https://github.com/CNG-LAB/cngopen
Tip revision: 07d4a1a03267dac12ac8bfbccc8e09049cac9f31 authored by Bin Wan on 09 August 2022, 14:58:28 UTC
Update readme.md
Update readme.md
Tip revision: 07d4a1a
figure_1.m
% Fig 1. Structure-function coupling and heritability in human cortical
% regions. A) Microstructural profile covariance (MPC) was chosen to map
% networks of microstructural similarity for each cortical node, sorted
% along cytoarchitectural class 22,59; B) Resting-state functional connectivity
% (rsFC) analysis maps nodal patterns of intrinsic functional connectivity,
% sorted along cytoarchitectural class; C) Row-wise coupling of MPC and
% rsFC Middle: raincloud plot of distribution within cytoarchitectural
% classes of coupling in the 400 Schaefer parcels, box shows the median
% and interquartile (25-75%) range, whiskers depict the 1.5*interquartile
% range (IQR) from the quartiles; Right: Reference visualization
% cytoarchitectural class. Source data are provided as a Source Data file.
% compute the correlation between microstructure profile covariance and
% functional connectivity
% aux data:
SN = aux_data.surf;
parcels400 = aux_data.parcels400;
mesulam400 = aux_data.mesul;
% make the mean maps of both metrics
fc400m = squeeze(mean(fc400z(keep,:,:),1));
MPCm = squeeze(mean(MPC(keep,:,:),1));
% correlate both metrics
for i = 1:400
[r p] = corr(fc400m(i,:)',MPCm(i,:)','type','spearman')
fc_mpc(i) = r;
end
fsa5_map = zeros(1,20484);
for i = 1:200
fsa5_map(:,find(parcels400==i+1)) = fc_mpc(i);
end
for i = 1:200
fsa5_map(:,find(parcels400==i+1001)) = fc_mpc(i+200);
end
f = figure,
BoSurfStatViewData(fsa5_map,SN,'')
colormap(flipud(cbrewer('div','RdBu',99)))
% for Rainclooudplots https://github.com/RainCloudPlots/RainCloudPlots
for visuals = 1
change_p.pl = fc_mpc(find(mesulam400==4),2);
change_p.hm = fc_mpc(find(mesulam400==3),2);
change_p.um = fc_mpc(find(mesulam400==2),2);
change_p.pr = fc_mpc(find(mesulam400==1),2);
mes_color = flipud(cbrewer('div','Spectral',5));
cl = mes_color([1:2,4:5],:);
fig_position = [200 200 600 400]; % coordinates for figures
d = [];
d{1} = change_p.pl';
d{2} = change_p.hm';
d{3} = change_p.um';
d{4} = change_p.pr';
means = cellfun(@mean, d);
variances = cellfun(@std, d);
f = figure('Position', fig_position);
h1 = raincloud_plot(d{1}, 'box_on', 1, 'color', cl(1,:), 'alpha', 0.5,...
'box_dodge', 1, 'box_dodge_amount', .15, 'dot_dodge_amount', .15,...
'box_col_match', 0);
h2 = raincloud_plot(d{2}, 'box_on', 1, 'color', cl(2,:), 'alpha', 0.5,...
'box_dodge', 1, 'box_dodge_amount', .35, 'dot_dodge_amount', .35, 'box_col_match', 0);
h3 = raincloud_plot(d{3}, 'box_on', 1, 'color', cl(3,:), 'alpha', 0.5,...
'box_dodge', 1, 'box_dodge_amount', .55, 'dot_dodge_amount', .55, 'box_col_match', 0);
h4 = raincloud_plot(d{4}, 'box_on', 1, 'color', cl(4,:), 'alpha', 0.5,...
'box_dodge', 1, 'box_dodge_amount', .75, 'dot_dodge_amount', .75,...
'box_col_match', 0);
box off
end