 'max.iter' must be > 0")
if (!is.numeric(max.fun) || max.fun <= 0)
stop("value of 'max.fun' must be > 0")
if (!is.numeric(bound.p) || length(bound.p) != 2)
stop("'bound.p' must be of length 2")
if (min(bound.p) < 1 || max(bound.p) > 2)
stop("invalid bounds in 'bound.p'")
if (!is.numeric(trace) && !is.logical(trace))
stop("'trace' must be logical or numeric")
list(max.iter = as.integer(max.iter),
max.fun = as.integer(max.fun),
bound.p = as.numeric(sort(bound.p)),
trace = as.integer(trace),
PQL.init = as.logical(PQL.init))
}
###########################################################
# numerical derivatives
###########################################################
# function to compute gradient
grad <- function(parm, fun, ...){
n <- length(parm)
eps <- 0.001
gd <- rep(NA, n)
for (i in 1:n){
parm[i] <- parm[i] - eps
g1 <- fun(parm, ...)
parm[i] <- parm[i] + 2 * eps
g2 <- fun(parm, ...)
gd[i] <- (g2 - g1) / (2 * eps)
parm[i] <- parm[i] - eps
}
return(gd)
}
# function to compute hessian
hess <- function(parm, fun, ...){
n <- length(parm)
eps <- 0.001
hn <- matrix(0, n, n)
for (i in 1:n){
parm[i] <- parm[i] - eps
g1 <- grad(parm, fun, ...)
parm[i] <- parm[i] + 2 * eps
g2 <- grad(parm, fun, ...)
hn[i,] <- (g2 - g1) / ( 2 * eps)
parm[i] <- parm[i] - eps
}
return(hn)
}
###########################################################
# glm related
###########################################################
# construct model frame in cpglm
cpglm.mf <- function(mf, contrasts){
m <- match(c("formula", "data", "subset", "weights",
"na.action", "offset"), names(mf), 0L)
mf <- mf[c(1L, m)]
mf$drop.unused.levels <- TRUE
mf[[1L]] <- as.name("model.frame")
mf <- eval(mf, parent.frame(2))
mt <- attr(mf, "terms")
Y <- model.response(mf, "any")
X <- if (!is.empty.model(mt))
model.matrix(mt, mf, contrasts)
weights <- as.vector(model.weights(mf))
offset <- as.vector(model.offset(mf))
n.obs <- nrow(X)
if (is.null(weights))
weights <- rep(1, n.obs)
if (is.null(offset))
offset <- rep(0, n.obs)
return (list(mf = mf, wts = weights, off = offset,
Y = Y, X = X))
}
# fit a Tweedie glm given a model frame
cpglm.fit <- function(fr, p = 1.5, link.power = 0) {
fm <- tweedie(var.power = p, link.power = link.power)
int <- attr(attr(fr$mf,"terms"), "intercept") > 0L
suppressWarnings(glm.fit(fr$X, fr$Y, weights = fr$wts, offset = fr$off,
family = fm, intercept = int))
}
# generate inital values for a Tweedie glm given a model frame
cpglm.init <- function(fr, link.power = 0){
p <- 1.5
fit <- cpglm.fit(fr, p, link.power)
beta <- as.numeric(fit$coefficients)
phi <- sum(fit$weights * fit$residuals^2) / fit$df.residual
vbeta <- summary.glm(fit)$cov.scaled
list(beta = beta, phi = phi, p = p, vcov = vbeta)
}
# generate inital values for bcplm
bcplm.init <- function(fr, link.power = 0, n.chains, bound.p, dm){
init <- cpglm.init(fr, link.power)
n.beta <- length(init$beta)
bound.p[1] <- max(bound.p[1], 1.4)
bound.p[2] <- min(bound.p[2], 1.6)
init0 <- unname(unlist(init[1:3]))
inits <- vector("list", n.chains)
inits[[1]] <- init0
if (n.chains > 1){
for (i in 2:n.chains)
inits[[i]] <- c(as.numeric(init$beta + rnorm(n.beta, 0, 0.5)),
runif(1, 0.8 * init$phi, 1.2 * init$phi),
runif(1, bound.p[1], bound.p[2]))
}
if (!is.null(dm)){
s <- lapply(dm$ST, function(x) x %*% t(x))
sv <- unlist(lapply(s, as.numeric))
inits <- lapply(inits, function(x) c(x, rnorm(dm$dd[["q"]]), sv))
}
return(list(inits = inits, vbeta = init$vcov))
}
# compute fitted values of for bigglm
fitted.bigglm <- function(object, data, ...){
# get chunks of data
tt <- terms(object)
n <- object$n
beta <- coef(object)
cursor <- 0
eta <- offset <- pwts <- c()
datafun <- function(){
if (cursor >= n)
return(NULL)
start <- cursor + 1
cursor <<- cursor + min(object$call$chunksize, n - cursor)
data[start:cursor, ]
}
# get stats for each chunk
while(!is.null(chunk <- datafun())){
mf <- model.frame(tt, chunk)
mm <- model.matrix(tt, mf)
if(is.null(off <- model.offset(mf)))
off <- rep(0, nrow(mm))
if (!is.null(object$weights))
w <- model.frame(object$weights, chunk)[[1]] else
w <- rep(1, nrow(mm))
eta <- c(eta, mm %*% beta + off)
offset <- c(offset, off)
pwts <- c(pwts, w)
}
# compute stats to be returned
mu <- object$family$linkinv(eta)
dmu <- object$family$mu.eta(eta)
wts <- pwts * dmu * dmu / (object$family$variance(mu))
y <- eval(object$call$formula[[2]], data)
res <- (y - mu) / dmu
list(linear.predictors = eta,
fitted.values = mu,
offset = offset,
prior.weights = pwts,
weights = wts,
residuals = res )
}
###########################################################
# general utility functions
###########################################################
# function to compute minus twice log density
dtweedie.nlogl <- function(y, mu, phi, p) {
-2 * sum(log(dtweedie(y = y, mu = mu, phi = phi, power = p)))
}
# function to take inverse of a matrix using svd
svd.inv <- function(x){
sx <- svd(x)
return(sx$v %*% diag(1 / sx$d) %*% t(sx$u))
}
# function to compute the link.power needed in tweedie
make.link.power <- function(link) {
if (!is.character(link) && !is.numeric(link))
stop("link.power must be either numeric or character.")
if (is.character(link)){
okLinks <- c("log", "identity", "sqrt","inverse")
if (link %in% okLinks)
switch(link, log = 0, identity = 1, sqrt = 0.5, inverse = -1) else
stop("invalid link function!")
} else
link
}
# optimize an objective function using different optimizers
cplm_optim <- function(par, fn, gr = NULL, ...,
lower = -Inf, upper = Inf, control = cplm.control(),
optimizer = "nlminb"){
optimizer <- match.arg(optimizer, c("nlminb", "L-BFGS-B", "bobyqa"))
if (optimizer == "nlminb"){
ans <- nlminb(par, fn, gradient = gr, ...,
lower = lower, upper = upper,
control = list(trace = control$trace,
iter.max = control$max.iter,
eval.max = control$max.fun))
names(ans)[2] <- "value"
return(ans[c("par", "value", "convergence", "message")])
} else if (optimizer == "L-BFGS-B"){
ans <- optim(par, fn, gr = gr, ..., method = "L-BFGS-B",
lower = lower, upper = upper,
control = list(trace = control$trace,
maxit = control$max.iter))
return(ans[c("par", "value", "convergence", "message")])
} else if (optimizer == "bobyqa"){
ans <- bobyqa(par, fn, lower = lower, upper = upper,
control = list(iprint = control$trace,
rhobe = 0.02, rhoend = 2e-7,
maxfun = control$max.fun),
...)
names(ans)[c(2, 4, 5)] <- c("value", "convergence", "message")
return(ans[c("par", "value", "convergence", "message")])
}
}
# 1-d random walk metropolis
metrop_rw <- function(n = 1, par = 0, sd = 1, fun, ...,
lower = -Inf, upper = Inf){
fn <- function(x) fun(x, ...)
if (par < lower || par > upper)
stop("starting value of x is invalid")
# run the metropolis algorithm
.Call("bcplm_metrop_rw", as.integer(n), as.double(par), as.double(sd),
as.double(lower), as.double(upper), fn, new.env())
}