Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • e0ae933
  • /
  • PRG.ec
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:dba599ebd8c2930b2ad0d4a2559de05e0ac42372
directory badge Iframe embedding
swh:1:dir:e0ae933c5e3ef3402a22a55ef8ca43dc5a031c1e
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
PRG.ec
(* -------------------------------------------------------------------- *)
require import AllCore List Distr FSet SmtMap.
require import IntDiv Mu_mem StdRing StdOrder StdBigop.
(*---*) import Bigint Ring.IntID RField IntOrder RealOrder BIA.
require (*--*) FinType.

(* ---------------- Sane Default Behaviours --------------------------- *)
pragma +implicits.

(* -------------------------------------------------------------------- *)
(** A finite type of seeds equipped with its uniform distribution **)
clone include MFinite
rename
  [type] "t" as "seed"
  "dunifin" as "dseed"
  "duniform" as "dseed".

(* -------------------------------------------------------------------- *)
(** Some output type equipped with some lossless distribution **)
type output.
op dout: { output distr | is_lossless dout } as dout_ll.
hint exact random: dout_ll.

(* -------------------------------------------------------------------- *)
(** We use a public RF that, on input a seed, produces a seed and
    an output...                                                        *)
module type RF = {
  proc * init() : unit
  proc f(x:seed): seed * output
}.

(** ...to build a PRG that produces random outputs... **)
(** We let our PRG have internal state, which we need to initialize **)
module type PRG = {
  proc * init(): unit
  proc prg()   : output
}.

(* -------------------------------------------------------------------- *)
(** Distinguishers can call
  *   - the PRG at most qP times, and
  *   - the PRF at most qF times, and
  *   - return a boolean *)
op qP : { int | 0 <= qP } as ge0_qP.
op qF : { int | 0 <= qF } as ge0_qF.

module type ARF = {
  proc f(_:seed): seed * output
}.

module type APRG = {
  proc prg(): output
}.

module type Adv (F:ARF) (P:APRG) = {
  proc a(): bool
}.

module Exp (A:Adv) (F:RF) (P:PRG) = {
  module A = A(F,P)

  proc main():bool = {
    var b: bool;

         F.init();
         P.init();
    b <@ A.a();
    return b;
  }
}.

(** A PRG is secure iff it is indistinguishable from sampling in $dout
    by an adversary with access to the PRF and the PRG interfaces *)
module PrgI = {
  proc init () : unit = { }

  proc prg(): output = {
    var r;

    r <$ dout;
    return r;
  }
}.
(* Adv^PRG_A,F,P = `| Exp(A,F,P) - Exp(A,F,PrgI) | *)

(* -------------------------------------------------------------------- *)
(* Concrete considerations                                              *)

(* We use the following RF *)
module F = {
  var m:(seed,seed * output) fmap

  proc init(): unit = {
     m <- empty;
  }

  proc f (x:seed) : seed * output = {
    var r1, r2;

    r1 <$ dseed;
    r2 <$ dout;
    if (x \notin m)
      m.[x] <- (r1,r2);

    return oget (m.[x]);
  }
}.

lemma FfL: islossless F.f.
proof. islossless. qed.

(* And we are proving the security of the following PRG *)
module P (F:RF) = {
  var seed: seed
  var logP: seed list

  proc init(): unit = {
    seed <$ dseed;
  }

  proc prg(): output = {
    var r;

    (seed,r) <@ F.f (seed);
    return r;
  }
}.

(* -------------------------------------------------------------------- *)
(* We use the following oracle in an intermediate game that links two
   sections.                                                            *)

module Psample = {
  proc init(): unit = {
    P.seed <$ dseed;
    P.logP <- [];
  }

  proc prg(): output = {
    var r1, r2;

    r1     <$ dseed;
    r2     <$ dout;
    P.logP <- P.seed :: P.logP;
    P.seed <- r1;
    return r2;
  }
}.

lemma PsampleprgL: islossless Psample.prg.
proof. islossless. qed.

(* -------------------------------------------------------------------- *)
(* In preparation of the eager/lazy reasoning step                      *)
(* -------------------------------------------------------------------- *)
module Resample = {
  proc resample() : unit = {
    var n, r;

    n      <- size P.logP;
    P.logP <- [];
    P.seed <$ dseed;
    while (size P.logP < n) {
      r      <$ dseed;
      P.logP <- r :: P.logP;
    }
  }
}.

module Exp'(A:Adv) = {
  module A = A(F,Psample)

  proc main():bool = {
    var b : bool;
         F.init();
         Psample.init();
    b <@ A.a();
         Resample.resample();
    return b;
  }
}.

(* The Proof                                                            *)

section.
  (* Forall Adversary A that does not share memory with P or F... *)
  declare module A:Adv {P,F}.

  (* ... and whose a procedure is lossless whenever F.f and P.prg are *)
  axiom AaL (F <: ARF {A}) (P <: APRG {A}):
    islossless P.prg =>
    islossless F.f =>
    islossless A(F,P).a.

  (* We show that the adversary can distinguish P from Psample only
     when P.prg is called twice with the same input. *)

  (* First, we add some logging so we can express the bad event *)
  local module Plog = {
    proc init(): unit = {
      P.seed <$ dseed;
      P.logP <- [];
    }

    proc prg(): output = {
      var r;

      P.logP     <- P.seed :: P.logP;
      (P.seed,r) <@ F.f(P.seed);
      return r;
    }
  }.

  local lemma PlogprgL: islossless Plog.prg.
  proof. by proc; call FfL; wp. qed.

  local lemma P_Plog &m:
    Pr[Exp(A,F,P(F)).main() @ &m: res] = Pr[Exp(A,F,Plog).main() @ &m: res].
  proof.
  byequiv (_: ={glob A} ==> ={res})=> //.
  by do !sim.
  qed.

  (* Bad holds whenever:
   *  - there is a cycle in the state, OR
   *  - an adversary query collides with an internal seed. *)
  inductive Bad logP (m : ('a,'b) fmap) =
    | Cycle of (!uniq logP)
    | Collision r of (mem logP r) & (r \in m).

  lemma negBadE logP (m : ('a,'b) fmap):
    !Bad logP m <=>
      (uniq logP /\ forall r, !mem logP r \/ r \notin m).
  proof.
  rewrite -iff_negb negbK negb_and negb_forall /=.
  rewrite (@ exists_iff _ (predI (mem logP) (dom m)) _).
  + by move=> a /=; rewrite negb_or /predI.
  split=> [[->|r r_in_log r_in_m]|[/(Cycle _ m)|[r] @/predI [] /(Collision _ m r)]] //.
  by right; exists r.
  qed.

  (* In this game, we replace the PRF queries with fresh sampling operations *)
  inductive inv (m1 m2 : ('a,'b) fmap) (logP : 'a list) =
    | Invariant of
          (forall r, r \in m1 <=> (r \in m2 \/ mem logP r))
        & (forall r, r \in m2 => m1.[r] = m2.[r]).

  local lemma Plog_Psample &m:
    Pr[Exp(A,F,Plog).main() @ &m: res] <=
      Pr[Exp(A,F,Psample).main() @ &m: res] +
      Pr[Exp(A,F,Psample).main() @ &m: Bad P.logP F.m].
  proof.
  apply (ler_trans (Pr[Exp(A,F,Psample).main() @ &m: res \/ Bad P.logP F.m]));
    last by rewrite Pr [mu_or]; smt w=mu_bounded.
  byequiv (_: ={glob A} ==> !(Bad P.logP F.m){2} => ={res})=> // [|/#].
  proc.
  call (_: Bad P.logP F.m, ={P.seed} /\ inv F.m{1} F.m{2} P.logP{2}).
    (* adversary is lossless *)
    by apply AaL.
    (* [Psample.prg ~ Plog.prg: I] when Bad does not hold *)
    proc; inline F.f. swap{2} 3 -2.
    auto=> /> &1 &2 _ [] m1_is_m2Ulog m2_le_m1 r1 _ r2 _.
    rewrite negBadE; case: (P.seed{2} \in F.m{1})=> [/#|//=].
    rewrite !get_setE /=.
    move=> seed_notin_m1 _; split.
      by move=> r; rewrite mem_set m1_is_m2Ulog /#.
    move=> r ^/m2_le_m1; rewrite !get_setE=> -> r_in_m2.
    by move: (iffRL _ _ (m1_is_m2Ulog r)); rewrite r_in_m2 /#.
    (* Plog.prg is lossless when Bad holds *)
    by move=> _ _; islossless.
    (* Psample.prg preserves bad *)
    move=> *; proc; auto=> />; rewrite dseed_ll dout_ll /=.
    move=> &hr + v1 _ _ v2 _ _; case=> [h|r r_in_log r_in_m].
    + by apply/Cycle; rewrite /= h.
    by apply/(@Collision _ _ r)=> /=; [rewrite r_in_log|rewrite r_in_m].
    (* [F.f ~ F.f: I] when Bad does not hold *)
    proc; auto=> /> &1 &2; rewrite !negBadE.
    move=> -[] uniq_log r_notin_logIm [] m_is_mUlog m2_le_m1 r1L _ r2L _.
    case: (x{2} \in F.m{2})=> [/#|//=].
    case: (x{2} \in F.m{1})=> /=.
    + rewrite negBadE uniq_log=> /= /m_is_mUlog + x_notin_m2 h'; rewrite x_notin_m2 /=.
      by move: (h' x{2}); rewrite mem_set.
    rewrite !get_setE /= => x_notin_m1 x_notin_m2 _; split.
    + by move=> r; rewrite !mem_set m_is_mUlog /#.
    by move=> r; rewrite !mem_set !get_setE=> -[/m2_le_m1|] ->.
    (* F.f is lossless when Bad holds *)
    by move=> _ _; apply FfL.
    (* F.f preserves bad *)
    move=> _ //=; proc.
    case (x \in F.m).
    + by rcondf 3; auto=> />; rewrite dseed_ll dout_ll.
    rcondt 3; first by do !rnd; wp.
    auto=> />; rewrite dseed_ll dout_ll //= => &hr bad_init x_notin_m v _ _ v0 _ _.
    case: bad_init=> [/(Cycle<:seed,seed * output>) -> //|r r_in_log r_in_m].
    by apply/(@Collision _ _ r)=> //=; rewrite mem_set r_in_m.
  (* Returning to main *)
  call (_: ={glob F} ==> ={glob P} /\ inv F.m{1} F.m{2} P.logP{2}).
  + by proc; auto=> /> &2 _ _; split.
  call (_: true ==> ={glob F}); first by sim.
  by auto=> /#.
  qed.

  local lemma Psample_PrgI &m:
    Pr[Exp(A,F,Psample).main() @ &m: res] = Pr[Exp(A,F,PrgI).main() @ &m: res].
  proof.
  byequiv (_: ={glob A} ==> ={res})=> //; proc.
  call (_: ={glob F})=> //.
    (* Psample.prg ~ PrgI.prg *)
  + by proc; wp; rnd; rnd{1}; auto=> />; rewrite dseed_ll.
    (* F.f *)
  + by sim.
  conseq (_: _ ==> ={glob A, glob F})=> //.
  by inline *; auto=> />; rewrite dseed_ll.
  qed.

  local lemma Resample_resampleL: islossless Resample.resample.
  proof.
  proc; while (true) (n - size P.logP);
    first by move=> z; auto; rewrite dseed_ll /#.
  by auto; rewrite dseed_ll /#.
  qed.

  local module Exp'A = Exp'(A).

  local lemma ExpPsample_Exp' &m:
      Pr[Exp(A,F,Psample).main() @ &m: Bad P.logP F.m]
    = Pr[Exp'(A).main() @ &m: Bad P.logP F.m].
  proof.
  byequiv (_: ={glob A} ==> ={P.logP, F.m})=> //; proc.
  transitivity{1} { F.init(); Psample.init(); Resample.resample(); b <@ Exp'A.A.a(); }
     (={glob A} ==> ={F.m, P.logP})
     (={glob A} ==> ={F.m, P.logP})=> //.
    (* Equality on A's globals *)
  + by move=> &1 &2 A; exists (glob A){1}.
    (* no sampling ~ presampling *)
  + sim; inline Resample.resample Psample.init F.init.
    rcondf{2} 7;
      first by move=> &hr; rnd; wp; conseq (_: _ ==> true) => //.
    by wp; rnd; wp; rnd{2} predT; auto; rewrite dseed_ll.
  (* presampling ~ postsampling *)
  seq 2 2: (={glob A, glob F, glob Plog}); first by sim.
  eager (H: Resample.resample(); ~ Resample.resample();
    : ={glob Plog} ==> ={glob Plog})
    : (={glob A, glob Plog, glob F})=> //;
    first by sim.
  eager proc H (={glob Plog, glob F})=> //.
  + eager proc; inline Resample.resample.
    swap{1} 3 3. swap{2} [4..5] 2. swap{2} [6..8] 1.
    swap{1} 4 3. swap{1} 4 2. swap{2} 2 4.
    sim.
    splitwhile {2} 5 : (size P.logP < n - 1).
    conseq (_ : _ ==> ={P.logP})=> //.
    seq 3 5: (={P.logP} /\ (size P.logP = n - 1){2}).
    + while (={P.logP} /\ n{2} = n{1} + 1 /\ size P.logP{1} <= n{1});
        first by auto=> /#.
      by wp; rnd{2}; auto=> />; smt (size_ge0).
    rcondt{2} 1; first by move=> &hr; auto=> /#.
    rcondf{2} 3; first by move=> &hr; auto=> /#.
  + by sim.
  + by sim.
  + by eager proc; swap{1} 1 4; sim.
  by sim.
  qed.

  lemma P_PrgI &m:
    Pr[Exp(A,F,P(F)).main() @ &m: res] <=
      Pr[Exp(A,F,PrgI).main() @ &m: res] + Pr[Exp'(A).main() @ &m: Bad P.logP F.m].
  proof.
  by rewrite (P_Plog &m) -(ExpPsample_Exp' &m) -(Psample_PrgI &m) (Plog_Psample &m).
  qed.
end section.

(* -------------------------------------------------------------------- *)

(* We now bound Pr[Exp(A,F,Psample).main() @ &m: Bad Plog.logP F.m] *)

(* For now, we use the following counting variant of the adversary to
   epxress the final result. Everything up to now applies to
   non-counting adversaries, but we need the counting to bound the
   probability of Bad. *)

module C (A:Adv,F:ARF,P:APRG) = {
  var cF, cP:int

  module CF = {
    proc f(x): seed * output = {
      var r <- witness;

      if (cF < qF) { cF <- cF + 1; r <@ F.f(x);}
      return r;
    }
  }

  module CP = {
    proc prg (): output = {
      var r <- witness;

      if (cP < qP) { cP <- cP + 1; r <@ P.prg();}
      return r;
    }
  }

  module A = A(CF,CP)

  proc a(): bool = {
    var b:bool;

    cF <- 0;
    cP <- 0;
    b <@ A.a();
    return b;
  }
}.

lemma CFfL (A <: Adv) (F <: ARF) (P <: APRG):
  islossless F.f =>
  islossless C(A,F,P).CF.f.
proof. by move=> FfL; proc; sp; if=> //; call FfL; wp. qed.

lemma CPprgL (A <: Adv) (F <: ARF) (P <: APRG):
  islossless P.prg =>
  islossless C(A,F,P).CP.prg.
proof. by move=> PprgL; proc; sp; if=> //; call PprgL; wp. qed.

lemma CaL (A <: Adv {C}) (F <: ARF {A}) (P <: APRG {A}):
  (forall (F <: ARF {A}) (P <: APRG {A}),
    islossless P.prg => islossless F.f => islossless A(F,P).a) =>
     islossless F.f
  => islossless P.prg
  => islossless C(A,F,P).a.
proof.
move=> AaL PprgL FfL; proc.
call (AaL (<: C(A,F,P).CF) (<: C(A,F,P).CP) _ _).
+ by apply (CPprgL A F P).
+ by apply (CFfL A F P).
by wp.
qed.

section.
  declare module A:Adv {C,P,F}.
  axiom AaL (F <: ARF {A}) (P <: APRG {A}):
    islossless P.prg =>
    islossless F.f =>
    islossless A(F,P).a.

  lemma pr &m:
    Pr[Exp(C(A),F,P(F)).main() @ &m: res] <=
        Pr[Exp(C(A),F,PrgI).main() @ &m: res]
      + Pr[Exp'(C(A)).main() @ &m: Bad P.logP F.m].
  proof.
  apply (P_PrgI (<: C(A)) _ &m).
  + move=> F0 P0 F0fL P0prgL; apply (CaL A F0 P0) => //.
    by apply AaL.
  qed.

  local lemma Bad_bound:
    phoare [Exp'(C(A)).main : true ==>
      Bad P.logP F.m] <= ((qP * qF + (qP - 1) * qP %/ 2)%r / Support.card%r).
  proof.
  proc.
  seq 3: true
         1%r ((qP * qF + (qP - 1) * qP %/ 2)%r / Support.card%r)
         0%r 1%r
         (size P.logP <= qP /\ card (fdom F.m) <= qF)=> //.
  + inline Exp'(C(A)).A.a; wp.
    call (_: size P.logP = C.cP /\ C.cP <= qP /\
             card (fdom F.m) <= C.cF /\ C.cF <= qF).
    (* prg *)
    + proc; sp; if=> //.
      call (_: size P.logP = C.cP - 1 ==> size P.logP = C.cP).
      + by proc; auto=> /#.
      by auto=> /#.
    (* f *)
    proc; sp; if=> //.
    call (_: card (fdom F.m) < C.cF ==> card (fdom F.m) <= C.cF).
    proc; auto=> /> &hr h r1 _ r2 _.
    + by rewrite fdom_set fcardU fcard1; smt w=fcard_ge0.
    by auto=> /#.
  + inline *; auto=> />.
    by rewrite fdom0 fcards0 /=; smt w=(ge0_qP ge0_qF).
  inline Resample.resample.
  exists* P.logP; elim* => logP.
  seq 3: true
         1%r  ((qP * qF + (qP - 1) * qP %/ 2)%r / Support.card%r)
         0%r 1%r
         (n = size logP /\ n <= qP /\ P.logP = [] /\
          card (fdom F.m) <= qF)=> //.
  + by rnd; wp.
  conseq (_ : _ : <= (if Bad P.logP F.m then 1%r else
      (sumid (qF + size P.logP) (qF + n))%r / Support.card%r)).
  + move=> /> &hr.
    have /= -> /= szlog_le_qP szm_le_qF := negBadE A AaL [] F.m{hr}.
    apply/ler_wpmul2r; first smt w=Support.card_gt0. apply/le_fromint.
    rewrite -{1}(@add0z qF) big_addn /= /predT -/predT.
    rewrite (@addzC qF) !addrK big_split big_constz.
    rewrite count_predT size_range /= ler_maxr ?size_ge0 addrC.
    rewrite ler_add 1:mulrC ?ler_wpmul2r // ?ge0_qF.
    rewrite sumidE ?size_ge0 leq_div2r // mulrC.
    move: (size_ge0 logP) szlog_le_qP => /IntOrder.ler_eqVlt [<- /#|gt0_sz le].
    by apply/IntOrder.ler_pmul => // /#.
  while{1} (n <= qP /\ card (fdom F.m) <= qF).
  + move=> Hw; exists* P.logP, F.m, n; elim* => logPw m n0.
    case: (Bad P.logP F.m).
    + by conseq (_ : _ : <= (1%r))=> // /#.
    seq 2: (Bad P.logP F.m)
           ((qF + size logPw)%r / Support.card%r) 1%r 1%r
           ((sumid (qF + (size logPw + 1)) (qF + n))%r / Support.card%r)
           (n = n0 /\ F.m = m /\ r::logPw = P.logP /\
            n <= qP /\ card (fdom F.m) <= qF)=> //.
    + by wp; rnd=> //.
    + wp; rnd; auto=> /> _ /le_fromint domF_le_qF _.
      rewrite (negBadE A AaL)=> //= -[uniq_logP logP_disj_domF].
      apply (ler_trans (mu dseed (predU (dom m)
                                        (mem logPw)))).
      + by apply mu_sub=> x [] /#.
      have ->: dom m = mem (fdom m).
      + by apply/fun_ext=> x; rewrite mem_fdom.
      rewrite mu_or (@mu_mem (fdom m) dseed (inv (Support.card%r))).
      + by move=> x _; rewrite dseed1E.
      rewrite (@mu_mem_card (logPw) dseed (inv (Support.card%r))).
      + by move=> x _; rewrite dseed1E.
      rewrite (@cardE (oflist logPw)) (@perm_eq_size _ (logPw)) 1:perm_eq_sym 1:oflist_uniq //.
      have -> /=: mu dseed (predI (mem (fdom m)) (mem logPw)) = 0%r.
      + have ->: mem (fdom m) = dom m.
        + by apply/fun_ext=> x; rewrite mem_fdom.
        by rewrite -(@mu0 dseed) /predI; apply/mu_eq=> x; move: (logP_disj_domF x)=> [] ->.
      rewrite -mulrDl fromintD.
      have: (card (fdom m))%r + (size logPw)%r <= qF%r + (size logPw)%r.
      + exact/ler_add.
      have: 0%r <= Support.card%r by smt(@Support). 
      by move => /invr_ge0 h1; apply: ler_wpmul2r.
    + conseq Hw; progress=> //.
      by rewrite H1 /= (Ring.IntID.addrC 1) lerr.
    progress=> //; rewrite H2 /= -mulrDl addrA -fromintD.
    rewrite
      (@BIA.big_cat_int (qF + size P.logP{hr} + 1) (_ + List.size _))
      ?BIA.big_int1 /#.
  by skip; progress=> /#.
  qed.

  lemma conclusion &m:
    Pr[Exp(C(A),F,P(F)).main() @ &m: res] <=
        Pr[Exp(C(A),F,PrgI).main() @ &m: res]
      + (qP * qF + (qP - 1) * qP %/ 2)%r / Support.card%r.
  proof.
  apply/(@ler_trans _ _ _ (pr &m)).
  have: Pr[Exp'(C(A)).main() @ &m: Bad P.logP F.m]
       <= (qP * qF + (qP - 1) * qP%/2)%r / Support.card%r
    by byphoare Bad_bound.
  smt().
  qed.
end section.

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API