/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- * * ***** BEGIN LICENSE BLOCK ***** * Version: MPL 1.1/GPL 2.0/LGPL 2.1 * * The contents of this file are subject to the Mozilla Public License Version * 1.1 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License * for the specific language governing rights and limitations under the * License. * * The Original Code is Mozilla Communicator client code, released * March 31, 1998. * * The Initial Developer of the Original Code is * Netscape Communications Corporation. * Portions created by the Initial Developer are Copyright (C) 1998 * the Initial Developer. All Rights Reserved. * * Contributor(s): * IBM Corp. * * Alternatively, the contents of this file may be used under the terms of * either of the GNU General Public License Version 2 or later (the "GPL"), * or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), * in which case the provisions of the GPL or the LGPL are applicable instead * of those above. If you wish to allow use of your version of this file only * under the terms of either the GPL or the LGPL, and not to allow others to * use your version of this file under the terms of the MPL, indicate your * decision by deleting the provisions above and replace them with the notice * and other provisions required by the GPL or the LGPL. If you do not delete * the provisions above, a recipient may use your version of this file under * the terms of any one of the MPL, the GPL or the LGPL. * * ***** END LICENSE BLOCK ***** */ /* * JS number type and wrapper class. */ #include "mozilla/FloatingPoint.h" #include "mozilla/RangedPtr.h" #include "double-conversion.h" // Avoid warnings about ASSERT being defined by the assembler as well. #undef ASSERT #ifdef XP_OS2 #define _PC_53 PC_53 #define _MCW_EM MCW_EM #define _MCW_PC MCW_PC #endif #include #include #include #include #include #include "jstypes.h" #include "jsutil.h" #include "jsapi.h" #include "jsatom.h" #include "jscntxt.h" #include "jsversion.h" #include "jsdtoa.h" #include "jsgc.h" #include "jsinterp.h" #include "jsnum.h" #include "jsobj.h" #include "jsopcode.h" #include "jsprf.h" #include "jsscope.h" #include "jsstr.h" #include "jslibmath.h" #include "vm/GlobalObject.h" #include "vm/MethodGuard.h" #include "vm/StringBuffer.h" #include "jsatominlines.h" #include "jsinferinlines.h" #include "jsnuminlines.h" #include "jsobjinlines.h" #include "vm/MethodGuard-inl.h" #include "vm/NumberObject-inl.h" #include "vm/String-inl.h" using namespace js; using namespace js::types; /* * If we're accumulating a decimal number and the number is >= 2^53, then the * fast result from the loop in GetPrefixInteger may be inaccurate. Call * js_strtod_harder to get the correct answer. */ static bool ComputeAccurateDecimalInteger(JSContext *cx, const jschar *start, const jschar *end, double *dp) { size_t length = end - start; char *cstr = static_cast(cx->malloc_(length + 1)); if (!cstr) return false; for (size_t i = 0; i < length; i++) { char c = char(start[i]); JS_ASSERT(('0' <= c && c <= '9') || ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z')); cstr[i] = c; } cstr[length] = 0; char *estr; int err = 0; *dp = js_strtod_harder(cx->runtime->dtoaState, cstr, &estr, &err); if (err == JS_DTOA_ENOMEM) { JS_ReportOutOfMemory(cx); cx->free_(cstr); return false; } if (err == JS_DTOA_ERANGE && *dp == HUGE_VAL) *dp = js_PositiveInfinity; cx->free_(cstr); return true; } class BinaryDigitReader { const int base; /* Base of number; must be a power of 2 */ int digit; /* Current digit value in radix given by base */ int digitMask; /* Mask to extract the next bit from digit */ const jschar *start; /* Pointer to the remaining digits */ const jschar *end; /* Pointer to first non-digit */ public: BinaryDigitReader(int base, const jschar *start, const jschar *end) : base(base), digit(0), digitMask(0), start(start), end(end) { } /* Return the next binary digit from the number, or -1 if done. */ int nextDigit() { if (digitMask == 0) { if (start == end) return -1; int c = *start++; JS_ASSERT(('0' <= c && c <= '9') || ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z')); if ('0' <= c && c <= '9') digit = c - '0'; else if ('a' <= c && c <= 'z') digit = c - 'a' + 10; else digit = c - 'A' + 10; digitMask = base >> 1; } int bit = (digit & digitMask) != 0; digitMask >>= 1; return bit; } }; /* * The fast result might also have been inaccurate for power-of-two bases. This * happens if the addition in value * 2 + digit causes a round-down to an even * least significant mantissa bit when the first dropped bit is a one. If any * of the following digits in the number (which haven't been added in yet) are * nonzero, then the correct action would have been to round up instead of * down. An example occurs when reading the number 0x1000000000000081, which * rounds to 0x1000000000000000 instead of 0x1000000000000100. */ static double ComputeAccurateBinaryBaseInteger(JSContext *cx, const jschar *start, const jschar *end, int base) { BinaryDigitReader bdr(base, start, end); /* Skip leading zeroes. */ int bit; do { bit = bdr.nextDigit(); } while (bit == 0); JS_ASSERT(bit == 1); // guaranteed by GetPrefixInteger /* Gather the 53 significant bits (including the leading 1). */ double value = 1.0; for (int j = 52; j > 0; j--) { bit = bdr.nextDigit(); if (bit < 0) return value; value = value * 2 + bit; } /* bit2 is the 54th bit (the first dropped from the mantissa). */ int bit2 = bdr.nextDigit(); if (bit2 >= 0) { double factor = 2.0; int sticky = 0; /* sticky is 1 if any bit beyond the 54th is 1 */ int bit3; while ((bit3 = bdr.nextDigit()) >= 0) { sticky |= bit3; factor *= 2; } value += bit2 & (bit | sticky); value *= factor; } return value; } namespace js { bool GetPrefixInteger(JSContext *cx, const jschar *start, const jschar *end, int base, const jschar **endp, double *dp) { JS_ASSERT(start <= end); JS_ASSERT(2 <= base && base <= 36); const jschar *s = start; double d = 0.0; for (; s < end; s++) { int digit; jschar c = *s; if ('0' <= c && c <= '9') digit = c - '0'; else if ('a' <= c && c <= 'z') digit = c - 'a' + 10; else if ('A' <= c && c <= 'Z') digit = c - 'A' + 10; else break; if (digit >= base) break; d = d * base + digit; } *endp = s; *dp = d; /* If we haven't reached the limit of integer precision, we're done. */ if (d < DOUBLE_INTEGRAL_PRECISION_LIMIT) return true; /* * Otherwise compute the correct integer from the prefix of valid digits * if we're computing for base ten or a power of two. Don't worry about * other bases; see 15.1.2.2 step 13. */ if (base == 10) return ComputeAccurateDecimalInteger(cx, start, s, dp); if ((base & (base - 1)) == 0) *dp = ComputeAccurateBinaryBaseInteger(cx, start, s, base); return true; } } // namespace js static JSBool num_isNaN(JSContext *cx, unsigned argc, Value *vp) { if (argc == 0) { vp->setBoolean(true); return JS_TRUE; } double x; if (!ToNumber(cx, vp[2], &x)) return false; vp->setBoolean(MOZ_DOUBLE_IS_NaN(x)); return JS_TRUE; } static JSBool num_isFinite(JSContext *cx, unsigned argc, Value *vp) { if (argc == 0) { vp->setBoolean(false); return JS_TRUE; } double x; if (!ToNumber(cx, vp[2], &x)) return JS_FALSE; vp->setBoolean(MOZ_DOUBLE_IS_FINITE(x)); return JS_TRUE; } static JSBool num_parseFloat(JSContext *cx, unsigned argc, Value *vp) { JSString *str; double d; const jschar *bp, *end, *ep; if (argc == 0) { vp->setDouble(js_NaN); return JS_TRUE; } str = ToString(cx, vp[2]); if (!str) return JS_FALSE; bp = str->getChars(cx); if (!bp) return JS_FALSE; end = bp + str->length(); if (!js_strtod(cx, bp, end, &ep, &d)) return JS_FALSE; if (ep == bp) { vp->setDouble(js_NaN); return JS_TRUE; } vp->setNumber(d); return JS_TRUE; } static bool ParseIntStringHelper(JSContext *cx, const jschar *ws, const jschar *end, int maybeRadix, bool stripPrefix, double *dp) { JS_ASSERT(maybeRadix == 0 || (2 <= maybeRadix && maybeRadix <= 36)); JS_ASSERT(ws <= end); const jschar *s = SkipSpace(ws, end); JS_ASSERT(ws <= s); JS_ASSERT(s <= end); /* 15.1.2.2 steps 3-4. */ bool negative = (s != end && s[0] == '-'); /* 15.1.2.2 step 5. */ if (s != end && (s[0] == '-' || s[0] == '+')) s++; /* 15.1.2.2 step 9. */ int radix = maybeRadix; if (radix == 0) { if (end - s >= 2 && s[0] == '0' && (s[1] != 'x' && s[1] != 'X')) { /* * Non-standard: ES5 requires that parseInt interpret leading-zero * strings not starting with "0x" or "0X" as decimal (absent an * explicitly specified non-zero radix), but we continue to * interpret such strings as octal, as per ES3 and web practice. */ radix = 8; } else { radix = 10; } } /* 15.1.2.2 step 10. */ if (stripPrefix) { if (end - s >= 2 && s[0] == '0' && (s[1] == 'x' || s[1] == 'X')) { s += 2; radix = 16; } } /* 15.1.2.2 steps 11-14. */ const jschar *actualEnd; if (!GetPrefixInteger(cx, s, end, radix, &actualEnd, dp)) return false; if (s == actualEnd) *dp = js_NaN; else if (negative) *dp = -*dp; return true; } /* See ECMA 15.1.2.2. */ JSBool js::num_parseInt(JSContext *cx, unsigned argc, Value *vp) { CallArgs args = CallArgsFromVp(argc, vp); /* Fast paths and exceptional cases. */ if (args.length() == 0) { args.rval().setDouble(js_NaN); return true; } if (args.length() == 1 || (args[1].isInt32() && (args[1].toInt32() == 0 || args[1].toInt32() == 10))) { if (args[0].isInt32()) { args.rval() = args[0]; return true; } /* * Step 1 is |inputString = ToString(string)|. When string >= * 1e21, ToString(string) is in the form "NeM". 'e' marks the end of * the word, which would mean the result of parseInt(string) should be |N|. * * To preserve this behaviour, we can't use the fast-path when string > * 1e21, or else the result would be |NeM|. * * The same goes for values smaller than 1.0e-6, because the string would be in * the form of "Ne-M". */ if (args[0].isDouble()) { double d = args[0].toDouble(); if (1.0e-6 < d && d < 1.0e21) { args.rval().setNumber(floor(d)); return true; } if (-1.0e21 < d && d < -1.0e-6) { args.rval().setNumber(-floor(-d)); return true; } if (d == 0.0) { args.rval().setInt32(0); return true; } } } /* Step 1. */ JSString *inputString = ToString(cx, args[0]); if (!inputString) return false; args[0].setString(inputString); /* 15.1.2.2 steps 6-8. */ bool stripPrefix = true; int32_t radix = 0; if (args.length() > 1) { if (!ToInt32(cx, args[1], &radix)) return false; if (radix != 0) { if (radix < 2 || radix > 36) { args.rval().setDouble(js_NaN); return true; } if (radix != 16) stripPrefix = false; } } /* Steps 2-5, 9-14. */ const jschar *ws = inputString->getChars(cx); if (!ws) return false; const jschar *end = ws + inputString->length(); double number; if (!ParseIntStringHelper(cx, ws, end, radix, stripPrefix, &number)) return false; /* Step 15. */ args.rval().setNumber(number); return true; } const char js_isNaN_str[] = "isNaN"; const char js_isFinite_str[] = "isFinite"; const char js_parseFloat_str[] = "parseFloat"; const char js_parseInt_str[] = "parseInt"; static JSFunctionSpec number_functions[] = { JS_FN(js_isNaN_str, num_isNaN, 1,0), JS_FN(js_isFinite_str, num_isFinite, 1,0), JS_FN(js_parseFloat_str, num_parseFloat, 1,0), JS_FN(js_parseInt_str, num_parseInt, 2,0), JS_FS_END }; Class js::NumberClass = { js_Number_str, JSCLASS_HAS_RESERVED_SLOTS(1) | JSCLASS_HAS_CACHED_PROTO(JSProto_Number), JS_PropertyStub, /* addProperty */ JS_PropertyStub, /* delProperty */ JS_PropertyStub, /* getProperty */ JS_StrictPropertyStub, /* setProperty */ JS_EnumerateStub, JS_ResolveStub, JS_ConvertStub }; static JSBool Number(JSContext *cx, unsigned argc, Value *vp) { /* Sample JS_CALLEE before clobbering. */ bool isConstructing = IsConstructing(vp); if (argc > 0) { if (!ToNumber(cx, &vp[2])) return false; vp[0] = vp[2]; } else { vp[0].setInt32(0); } if (!isConstructing) return true; JSObject *obj = NumberObject::create(cx, vp[0].toNumber()); if (!obj) return false; vp->setObject(*obj); return true; } #if JS_HAS_TOSOURCE static JSBool num_toSource(JSContext *cx, unsigned argc, Value *vp) { CallArgs args = CallArgsFromVp(argc, vp); double d; bool ok; if (!BoxedPrimitiveMethodGuard(cx, args, num_toSource, &d, &ok)) return ok; StringBuffer sb(cx); if (!sb.append("(new Number(") || !NumberValueToStringBuffer(cx, NumberValue(d), sb) || !sb.append("))")) { return false; } JSString *str = sb.finishString(); if (!str) return false; args.rval().setString(str); return true; } #endif ToCStringBuf::ToCStringBuf() :dbuf(NULL) { JS_STATIC_ASSERT(sbufSize >= DTOSTR_STANDARD_BUFFER_SIZE); } ToCStringBuf::~ToCStringBuf() { if (dbuf) UnwantedForeground::free_(dbuf); } JSString * JS_FASTCALL js_IntToString(JSContext *cx, int32_t si) { uint32_t ui; if (si >= 0) { if (StaticStrings::hasInt(si)) return cx->runtime->staticStrings.getInt(si); ui = si; } else { ui = uint32_t(-si); JS_ASSERT_IF(si == INT32_MIN, ui == uint32_t(INT32_MAX) + 1); } JSCompartment *c = cx->compartment; if (JSString *str = c->dtoaCache.lookup(10, si)) return str; JSShortString *str = js_NewGCShortString(cx); if (!str) return NULL; jschar *storage = str->inlineStorageBeforeInit(); RangedPtr end(storage + JSShortString::MAX_SHORT_LENGTH, storage, JSShortString::MAX_SHORT_LENGTH + 1); *end = '\0'; RangedPtr start = BackfillIndexInCharBuffer(ui, end); if (si < 0) *--start = '-'; str->initAtOffsetInBuffer(start.get(), end - start); c->dtoaCache.cache(10, si, str); return str; } /* Returns a non-NULL pointer to inside cbuf. */ static char * IntToCString(ToCStringBuf *cbuf, int i, int base = 10) { unsigned u = (i < 0) ? -i : i; RangedPtr cp(cbuf->sbuf + cbuf->sbufSize - 1, cbuf->sbuf, cbuf->sbufSize); *cp = '\0'; /* Build the string from behind. */ switch (base) { case 10: cp = BackfillIndexInCharBuffer(u, cp); break; case 16: do { unsigned newu = u / 16; *--cp = "0123456789abcdef"[u - newu * 16]; u = newu; } while (u != 0); break; default: JS_ASSERT(base >= 2 && base <= 36); do { unsigned newu = u / base; *--cp = "0123456789abcdefghijklmnopqrstuvwxyz"[u - newu * base]; u = newu; } while (u != 0); break; } if (i < 0) *--cp = '-'; return cp.get(); } static JSString * JS_FASTCALL js_NumberToStringWithBase(JSContext *cx, double d, int base); static JS_ALWAYS_INLINE bool num_toStringHelper(JSContext *cx, Native native, unsigned argc, Value *vp) { CallArgs args = CallArgsFromVp(argc, vp); double d; bool ok; if (!BoxedPrimitiveMethodGuard(cx, args, native, &d, &ok)) return ok; int32_t base = 10; if (args.hasDefined(0)) { double d2; if (!ToInteger(cx, args[0], &d2)) return false; if (d2 < 2 || d2 > 36) { JS_ReportErrorNumber(cx, js_GetErrorMessage, NULL, JSMSG_BAD_RADIX); return false; } base = int32_t(d2); } JSString *str = js_NumberToStringWithBase(cx, d, base); if (!str) { JS_ReportOutOfMemory(cx); return false; } args.rval().setString(str); return true; } static JSBool num_toString(JSContext *cx, unsigned argc, Value *vp) { return num_toStringHelper(cx, num_toString, argc, vp); } static JSBool num_toLocaleString(JSContext *cx, unsigned argc, Value *vp) { size_t thousandsLength, decimalLength; const char *numGrouping, *tmpGroup; JSRuntime *rt; JSString *str; const char *num, *end, *tmpSrc; char *buf, *tmpDest; const char *nint; int digits, buflen, remainder, nrepeat; /* * Create the string, move back to bytes to make string twiddling * a bit easier and so we can insert platform charset seperators. */ if (!num_toStringHelper(cx, num_toLocaleString, 0, vp)) return JS_FALSE; JS_ASSERT(vp->isString()); JSAutoByteString numBytes(cx, vp->toString()); if (!numBytes) return JS_FALSE; num = numBytes.ptr(); if (!num) return JS_FALSE; /* * Find the first non-integer value, whether it be a letter as in * 'Infinity', a decimal point, or an 'e' from exponential notation. */ nint = num; if (*nint == '-') nint++; while (*nint >= '0' && *nint <= '9') nint++; digits = nint - num; end = num + digits; if (!digits) return JS_TRUE; rt = cx->runtime; thousandsLength = strlen(rt->thousandsSeparator); decimalLength = strlen(rt->decimalSeparator); /* Figure out how long resulting string will be. */ buflen = strlen(num); if (*nint == '.') buflen += decimalLength - 1; /* -1 to account for existing '.' */ numGrouping = tmpGroup = rt->numGrouping; remainder = digits; if (*num == '-') remainder--; while (*tmpGroup != CHAR_MAX && *tmpGroup != '\0') { if (*tmpGroup >= remainder) break; buflen += thousandsLength; remainder -= *tmpGroup; tmpGroup++; } if (*tmpGroup == '\0' && *numGrouping != '\0') { nrepeat = (remainder - 1) / tmpGroup[-1]; buflen += thousandsLength * nrepeat; remainder -= nrepeat * tmpGroup[-1]; } else { nrepeat = 0; } tmpGroup--; buf = (char *)cx->malloc_(buflen + 1); if (!buf) return JS_FALSE; tmpDest = buf; tmpSrc = num; while (*tmpSrc == '-' || remainder--) { JS_ASSERT(tmpDest - buf < buflen); *tmpDest++ = *tmpSrc++; } while (tmpSrc < end) { JS_ASSERT(tmpDest - buf + ptrdiff_t(thousandsLength) <= buflen); strcpy(tmpDest, rt->thousandsSeparator); tmpDest += thousandsLength; JS_ASSERT(tmpDest - buf + *tmpGroup <= buflen); js_memcpy(tmpDest, tmpSrc, *tmpGroup); tmpDest += *tmpGroup; tmpSrc += *tmpGroup; if (--nrepeat < 0) tmpGroup--; } if (*nint == '.') { JS_ASSERT(tmpDest - buf + ptrdiff_t(decimalLength) <= buflen); strcpy(tmpDest, rt->decimalSeparator); tmpDest += decimalLength; JS_ASSERT(tmpDest - buf + ptrdiff_t(strlen(nint + 1)) <= buflen); strcpy(tmpDest, nint + 1); } else { JS_ASSERT(tmpDest - buf + ptrdiff_t(strlen(nint)) <= buflen); strcpy(tmpDest, nint); } if (cx->localeCallbacks && cx->localeCallbacks->localeToUnicode) { JSBool ok = cx->localeCallbacks->localeToUnicode(cx, buf, vp); cx->free_(buf); return ok; } str = js_NewStringCopyN(cx, buf, buflen); cx->free_(buf); if (!str) return JS_FALSE; vp->setString(str); return JS_TRUE; } JSBool js_num_valueOf(JSContext *cx, unsigned argc, Value *vp) { CallArgs args = CallArgsFromVp(argc, vp); double d; bool ok; if (!BoxedPrimitiveMethodGuard(cx, args, js_num_valueOf, &d, &ok)) return ok; args.rval().setNumber(d); return true; } #define MAX_PRECISION 100 static JSBool num_to(JSContext *cx, Native native, JSDToStrMode zeroArgMode, JSDToStrMode oneArgMode, int precisionMin, int precisionMax, int precisionOffset, CallArgs args) { /* Use MAX_PRECISION+1 because precisionOffset can be 1. */ char buf[DTOSTR_VARIABLE_BUFFER_SIZE(MAX_PRECISION+1)]; char *numStr; double d; bool ok; if (!BoxedPrimitiveMethodGuard(cx, args, native, &d, &ok)) return ok; double precision; if (args.length() == 0) { precision = 0.0; oneArgMode = zeroArgMode; } else { if (!ToInteger(cx, args[0], &precision)) return false; if (precision < precisionMin || precision > precisionMax) { ToCStringBuf cbuf; numStr = IntToCString(&cbuf, int(precision)); JS_ASSERT(numStr); JS_ReportErrorNumber(cx, js_GetErrorMessage, NULL, JSMSG_PRECISION_RANGE, numStr); return JS_FALSE; } } numStr = js_dtostr(cx->runtime->dtoaState, buf, sizeof buf, oneArgMode, (int)precision + precisionOffset, d); if (!numStr) { JS_ReportOutOfMemory(cx); return JS_FALSE; } JSString *str = js_NewStringCopyZ(cx, numStr); if (!str) return JS_FALSE; args.rval().setString(str); return JS_TRUE; } /* * In the following three implementations, we allow a larger range of precision * than ECMA requires; this is permitted by ECMA-262. */ static JSBool num_toFixed(JSContext *cx, unsigned argc, Value *vp) { return num_to(cx, num_toFixed, DTOSTR_FIXED, DTOSTR_FIXED, -20, MAX_PRECISION, 0, CallArgsFromVp(argc, vp)); } static JSBool num_toExponential(JSContext *cx, unsigned argc, Value *vp) { return num_to(cx, num_toExponential, DTOSTR_STANDARD_EXPONENTIAL, DTOSTR_EXPONENTIAL, 0, MAX_PRECISION, 1, CallArgsFromVp(argc, vp)); } static JSBool num_toPrecision(JSContext *cx, unsigned argc, Value *vp) { CallArgs args = CallArgsFromVp(argc, vp); if (!args.hasDefined(0)) return num_toStringHelper(cx, num_toPrecision, 0, vp); return num_to(cx, num_toPrecision, DTOSTR_STANDARD, DTOSTR_PRECISION, 1, MAX_PRECISION, 0, args); } static JSFunctionSpec number_methods[] = { #if JS_HAS_TOSOURCE JS_FN(js_toSource_str, num_toSource, 0, 0), #endif JS_FN(js_toString_str, num_toString, 1, 0), JS_FN(js_toLocaleString_str, num_toLocaleString, 0, 0), JS_FN(js_valueOf_str, js_num_valueOf, 0, 0), JS_FN("toFixed", num_toFixed, 1, 0), JS_FN("toExponential", num_toExponential, 1, 0), JS_FN("toPrecision", num_toPrecision, 1, 0), JS_FS_END }; /* NB: Keep this in synch with number_constants[]. */ enum nc_slot { NC_NaN, NC_POSITIVE_INFINITY, NC_NEGATIVE_INFINITY, NC_MAX_VALUE, NC_MIN_VALUE, NC_LIMIT }; /* * Some to most C compilers forbid spelling these at compile time, or barf * if you try, so all but MAX_VALUE are set up by InitRuntimeNumberState * using union jsdpun. */ static JSConstDoubleSpec number_constants[] = { {0, "NaN", 0,{0,0,0}}, {0, "POSITIVE_INFINITY", 0,{0,0,0}}, {0, "NEGATIVE_INFINITY", 0,{0,0,0}}, {1.7976931348623157E+308, "MAX_VALUE", 0,{0,0,0}}, {0, "MIN_VALUE", 0,{0,0,0}}, {0,0,0,{0,0,0}} }; double js_NaN; double js_PositiveInfinity; double js_NegativeInfinity; #if (defined __GNUC__ && defined __i386__) || \ (defined __SUNPRO_CC && defined __i386) /* * Set the exception mask to mask all exceptions and set the FPU precision * to 53 bit mantissa (64 bit doubles). */ inline void FIX_FPU() { short control; asm("fstcw %0" : "=m" (control) : ); control &= ~0x300; // Lower bits 8 and 9 (precision control). control |= 0x2f3; // Raise bits 0-5 (exception masks) and 9 (64-bit precision). asm("fldcw %0" : : "m" (control) ); } #else #define FIX_FPU() ((void)0) #endif namespace js { bool InitRuntimeNumberState(JSRuntime *rt) { FIX_FPU(); double d; /* * Our NaN must be one particular canonical value, because we rely on NaN * encoding for our value representation. See jsval.h. */ d = MOZ_DOUBLE_SPECIFIC_NaN(0, 0x8000000000000ULL); number_constants[NC_NaN].dval = js_NaN = d; rt->NaNValue.setDouble(d); d = MOZ_DOUBLE_POSITIVE_INFINITY(); number_constants[NC_POSITIVE_INFINITY].dval = js_PositiveInfinity = d; rt->positiveInfinityValue.setDouble(d); d = MOZ_DOUBLE_NEGATIVE_INFINITY(); number_constants[NC_NEGATIVE_INFINITY].dval = js_NegativeInfinity = d; rt->negativeInfinityValue.setDouble(d); number_constants[NC_MIN_VALUE].dval = MOZ_DOUBLE_MIN_VALUE(); /* Copy locale-specific separators into the runtime strings. */ const char *thousandsSeparator, *decimalPoint, *grouping; #ifdef HAVE_LOCALECONV struct lconv *locale = localeconv(); thousandsSeparator = locale->thousands_sep; decimalPoint = locale->decimal_point; grouping = locale->grouping; #else thousandsSeparator = getenv("LOCALE_THOUSANDS_SEP"); decimalPoint = getenv("LOCALE_DECIMAL_POINT"); grouping = getenv("LOCALE_GROUPING"); #endif if (!thousandsSeparator) thousandsSeparator = "'"; if (!decimalPoint) decimalPoint = "."; if (!grouping) grouping = "\3\0"; /* * We use single malloc to get the memory for all separator and grouping * strings. */ size_t thousandsSeparatorSize = strlen(thousandsSeparator) + 1; size_t decimalPointSize = strlen(decimalPoint) + 1; size_t groupingSize = strlen(grouping) + 1; char *storage = static_cast(OffTheBooks::malloc_(thousandsSeparatorSize + decimalPointSize + groupingSize)); if (!storage) return false; js_memcpy(storage, thousandsSeparator, thousandsSeparatorSize); rt->thousandsSeparator = storage; storage += thousandsSeparatorSize; js_memcpy(storage, decimalPoint, decimalPointSize); rt->decimalSeparator = storage; storage += decimalPointSize; js_memcpy(storage, grouping, groupingSize); rt->numGrouping = grouping; return true; } void FinishRuntimeNumberState(JSRuntime *rt) { /* * The free also releases the memory for decimalSeparator and numGrouping * strings. */ char *storage = const_cast(rt->thousandsSeparator); Foreground::free_(storage); } } /* namespace js */ JSObject * js_InitNumberClass(JSContext *cx, JSObject *obj) { JS_ASSERT(obj->isNative()); /* XXX must do at least once per new thread, so do it per JSContext... */ FIX_FPU(); RootedVar global(cx, &obj->asGlobal()); RootedVarObject numberProto(cx, global->createBlankPrototype(cx, &NumberClass)); if (!numberProto) return NULL; numberProto->asNumber().setPrimitiveValue(0); RootedVarFunction ctor(cx); ctor = global->createConstructor(cx, Number, CLASS_ATOM(cx, Number), 1); if (!ctor) return NULL; if (!LinkConstructorAndPrototype(cx, ctor, numberProto)) return NULL; /* Add numeric constants (MAX_VALUE, NaN, &c.) to the Number constructor. */ if (!JS_DefineConstDoubles(cx, ctor, number_constants)) return NULL; if (!DefinePropertiesAndBrand(cx, numberProto, NULL, number_methods)) return NULL; if (!JS_DefineFunctions(cx, global, number_functions)) return NULL; /* ES5 15.1.1.1, 15.1.1.2 */ if (!DefineNativeProperty(cx, global, ATOM_TO_JSID(cx->runtime->atomState.NaNAtom), cx->runtime->NaNValue, JS_PropertyStub, JS_StrictPropertyStub, JSPROP_PERMANENT | JSPROP_READONLY, 0, 0) || !DefineNativeProperty(cx, global, ATOM_TO_JSID(cx->runtime->atomState.InfinityAtom), cx->runtime->positiveInfinityValue, JS_PropertyStub, JS_StrictPropertyStub, JSPROP_PERMANENT | JSPROP_READONLY, 0, 0)) { return NULL; } if (!DefineConstructorAndPrototype(cx, global, JSProto_Number, ctor, numberProto)) return NULL; return numberProto; } namespace js { static char * FracNumberToCString(JSContext *cx, ToCStringBuf *cbuf, double d, int base = 10) { #ifdef DEBUG { int32_t _; JS_ASSERT(!MOZ_DOUBLE_IS_INT32(d, &_)); } #endif char* numStr; if (base == 10) { /* * This is V8's implementation of the algorithm described in the * following paper: * * Printing floating-point numbers quickly and accurately with integers. * Florian Loitsch, PLDI 2010. */ const double_conversion::DoubleToStringConverter &converter = double_conversion::DoubleToStringConverter::EcmaScriptConverter(); double_conversion::StringBuilder builder(cbuf->sbuf, cbuf->sbufSize); converter.ToShortest(d, &builder); numStr = builder.Finalize(); } else { numStr = cbuf->dbuf = js_dtobasestr(cx->runtime->dtoaState, base, d); } return numStr; } char * NumberToCString(JSContext *cx, ToCStringBuf *cbuf, double d, int base/* = 10*/) { int32_t i; return MOZ_DOUBLE_IS_INT32(d, &i) ? IntToCString(cbuf, i, base) : FracNumberToCString(cx, cbuf, d, base); } } static JSString * JS_FASTCALL js_NumberToStringWithBase(JSContext *cx, double d, int base) { ToCStringBuf cbuf; char *numStr; /* * Caller is responsible for error reporting. When called from trace, * returning NULL here will cause us to fall of trace and then retry * from the interpreter (which will report the error). */ if (base < 2 || base > 36) return NULL; JSCompartment *c = cx->compartment; int32_t i; if (MOZ_DOUBLE_IS_INT32(d, &i)) { if (base == 10 && StaticStrings::hasInt(i)) return cx->runtime->staticStrings.getInt(i); if (unsigned(i) < unsigned(base)) { if (i < 10) return cx->runtime->staticStrings.getInt(i); jschar c = 'a' + i - 10; JS_ASSERT(StaticStrings::hasUnit(c)); return cx->runtime->staticStrings.getUnit(c); } if (JSFlatString *str = c->dtoaCache.lookup(base, d)) return str; numStr = IntToCString(&cbuf, i, base); JS_ASSERT(!cbuf.dbuf && numStr >= cbuf.sbuf && numStr < cbuf.sbuf + cbuf.sbufSize); } else { if (JSFlatString *str = c->dtoaCache.lookup(base, d)) return str; numStr = FracNumberToCString(cx, &cbuf, d, base); if (!numStr) { JS_ReportOutOfMemory(cx); return NULL; } JS_ASSERT_IF(base == 10, !cbuf.dbuf && numStr >= cbuf.sbuf && numStr < cbuf.sbuf + cbuf.sbufSize); JS_ASSERT_IF(base != 10, cbuf.dbuf && cbuf.dbuf == numStr); } JSFixedString *s = js_NewStringCopyZ(cx, numStr); c->dtoaCache.cache(base, d, s); return s; } JSString * JS_FASTCALL js_NumberToString(JSContext *cx, double d) { return js_NumberToStringWithBase(cx, d, 10); } namespace js { JSFixedString * NumberToString(JSContext *cx, double d) { if (JSString *str = js_NumberToStringWithBase(cx, d, 10)) return &str->asFixed(); return NULL; } JSFixedString * IndexToString(JSContext *cx, uint32_t index) { if (StaticStrings::hasUint(index)) return cx->runtime->staticStrings.getUint(index); JSCompartment *c = cx->compartment; if (JSFixedString *str = c->dtoaCache.lookup(10, index)) return str; JSShortString *str = js_NewGCShortString(cx); if (!str) return NULL; jschar *storage = str->inlineStorageBeforeInit(); size_t length = JSShortString::MAX_SHORT_LENGTH; const RangedPtr end(storage + length, storage, length + 1); *end = '\0'; RangedPtr start = BackfillIndexInCharBuffer(index, end); str->initAtOffsetInBuffer(start.get(), end - start); c->dtoaCache.cache(10, index, str); return str; } bool JS_FASTCALL NumberValueToStringBuffer(JSContext *cx, const Value &v, StringBuffer &sb) { /* Convert to C-string. */ ToCStringBuf cbuf; const char *cstr; if (v.isInt32()) { cstr = IntToCString(&cbuf, v.toInt32()); } else { cstr = NumberToCString(cx, &cbuf, v.toDouble()); if (!cstr) { JS_ReportOutOfMemory(cx); return JS_FALSE; } } /* * Inflate to jschar string. The input C-string characters are < 127, so * even if jschars are UTF-8, all chars should map to one jschar. */ size_t cstrlen = strlen(cstr); JS_ASSERT(!cbuf.dbuf && cstrlen < cbuf.sbufSize); return sb.appendInflated(cstr, cstrlen); } JS_PUBLIC_API(bool) ToNumberSlow(JSContext *cx, Value v, double *out) { JS_ASSERT(!v.isNumber()); goto skip_int_double; for (;;) { if (v.isNumber()) { *out = v.toNumber(); return true; } skip_int_double: if (v.isString()) return StringToNumberType(cx, v.toString(), out); if (v.isBoolean()) { if (v.toBoolean()) { *out = 1.0; return true; } *out = 0.0; return true; } if (v.isNull()) { *out = 0.0; return true; } if (v.isUndefined()) break; JS_ASSERT(v.isObject()); if (!ToPrimitive(cx, JSTYPE_NUMBER, &v)) return false; if (v.isObject()) break; } *out = js_NaN; return true; } JS_PUBLIC_API(bool) ToInt32Slow(JSContext *cx, const Value &v, int32_t *out) { JS_ASSERT(!v.isInt32()); double d; if (v.isDouble()) { d = v.toDouble(); } else { if (!ToNumberSlow(cx, v, &d)) return false; } *out = js_DoubleToECMAInt32(d); return true; } bool ToUint32Slow(JSContext *cx, const Value &v, uint32_t *out) { JS_ASSERT(!v.isInt32()); double d; if (v.isDouble()) { d = v.toDouble(); } else { if (!ToNumberSlow(cx, v, &d)) return false; } *out = js_DoubleToECMAUint32(d); return true; } bool NonstandardToInt32Slow(JSContext *cx, const Value &v, int32_t *out) { JS_ASSERT(!v.isInt32()); double d; if (v.isDouble()) { d = v.toDouble(); } else if (!ToNumberSlow(cx, v, &d)) { return false; } if (MOZ_DOUBLE_IS_NaN(d) || d <= -2147483649.0 || 2147483648.0 <= d) { js_ReportValueError(cx, JSMSG_CANT_CONVERT, JSDVG_SEARCH_STACK, v, NULL); return false; } *out = (int32_t) floor(d + 0.5); /* Round to nearest */ return true; } bool ValueToUint16Slow(JSContext *cx, const Value &v, uint16_t *out) { JS_ASSERT(!v.isInt32()); double d; if (v.isDouble()) { d = v.toDouble(); } else if (!ToNumberSlow(cx, v, &d)) { return false; } if (d == 0 || !MOZ_DOUBLE_IS_FINITE(d)) { *out = 0; return true; } uint16_t u = (uint16_t) d; if ((double)u == d) { *out = u; return true; } bool neg = (d < 0); d = floor(neg ? -d : d); d = neg ? -d : d; unsigned m = JS_BIT(16); d = fmod(d, (double) m); if (d < 0) d += m; *out = (uint16_t) d; return true; } } /* namespace js */ JSBool js_strtod(JSContext *cx, const jschar *s, const jschar *send, const jschar **ep, double *dp) { size_t i; char cbuf[32]; char *cstr, *istr, *estr; JSBool negative; double d; const jschar *s1 = SkipSpace(s, send); size_t length = send - s1; /* Use cbuf to avoid malloc */ if (length >= sizeof cbuf) { cstr = (char *) cx->malloc_(length + 1); if (!cstr) return JS_FALSE; } else { cstr = cbuf; } for (i = 0; i != length; i++) { if (s1[i] >> 8) break; cstr[i] = (char)s1[i]; } cstr[i] = 0; istr = cstr; if ((negative = (*istr == '-')) != 0 || *istr == '+') istr++; if (*istr == 'I' && !strncmp(istr, "Infinity", 8)) { d = negative ? js_NegativeInfinity : js_PositiveInfinity; estr = istr + 8; } else { int err; d = js_strtod_harder(cx->runtime->dtoaState, cstr, &estr, &err); if (d == HUGE_VAL) d = js_PositiveInfinity; else if (d == -HUGE_VAL) d = js_NegativeInfinity; } i = estr - cstr; if (cstr != cbuf) cx->free_(cstr); *ep = i ? s1 + i : s; *dp = d; return JS_TRUE; }