Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/dbukenberger/HexahedralLattice
20 November 2024, 08:15:20 UTC
  • Code
  • Branches (1)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/main
    No releases to show
  • dec04bd
  • /
  • PadObject.py
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:dbea241132df8c321c5232c2afb07471f7039a80
origin badgedirectory badge Iframe embedding
swh:1:dir:dec04bd62de6ca0b3abc19ae3d00a74dbe9177e4
origin badgerevision badge
swh:1:rev:991ca6893ac1feec28f491429111e0fbdcefccc0
origin badgesnapshot badge
swh:1:snp:2df996fe5f309874504f9e2eaff26085dad17e10

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: 991ca6893ac1feec28f491429111e0fbdcefccc0 authored by dbukenberger on 20 November 2024, 07:08:57 UTC
Update requirements.txt
Tip revision: 991ca68
PadObject.py
from femUtil import *

class PadObject:
    
    def __init__(self, tVerts, tris, qVerts, quads, pWeight = 0.1):
        self.tVerts, self.tris = tVerts, tris
        self.qVerts, self.quads = qVerts, quads
        self.nDim = tVerts.shape[1]
        self.qVerts = self.qVerts[:,:self.nDim]
        self.pWeight = pWeight

    @classmethod
    def getDeformedVerts(cls, tVerts, tris, qVerts, quads, pWeight = 0.1, projectedOnly = False):
        pObj = cls(tVerts, tris, qVerts, quads, pWeight)

        for i in range(2):
            pObj.computeNormals()
            pObj.computeProjected()
            if projectedOnly or i:
                return pObj.pVerts
            pObj.computeNeighborsAndWeights()
            pObj.computeDeformation(keepSteps=False)
            pObj.qVerts = pObj.dVerts
        
        return pObj.dVerts

    def computeNormals(self):
        if self.nDim == 2:
            qNormals = []
            for qIdx in range(len(self.qVerts)):
                nIdxs = np.unique(self.quads[(self.quads == qIdx).any(axis=1)])
                nIdxs = nIdxs[nIdxs != qIdx]
                qeVecs = self.qVerts[nIdxs] - self.qVerts[[qIdx, qIdx]]
                qeVecs = np.dot(qeVecs * [[1],[-1]], Mr2D(np.pi/2))
                qNormals.append(qeVecs.mean(axis=0))
            self.qNormals = normVec(np.float32(qNormals))
        else:
            if iglFound:
                self.qNormals = igl.per_vertex_normals(self.qVerts, quadsToTris(np.vstack([self.quads, np.roll(self.quads, 1, axis=1)])))
            elif trimeshFound:
                self.qtm = trimesh.Trimesh(self.qVerts, self.quads)
                self.qNormals = self.qtm.vertex_normals.copy()
            else: # fallback
                self.qNormals = np.zeros_like(self.qVerts)
                for vIdx in range(len(self.qVerts)):
                    qs = self.quads[np.any(self.quads == vIdx, axis=1)]
                    r = np.where(qs == vIdx)[1]
                    ts = rollRows(qs, -r)

                    us = self.qVerts[ts[:,1]] - self.qVerts[ts[:,0]]
                    vs = self.qVerts[ts[:,3]] - self.qVerts[ts[:,0]]
                    cs = cross(us, vs, False)

                    eL = self.qVerts[ts[:,0]] - self.qVerts[ts[:,1]]
                    eR = self.qVerts[ts[:,0]] - self.qVerts[ts[:,3]]
                    rL = self.qVerts[ts[:,3]] - self.qVerts[ts[:,1]]
                    rR = self.qVerts[ts[:,1]] - self.qVerts[ts[:,3]]
                    cL = inner1d(eL, rL) / norm(cross(eL, rL, False))
                    cR = inner1d(eR, rR) / norm(cross(eR, rR, False))
                    ws = (cL+cR)/2
    
                    self.qNormals[vIdx] = np.dot(ws/ws.sum(), normVec(cs))
                self.qNormals = normVec(self.qNormals)

    def computeProjected(self):
        if self.nDim == 2:

            self.pVerts = self.qVerts.copy()
            for i, pIdx in enumerate(np.unique(self.quads.ravel())):
                pInner = intersectEdgesWithRay2D(self.tVerts[self.tris], self.qVerts[pIdx] - self.qNormals[i] * eps, self.qNormals[i])
                pOuter = intersectEdgesWithRay2D(self.tVerts[self.tris], self.qVerts[pIdx] + self.qNormals[i] * eps, -self.qNormals[i])
                if norm(self.qVerts[pIdx] - pInner) < norm(self.qVerts[pIdx] - pOuter):
                    self.pVerts[pIdx] = pInner
                else:
                    self.pVerts[pIdx] = pOuter
        else:
            if embreeFound:
                if not hasattr(self, 'scene'):
                    self.embreeDevice = rtc.EmbreeDevice()
                    self.scene = rtcs.EmbreeScene(self.embreeDevice)
                    mesh = TriangleMesh(self.scene, self.tVerts[self.tris])

                qVerts = np.float32(np.tile(self.qVerts, [2,1]))
                qNormals = np.float32(np.vstack([self.qNormals, -self.qNormals]))
                dsts = self.scene.run(qVerts - qNormals * eps, qNormals, query='DISTANCE').reshape(2,-1)
                dists = np.min(dsts, axis=0) * (1-np.argmin(dsts, axis=0)*2)

            elif trimeshFound: # something is wrong here
                if not hasattr(self, 'tm'):
                    self.tm = trimesh.Trimesh(self.tVerts, self.tris)

                dists = np.zeros(len(self.qVerts), np.float32)
                triIdxs, rayIdxs, hitPoints = self.tm.ray.intersects_id(self.qVerts, -self.qNormals, return_locations=True, multiple_hits=False)
                dists[rayIdxs] = norm(self.qVerts[rayIdxs] - hitPoints)

                dsts = np.zeros(len(self.qVerts), np.float32)
                triIdxs, rayIdxz, hitPoints = self.tm.ray.intersects_id(self.qVerts, self.qNormals, return_locations=True, multiple_hits=False)
                dsts[rayIdxz] = norm(self.qVerts[rayIdxz] - hitPoints)

                #print(dsts.min(), dsts.max(), dsts.mean(), dsts.sum())
                #print(dists.min(), dists.max(), dists.mean(), dists.sum())
                rIdxs = np.unique(np.concatenate([rayIdxs, rayIdxz]))
    
                m = dsts[rIdxs] < dists[rIdxs]
                if np.any(m):
                    dists[rIdxs[m]] = -dsts[rIdxs[m]]

            else:
                print('install either embreex, pyembree or trimesh')
            
            qEdges = facesToEdges(self.quads)
            mel = norm(self.qVerts[qEdges[:,0]] - self.qVerts[qEdges[:,1]]).mean()
            dists = np.clip(dists, -mel, mel)

            self.pVerts = self.qVerts + self.qNormals * dists.reshape(-1,1)

    def computeNeighborsAndWeights(self):
        self.qNeighbors = np.zeros((len(self.qVerts), 6), np.int32)
        self.qWeights = np.zeros_like(self.qNeighbors, np.float32)

        n = len(self.qVerts)
        self.L = sparse.dok_matrix((n,n), dtype=float)
        E = sparse.dok_matrix((n,n), dtype=float)
        for vIdx in range(len(self.qVerts)):
            qs = self.quads[np.any(self.quads == vIdx, axis=1)]
            r = np.where(qs == vIdx)[1]
            ts = rollRows(qs, -r)

            neighborIdxs = np.unique(ts[:,[1,3]].ravel())
            self.qNeighbors[vIdx] = vIdx
            self.qNeighbors[vIdx,:len(neighborIdxs)] = neighborIdxs
            self.qWeights[vIdx,:len(neighborIdxs)] = 1/len(neighborIdxs)
            for nIdx in neighborIdxs:
                self.L[vIdx,nIdx] = 1/len(neighborIdxs)
            self.L[vIdx,vIdx] = -1
            E[vIdx,vIdx] = self.pWeight
        self.L *= -1

        self.solver = spla.factorized((self.L.T @ self.L + E).tocsc())
        self.truHoods = (self.qVerts[self.qNeighbors] - self.qVerts.reshape(-1,1,3)) * self.qWeights[:,:,None]

    def computeDeformation(self, num_iters = 10, keepSteps = True):
        Rs = np.float32([np.eye(3)] * len(self.qVerts))

        self.dVertss = [self.qVerts.copy()]
        for i in range(num_iters):
            if i:
                Rs = self.estimateRotations(self.dVerts)
            R = (np.take(Rs, self.qNeighbors, axis=0) + Rs[:,None]) / 2
            rhs = np.sum((R @ self.truHoods[...,None]).squeeze(), axis=1)
            self.dVerts = self.solver(self.L @ rhs + self.pVerts) * self.pWeight

            mvmt = norm(self.dVertss[-1] - self.dVerts).sum()
            if keepSteps:
                self.dVertss.append(self.dVerts.copy())
            else:
                self.dVertss[-1] = self.dVerts.copy()
                
            if mvmt < eps:
                break
            
        return self.dVerts

    def estimateRotations(self, dVerts):
        rotHoods = (dVerts[self.qNeighbors] - dVerts.reshape(-1,1,3))
        U,s,Vt = np.linalg.svd(rotHoods.transpose((0,2,1)) @ self.truHoods)
        Vt[:,-1,:] *= simpleDets3x3(U @ Vt)[:,None]
        return U @ Vt

    def show(self):
        mlab.figure()

        if not hasattr(self, 'dVerts'):
            self.dVerts = self.qVerts.copy()

        self.sf = norm(self.tVerts.max(axis=0)-self.tVerts.min(axis=0)) / 1000

        tVerts = self.tVerts
        pVerts = self.pVerts
        qVerts = self.qVerts
        dVerts = self.dVerts
        qNormals = self.qNormals
        if self.nDim == 2:
            tVerts, pVerts, qVerts, dVerts, qNormals = map(pad2Dto3D, [tVerts, pVerts, qVerts, dVerts, qNormals])
            
        x,y,z = tVerts.T
        eTris = toEdgeTris(facesToEdges(self.tris))
        tPlot = mlab.triangular_mesh(x, y, z, eTris, representation = 'mesh', color = (0,0,0), tube_radius = self.sf * 1.25)

        x,y,z = qVerts.T
        eTris = toEdgeTris(facesToEdges(self.quads))
        qPlot = mlab.triangular_mesh(x, y, z, eTris, representation = 'mesh',  color = (0.125,0.5,1), tube_radius = self.sf * 2.5)

        x,y,z = pVerts.T
        pPlot = mlab.triangular_mesh(x, y, z, eTris, representation = 'mesh',  color = (0,1,0), tube_radius = self.sf * 2.5)

        x,y,z = qVerts.T
        u,v,w = qNormals.T
        nPlot = mlab.quiver3d(x, y, z, u, v, w, color = (1,0,0), scale_factor=0.25)

if sys.platform == 'win32': # some TVTK issue on linux?
    
    class PadVisual(HasTraits):
        p = Range(0, 10, 0)
        scene = Instance(MlabSceneModel, ())
        meshPlot = Instance(PipelineBase)
        view = View(Item('scene', editor=SceneEditor(scene_class=MayaviScene), show_label=False), Group('p'), resizable=True)

        def show(self, pObj):
            self.pObj = pObj
            self.eTris = toEdgeTris(facesToEdges(self.pObj.quads))
            self.configure_traits()        

        @on_trait_change('p, scene.activated')
        def update_plot(self):
            p = min(len(self.pObj.dVertss)-1, self.p)
            dVerts = self.pObj.dVertss[p]

            if not hasattr(self, 'ePlot'):
                x,y,z = np.vstack([self.pObj.qVerts, self.pObj.pVerts]).T
                eTris = toEdgeTris(np.transpose([np.arange(len(self.pObj.qVerts)), np.arange(len(self.pObj.qVerts))+len(self.pObj.qVerts)]))
                self.ePlot = mlab.triangular_mesh(x, y, z, eTris, representation = 'mesh',  color = (0,1,1), tube_radius=0.005)

                x,y,z = self.pObj.qVerts.T
                self.qPlot = mlab.triangular_mesh(x, y, z, self.eTris, representation = 'mesh',  color = (0.125,0.5,1), tube_radius = self.pObj.sf * 2.5)

                x,y,z = self.pObj.pVerts.T
                self.pPlot = mlab.triangular_mesh(x, y, z, self.eTris, representation = 'mesh',  color = (0,1,0), tube_radius = self.pObj.sf * 2.5)

                x,y,z = dVerts.T
                self.dPlot = mlab.triangular_mesh(x, y, z, self.eTris, representation = 'mesh',  color = (1,0,0), tube_radius = self.pObj.sf * 5)
            else:
                self.dPlot.mlab_source.points = dVerts


if __name__ == "__main__":

    # first call cObj.exportHullsToObj() on a CubeObject   
    tVerts, tris = loadObjFile('data/femurHullTris.obj')
    qVerts, quads = loadObjFile('data/femurHullQuads.obj')
    pObj = PadObject(tVerts, tris, qVerts, quads)
    pObj.computeNormals()
    pObj.computeProjected()
    pObj.computeNeighborsAndWeights()
    pObj.computeDeformation()

    pObj.show()

    pVis = PadVisual()
    pVis.show(pObj)

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API