cpglmm.R
#######################################################
## Compound Poisson GLMM ##
## Author: Wayne Zhang, actuary_zhang@hotmail.com ##
#######################################################
cpglmm <- function(formula, link = "log", data, weights, offset,
subset, na.action, inits = NULL,
contrasts = NULL, control = list(),
basisGenerators = c("tp", "bsp", "sp2d"),
optimizer = "nlminb", doFit = TRUE, nAGQ = 1) {
call <- expand.call(match.call())
if (missing(data))
data <- environment(formula)
link.power <- make.link.power(link)
# identify smooth terms
formula <- eval(call$formula)
tf <- terms.formula(formula, specials = eval(call$basisGenerators,
parent.frame(2)))
n.f <- length(unlist(attr(tf, "specials")))
# create model frame and get factor list
if (n.f) {
call2 <- as.list(call)[-1]
call2 <- call2[-match(c("link", "inits", "control",
"optimizer", "doFit", "nAGQ"), names(call2), 0L)]
setup <- do.call(frFL, as.list(call2))
fr <- setup$m$fr
FL <- setup$m$FL
} else {
fr <- lmerFrames(call, formula, contrasts)
FL <- lmerFactorList(formula, fr, 0L, 0L)
}
# set control parameters
ctr <- do.call(cplm.control, control)
FL$dims["mxit"] <- ctr$max.iter
FL$dims["mxfn"] <- ctr$max.fun
# get dims
dm <- mkZt(FL, NULL)
dm$dd["verb"] <- ctr$trace
# update nAGQ in dd
if ((nAGQ <- as.integer(nAGQ)) < 1) nAGQ <- 1L
if (nAGQ %% 2 == 0) nAGQ <- nAGQ + 1L # reset nAGQ to be an odd number
dm$dd["nAGQ"] <- as.integer(nAGQ)
AGQlist <- .Call("cpglmm_ghq", nAGQ)
M1 <- length(levels(dm$flist[[1]]))
n <- ncol(dm$Zt)
q <- dm$dd[["q"]]
d <- dm$dd[["p"]]
# default offset and prior wts
if (is.null(fr$wts) || length(fr$wts) == 0)
fr$wts <- as.double(rep(1, n))
if (is.null(fr$off) || length(fr$off) == 0)
fr$off <- as.double(rep(0, n))
if (M1 >= n) {
msg1 <- "Number of levels of a grouping factor for the random effects\n"
msg3 <- "n, the number of observations"
if (dm$dd["useSc"])
stop(msg1, "must be less than ", msg3)
else if (M1 == n)
message(msg1, "is *equal* to ", msg3)
}
# initial values
if (!is.null(inits)){
check.inits.cpglmm(inits, dm$dd['p'], dm$dd['nt'])
} else {
# generate starting values
inits <- cpglm.init(fr, link.power)
}
names(inits$beta) <- names(fr$fixef)
# input cpglmm class for optimization
# muEta and var are not initialized so that lmer is fitted when PQL.init is TRUE
beta <- as.numeric(inits$beta * 1)
names(beta) <- names(inits$beta)
ans <- new(Class = "cpglmm", env = new.env( ), nlmodel = (~I(x))[[2]],
frame = fr$mf, call = call, flist = dm$flist,
Zt = dm$Zt, X = fr$X, y = as.numeric(fr$Y),
pWt = fr$wts, offset = fr$off,
Gp = unname(dm$Gp), dims = dm$dd,
ST = dm$ST, A = dm$A, Cm = dm$Cm, L = dm$L,
Cx = rep(1.0, length((dm$A)@x)),
# was Cx = dm$A)@x which broke in R3.0.x.
# Referecen to the same value. Need duplicate in C level
deviance = dm$dev,
fixef = beta,
ranef = numeric(q),
u = numeric(q), eta = numeric(n),
mu = numeric(n), resid = numeric(n),
muEta = numeric(n), var = numeric(n),
sqrtXWt = as.matrix(numeric(n)), sqrtrWt = numeric(n),
RZX = matrix(0, q, d), RX = matrix(0, d, d),
ghx = AGQlist[[1]], ghw = AGQlist[[2]],
p = as.double(inits$p * 1), # force copying object
phi = as.double(inits$phi * 1),
link.power = as.double(link.power * 1),
bound.p = ctr$bound.p, formula = formula, contrasts = contrasts,
model.frame = fr$mf, inits = inits, vcov = matrix(0, d, d), smooths = list())
# return cpglmm object if model fitting is turned off
if (!doFit) return(ans)
# run optimization
if (optimizer == "nlminb") {
invisible(.Call("cpglmm_optimize", ans))
if (ans@dims[["cvg"]] > 6)
warning(convergenceMessage(ans@dims[["cvg"]]))
} else {
# function to be fed to optimizers (return deviance)
# parm: theta + beta + log(phi) + p
cpglmm_dev <- function(parm){
.Call("cpglmm_update_dev", ans, parm)
}
# initial values for theta, beta, log(phi), p,
parm <- c(.Call("cpglmm_ST_getPars", ans), ans$fixef, log(ans$phi), ans$p)
parm <- unname(parm)
# set bounds
n.parm <- length(parm)
lower <- rep(-Inf, n.parm)
upper <- rep(Inf, n.parm)
# reset bounds for diagonal elements of theta
lower[1:sum(sapply(ans$ST, ncol))] <- 0
# reset bounds for p
lower[n.parm] <- ans$bound.p[1]
upper[n.parm] <- ans$bound.p[2]
# run optimizations
rslt <- cplm_optim(parm, cpglmm_dev, lower = lower, upper = upper,
control = ctr, optimizer = optimizer)
ans@dims[["cvg"]] <- as.integer(rslt$convergence)
if (rslt$convergence) warning(rslt$message)
# update ans using the found optima
invisible(.Call("cpglmm_update_dev", ans, rslt$par))
}
# update random effects
invisible(.Call("cpglmm_update_ranef", ans))
# update sigmaML to be used in postVar
dev <- ans@deviance
dev['sigmaML'] <- sqrt(ans@phi)
ans@deviance <- dev
# update vcov in ans
invisible(.Call("cpglmm_update_RX", ans))
ans@vcov <- vcov(ans)
# add smooth terms
if (n.f) {
ans@smooths <- indsF(ans, setup$fct, setup$fctterm)
vars <- unname(sapply(ans@smooths, function(tt) {
pos <- grep("^x\\d?$", names(tt), perl = TRUE)
sapply(pos, function(x) as.character(tt[[x]]))
}))
vars <- as.character(vars)
ans@frame <- data.frame(ans@frame, base::subset(data, select = vars))
}
ans
}