Raw File
\title{ Cluster Catch Digraphs}
 construct the cluster catch digraph from a data matrix.
ccd(data, m = 1, alpha = 0.05, sequential = TRUE)
  \item{data}{ a matrix of observations}
  \item{m}{ slope of the null hypothesis curve}
  \item{alpha}{ alpha for the K-S test if \code{sequential=T}}.
  \item{sequential}{ use the sequential or non-sequential version}
  cluster cover digraph.
 an object of class igraph. In addition, this contains the attributes:
 \item{R}{the radii.}
 \item{stats}{ the K-S statistics.}
 \item{layout}{the data vectors.}
 \item{walks}{the y-values of the random walks.}
 \item{fs}{the null hypothesis curve.}
 \item{A}{ the adjacency matrix.}
 \item{m,alpha}{arguments passed to \code{ccd}.}
D.J. Marchette, Random Graphs for Statistical Pattern Recognition,
John Wiley & Sons, 2004.

\author{ David J. Marchette david.marchette@navy.mil}

\seealso{ \code{\link{cccd}}}


x <- matrix(rnorm(100),ncol=2)
G <- ccd(x)
\keyword{ math }
\keyword{ multivariate }
back to top