https://github.com/CNG-LAB/cngopen
Tip revision: 07d4a1a03267dac12ac8bfbccc8e09049cac9f31 authored by Bin Wan on 09 August 2022, 14:58:28 UTC
Update readme.md
Update readme.md
Tip revision: 07d4a1a
figure_2.m
%gradient 1
for f2_a = 1
% social task along the gradient (G1)
for social_g1 = 1
ntw2 = ntw.*mask'
socialg.a = mean(G1(keeptest==1,find(ntw2(1,:)>0)));
socialg.c = mean(G1(keeptest==1,find(ntw2(2,:)>0)));
socialg.t = mean(G1(keeptest==1,find(ntw2(3,:)>0)));
cl(1, :) = [0.8844 0.7828 0.0195];
cl(2, :) = [0.9412 0.2314 0.1255];
cl(3, :) = [0.1922 0.6392 0.3294];
fig_position = [200 200 600 400]; % coordinates for figures
d{1} = socialg.a';
d{2} = socialg.c';
d{3} = socialg.t';
means = cellfun(@mean, d);
variances = cellfun(@std, d);
f = figure('Position', fig_position);
h1 = raincloud_plot(d{1}, 'box_on', 1, 'color', cl(1,:), 'alpha', 0.5,...
'box_dodge', 1, 'box_dodge_amount', .15, 'dot_dodge_amount', .15,...
'box_col_match', 0);
h2 = raincloud_plot(d{2}, 'box_on', 1, 'color', cl(2,:), 'alpha', 0.5,...
'box_dodge', 1, 'box_dodge_amount', .35, 'dot_dodge_amount', .35, 'box_col_match', 0);
h3 = raincloud_plot(d{3}, 'box_on', 1, 'color', cl(3,:), 'alpha', 0.5,...
'box_dodge', 1, 'box_dodge_amount', .55, 'dot_dodge_amount', .55, 'box_col_match', 0);
legend([h1{1} h2{1} h3{1}], {'Attention', 'Affect','ToM'});
title('Gradient GG');
set(gca,'XLim', [0 0.12], 'YLim', [-30 42]);
box off
exportfigbo(f,[RPATH 'F2.social.G1.png'],'png', 10)
end
% change in eccentricity
for i = 1
Xn = G1_last;
Xn(isnan(Xn)) = 0;
Xn(isinf(Xn)) = 0;
keep1 = union(find(strcmp(groupN,'Affect')), find(strcmp(groupN,'Perspective')));
keep1 = union(keep1,find(strcmp(groupN,'Presence')))
keep1 = union(keep1,find(strcmp(groupN,'Control1')))
keep2 = intersect(find(abs(mean(Xn,2)) <666), find(sum(Xn,2)~=0));
keep3 = mintersect(find(~strcmp(group4,'Group3')),find(tpnum>0));
keep = mintersect(keep1, keep2,keep3);
Ck = Xn(keep,:);
ik = id(keep,:);
ink = idnum(keep);
gNk = groupN(keep);
ak = age(keep);
sk = cellstr(sex(keep));
A = term(ak);
S = term(sk);
GN = term(gNk);
Sub = term(ink);
Ck(Ck==0) = 1;
M = 1 + A + S + GN + random(Sub) + I;
slm = SurfStatLinMod(Ck,M,SW);
for social_gradient_1 = 1
for i = 1:3
keep_presence = (find(strcmp(groupN(keep),'Presence')))
keep_affect = (find(strcmp(groupN(keep),'Affect')))
keep_perspective = (find(strcmp(groupN(keep),'Perspective')))
keep_control = (find(strcmp(groupN(keep),'Control1')))
presence.rcc = mean(Ck(keep_control,find(ntw(i,:)>0)));
presence.a = mean(Ck(keep_presence,find(ntw(i,:)>0)));
presence.c = mean(Ck(keep_affect,find(ntw(i,:)>0)));
presence.t = mean(Ck(keep_perspective,find(ntw(i,:)>0)));
cl(2, :) = [0.8844 0.7828 0.0195];
cl(3, :) = [0.9412 0.2314 0.1255];
cl(4, :) = [0.1922 0.6392 0.3294];
cl(1, :) = [0.5 0.8 0.9];
fig_position = [200 200 600 400]; % coordinates for figures
d{1} = presence.rcc';
d{2} = presence.a';
d{3} = presence.c';
d{4} = presence.t';
means = cellfun(@mean, d);
variances = cellfun(@std, d);
f = figure('Position', fig_position);
h1 = raincloud_plot(d{1}, 'box_on', 1, 'color', cl(1,:), 'alpha', 0.5,...
'box_dodge', 1, 'box_dodge_amount', .15, 'dot_dodge_amount', .15,...
'box_col_match', 0);
h2 = raincloud_plot(d{2}, 'box_on', 1, 'color', cl(2,:), 'alpha', 0.5,...
'box_dodge', 1, 'box_dodge_amount', .35, 'dot_dodge_amount', .35, 'box_col_match', 0);
h3 = raincloud_plot(d{3}, 'box_on', 1, 'color', cl(3,:), 'alpha', 0.5,...
'box_dodge', 1, 'box_dodge_amount', .55, 'dot_dodge_amount', .55, 'box_col_match', 0);
h4 = raincloud_plot(d{4}, 'box_on', 1, 'color', cl(4,:), 'alpha', 0.5,...
'box_dodge', 1, 'box_dodge_amount', .75, 'dot_dodge_amount', .75, 'box_col_match', 0);
%legend([h1{1} h2{1} h3{1}], {'Attention', 'Affect','ToM'});
%title('Gradient 1');
set(gca,'XLim', [-0.01 0.01], 'YLim', [-350 400]);
box off
exportfigbo(f,[RPATH 'F2.change.G1.network',num2str(i), '.png'],'png', 10)
end
end
for perspective = 1
slm = SurfStatT(slm,-(GN.Perspective-(0.5*(GN.Affect)+(GN.Presence))));
[pval, peak, clus, clusid] = SurfStatP(slm,mask==1,0.0025)
f = figure,
BoSurfStatViewData(pval.C,SN,''), SurfStatColLim([0 0.025])
exportfigbo(f,[RPATH 'F2.others-perspective.g1.png'],'png', 10)
slm = SurfStatT(slm,(GN.Perspective-(0.5*(GN.Affect)+(GN.Presence))));
[pval, peak, clus, clusid] = SurfStatP(slm,mask==1,0.0025)
f = figure,
BoSurfStatViewData(pval.C,SN,''), SurfStatColLim([0 0.025])
exportfigbo(f,[RPATH 'F2.perspective-others.g1.png'],'png', 10)
F2.G1perspective_slm = slm;
end
for affective = 1
slm = SurfStatT(slm,(GN.Affect-(0.5*(GN.Perspective)+(GN.Presence))));
[pval, peak, clus, clusid] = SurfStatP(slm,mask==1,0.0025)
f = figure,
BoSurfStatViewData(pval.C,SN,''), SurfStatColLim([0 0.025])
exportfigbo(f,[RPATH 'F2.affect-others.g1.png'],'png', 10)
F2.G1affect_slm = slm;
slm = SurfStatT(slm,-(GN.Affect-(0.5*(GN.Perspective)+(GN.Presence))));
[pval, peak, clus, clusid] = SurfStatP(slm,mask==1,0.0025)
f = figure,
BoSurfStatViewData(pval.C,SN,''), SurfStatColLim([0 0.025])
exportfigbo(f,[RPATH 'F2.others-affect.g1.png'],'png', 10)
end
for presence = 1
slm = SurfStatT(slm,(GN.Presence-(0.5*(GN.Affect)+(GN.Perspective))));
[pval, peak, clus, clusid] = SurfStatP(slm,mask==1,0.0025)
f = figure,
BoSurfStatViewData(pval.C,SN,''), SurfStatColLim([0 0.025])
exportfigbo(f,[RPATH 'F2.presence-others.g1.png'],'png', 10)
F2.G1presence_slm = slm;
slm = SurfStatT(slm,-(GN.Presence-(0.5*(GN.Affect)+(GN.Perspective))));
[pval, peak, clus, clusid] = SurfStatP(slm,mask==1,0.0025)
f = figure,
BoSurfStatViewData(pval.C,SN,''), SurfStatColLim([0 0.025])
exportfigbo(f,[RPATH 'F2.others-presence.g1.png'],'png', 10)
end
% yeo networks
for i = 1:7
slm = SurfStatLinMod(mean(Ck(:,find(yeo_networks==i)),2),M);
slm = SurfStatT(slm,(GN.Presence-(0.5*(GN.Affect)+(GN.Perspective))));
F2.yeo_changeG1(i,1) = slm.t
F2.yeo_changeG1(i,2) = (1 - tcdf(slm.t,slm.df))
end
for i = 1:7
slm = SurfStatLinMod(mean(Ck(:,find(yeo_networks==i)),2),M);
slm = SurfStatT(slm,(GN.Affect-(0.5*(GN.Perspective)+(GN.Presence))));
F2.yeo_changeG1(i,3) = slm.t
F2.yeo_changeG1(i,4) = (1 - tcdf(slm.t,slm.df))
end
for i = 1:7
slm = SurfStatLinMod(mean(Ck(:,find(yeo_networks==i)),2),M);
slm = SurfStatT(slm,(GN.Perspective-(0.5*(GN.Affect)+(GN.Presence))));
F2.yeo_changeG1(i,5) = slm.t
F2.yeo_changeG1(i,6) = (1 - tcdf(slm.t,slm.df))
end
% Social networks
for i = 1:3
slm = SurfStatLinMod(mean(Ck(:,find(ntw(i,:))),2),M);
slm = SurfStatT(slm,(GN.Presence-(0.5*(GN.Affect)+(GN.Perspective))));
F2.sn_changeG1(i,1) = slm.t
F2.sn_changeG1(i,2) = (1 - tcdf(slm.t,slm.df))
end
for i = 1:3
slm = SurfStatLinMod(mean(Ck(:,find(ntw(i,:))),2),M);
slm = SurfStatT(slm,(GN.Affect-(0.5*(GN.Perspective)+(GN.Presence))));
F2.sn_changeG1(i,3) = slm.t
F2.sn_changeG1(i,4) = (1 - tcdf(slm.t,slm.df))
end
for i = 1:3
slm = SurfStatLinMod(mean(Ck(:,find(ntw(i,:))),2),M);
slm = SurfStatT(slm,(GN.Perspective-(0.5*(GN.Affect)+(GN.Presence))));
F2.sn_changeG1(i,5) = slm.t
F2.sn_changeG1(i,6) = (1 - tcdf(slm.t,slm.df))
end
end
end
%gradient 2
for f2_b = 1
% social task G1
for social_g2 = 1
ntw2 = ntw.*mask'
socialg.a = mean(G2(keeptest==1,find(ntw2(1,:)>0)));
socialg.c = mean(G2(keeptest==1,find(ntw2(2,:)>0)));
socialg.t = mean(G2(keeptest==1,find(ntw2(3,:)>0)));
cl(1, :) = [0.8844 0.7828 0.0195];
cl(2, :) = [0.9412 0.2314 0.1255];
cl(3, :) = [0.1922 0.6392 0.3294];
fig_position = [200 200 600 400]; % coordinates for figures
d{1} = socialg.a';
d{2} = socialg.c';
d{3} = socialg.t';
means = cellfun(@mean, d);
variances = cellfun(@std, d);
f = figure('Position', fig_position);
h1 = raincloud_plot(d{1}, 'box_on', 1, 'color', cl(1,:), 'alpha', 0.5,...
'box_dodge', 1, 'box_dodge_amount', .15, 'dot_dodge_amount', .15,...
'box_col_match', 0);
h2 = raincloud_plot(d{2}, 'box_on', 1, 'color', cl(2,:), 'alpha', 0.5,...
'box_dodge', 1, 'box_dodge_amount', .35, 'dot_dodge_amount', .35, 'box_col_match', 0);
h3 = raincloud_plot(d{3}, 'box_on', 1, 'color', cl(3,:), 'alpha', 0.5,...
'box_dodge', 1, 'box_dodge_amount', .55, 'dot_dodge_amount', .55, 'box_col_match', 0);
legend([h1{1} h2{1} h3{1}], {'Attention', 'Affect','ToM'});
title('Gradient GG');
set(gca,'XLim', [0 0.12], 'YLim', [-30 42]);
box off
exportfigbo(f,[RPATH 'F2.social.G2.png'],'png', 10)
end
% change in eccentricity
for i = 1
Xn = G2_last;
Xn(isnan(Xn)) = 0;
Xn(isinf(Xn)) = 0;
keep1 = union(find(strcmp(groupN,'Affect')), find(strcmp(groupN,'Perspective')));
keep1 = union(keep1,find(strcmp(groupN,'Presence')))
keep1 = union(keep1,find(strcmp(groupN,'Control1')))
keep2 = intersect(find(abs(mean(Xn,2)) <666), find(sum(Xn,2)~=0));
keep3 = mintersect(find(~strcmp(group4,'Group3')),find(tpnum>0));
keep = mintersect(keep1, keep2,keep3);
Ck = Xn(keep,:);
ik = id(keep,:);
ink = idnum(keep);
gNk = groupN(keep);
ak = age(keep);
sk = cellstr(sex(keep));
A = term(ak);
S = term(sk);
GN = term(gNk);
Sub = term(ink);
Ck(Ck==0) = 1;
M = 1 + A + S + GN + random(Sub) + I;
slm = SurfStatLinMod(Ck,M,SW);
for social_gradient_1 = 1
for i = 1:3
keep_presence = (find(strcmp(groupN(keep),'Presence')))
keep_affect = (find(strcmp(groupN(keep),'Affect')))
keep_perspective = (find(strcmp(groupN(keep),'Perspective')))
keep_control = (find(strcmp(groupN(keep),'Control')))
presence.rcc = mean(Ck(keep_control,find(ntw(i,:)>0)));
presence.a = mean(Ck(keep_presence,find(ntw(i,:)>0)));
presence.c = mean(Ck(keep_affect,find(ntw(i,:)>0)));
presence.t = mean(Ck(keep_perspective,find(ntw(i,:)>0)));
cl(2, :) = [0.8844 0.7828 0.0195];
cl(3, :) = [0.9412 0.2314 0.1255];
cl(4, :) = [0.1922 0.6392 0.3294];
cl(1, :) = [0.5 0.8 0.9];
fig_position = [200 200 600 400]; % coordinates for figures
d{1} = presence.rcc';
d{2} = presence.a';
d{3} = presence.c';
d{4} = presence.t';
means = cellfun(@mean, d);
variances = cellfun(@std, d);
f = figure('Position', fig_position);
h1 = raincloud_plot(d{1}, 'box_on', 1, 'color', cl(1,:), 'alpha', 0.5,...
'box_dodge', 1, 'box_dodge_amount', .15, 'dot_dodge_amount', .15,...
'box_col_match', 0);
h2 = raincloud_plot(d{2}, 'box_on', 1, 'color', cl(2,:), 'alpha', 0.5,...
'box_dodge', 1, 'box_dodge_amount', .35, 'dot_dodge_amount', .35, 'box_col_match', 0);
h3 = raincloud_plot(d{3}, 'box_on', 1, 'color', cl(3,:), 'alpha', 0.5,...
'box_dodge', 1, 'box_dodge_amount', .55, 'dot_dodge_amount', .55, 'box_col_match', 0);
h4 = raincloud_plot(d{4}, 'box_on', 1, 'color', cl(4,:), 'alpha', 0.5,...
'box_dodge', 1, 'box_dodge_amount', .75, 'dot_dodge_amount', .75, 'box_col_match', 0);
%legend([h1{1} h2{1} h3{1}], {'Attention', 'Affect','ToM'});
%title('Gradient 1');
set(gca,'XLim', [-0.01 0.01], 'YLim', [-350 400]);
box off
exportfigbo(f,[RPATH 'F2.change.g2network',num2str(i), '.png'],'png', 10)
end
end
for perspective = 1
slm = SurfStatT(slm,-(GN.Perspective-(0.5*(GN.Affect)+(GN.Presence))));
[pval, peak, clus, clusid] = SurfStatP(slm,mask==1,0.0025)
f = figure,
BoSurfStatViewData(pval.C,SN,''), SurfStatColLim([0 0.025])
exportfigbo(f,[RPATH 'F2.others-perspective.g2.png'],'png', 10)
slm = SurfStatT(slm,(GN.Perspective-(0.5*(GN.Affect)+(GN.Presence))));
[pval, peak, clus, clusid] = SurfStatP(slm,mask==1,0.0025)
f = figure,
BoSurfStatViewData(pval.C,SN,''), SurfStatColLim([0 0.025])
exportfigbo(f,[RPATH 'F2.perspective-others.g2.png'],'png', 10)
F2.G2perspective_slm = slm;
end
for affective = 1
slm = SurfStatT(slm,(GN.Affect-(0.5*(GN.Perspective)+(GN.Presence))));
[pval, peak, clus, clusid] = SurfStatP(slm,mask==1,0.0025)
f = figure,
BoSurfStatViewData(pval.C,SN,''), SurfStatColLim([0 0.025])
exportfigbo(f,[RPATH 'F2.affect-others.g2.png'],'png', 10)
F2.G2affect_slm = slm;
slm = SurfStatT(slm,-(GN.Affect-(0.5*(GN.Perspective)+(GN.Presence))));
[pval, peak, clus, clusid] = SurfStatP(slm,mask==1,0.0025)
f = figure,
BoSurfStatViewData(pval.C,SN,''), SurfStatColLim([0 0.025])
exportfigbo(f,[RPATH 'F2.others-affect.g2.png'],'png', 10)
end
for presence = 1
slm = SurfStatT(slm,(GN.Presence-(0.5*(GN.Affect)+(GN.Perspective))));
[pval, peak, clus, clusid] = SurfStatP(slm,mask==1,0.0025)
f = figure,
BoSurfStatViewData(pval.C,SN,''), SurfStatColLim([0 0.025])
exportfigbo(f,[RPATH 'F2.presence-others.g2.png'],'png', 10)
F2.G2presence_slm = slm;
slm = SurfStatT(slm,-(GN.Presence-(0.5*(GN.Affect)+(GN.Perspective))));
[pval, peak, clus, clusid] = SurfStatP(slm,mask==1,0.0025)
f = figure,
BoSurfStatViewData(pval.C,SN,''), SurfStatColLim([0 0.025])
exportfigbo(f,[RPATH 'F2.others-presence.g2.png'],'png', 10)
end
% yeo networks
for i = 1:7
slm = SurfStatLinMod(mean(Ck(:,find(yeo_networks==i)),2),M);
slm = SurfStatT(slm,(GN.Presence-(0.5*(GN.Affect)+(GN.Perspective))));
F2.yeo_changeG2(i,1) = slm.t
F2.yeo_changeG2(i,2) = (1 - tcdf(slm.t,slm.df))
end
for i = 1:7
slm = SurfStatLinMod(mean(Ck(:,find(yeo_networks==i)),2),M);
slm = SurfStatT(slm,(GN.Affect-(0.5*(GN.Perspective)+(GN.Presence))));
F2.yeo_changeG2(i,3) = slm.t
F2.yeo_changeG2(i,4) = (1 - tcdf(slm.t,slm.df))
end
for i = 1:7
slm = SurfStatLinMod(mean(Ck(:,find(yeo_networks==i)),2),M);
slm = SurfStatT(slm,(GN.Perspective-(0.5*(GN.Affect)+(GN.Presence))));
F2.yeo_changeG2(i,5) = slm.t
F2.yeo_changeG2(i,6) = (1 - tcdf(slm.t,slm.df))
end
% Social networks
for i = 1:3
slm = SurfStatLinMod(mean(Ck(:,find(ntw(i,:))),2),M);
slm = SurfStatT(slm,(GN.Presence-(0.5*(GN.Affect)+(GN.Perspective))));
F2.sn_changeG2(i,1) = slm.t
F2.sn_changeG2(i,2) = (1 - tcdf(slm.t,slm.df))
end
for i = 1:3
slm = SurfStatLinMod(mean(Ck(:,find(ntw(i,:))),2),M);
slm = SurfStatT(slm,(GN.Affect-(0.5*(GN.Perspective)+(GN.Presence))));
F2.sn_changeG2(i,3) = slm.t
F2.sn_changeG2(i,4) = (1 - tcdf(slm.t,slm.df))
end
for i = 1:3
slm = SurfStatLinMod(mean(Ck(:,find(ntw(i,:))),2),M);
slm = SurfStatT(slm,(GN.Perspective-(0.5*(GN.Affect)+(GN.Presence))));
F2.sn_changeG2(i,5) = slm.t
F2.sn_changeG2(i,6) = (1 - tcdf(slm.t,slm.df))
end
end
end
%gradient 3
for f2_c = 1
% social task G3
for social_g3 = 1
ntw2 = ntw.*mask'
socialg.a = mean(G3(keeptest==1,find(ntw2(1,:)>0)));
socialg.c = mean(G3(keeptest==1,find(ntw2(2,:)>0)));
socialg.t = mean(G3(keeptest==1,find(ntw2(3,:)>0)));
cl(1, :) = [0.8844 0.7828 0.0195];
cl(2, :) = [0.9412 0.2314 0.1255];
cl(3, :) = [0.1922 0.6392 0.3294];
fig_position = [200 200 600 400]; % coordinates for figures
d{1} = socialg.a';
d{2} = socialg.c';
d{3} = socialg.t';
means = cellfun(@mean, d);
variances = cellfun(@std, d);
f = figure('Position', fig_position);
h1 = raincloud_plot(d{1}, 'box_on', 1, 'color', cl(1,:), 'alpha', 0.5,...
'box_dodge', 1, 'box_dodge_amount', .15, 'dot_dodge_amount', .15,...
'box_col_match', 0);
h2 = raincloud_plot(d{2}, 'box_on', 1, 'color', cl(2,:), 'alpha', 0.5,...
'box_dodge', 1, 'box_dodge_amount', .35, 'dot_dodge_amount', .35, 'box_col_match', 0);
h3 = raincloud_plot(d{3}, 'box_on', 1, 'color', cl(3,:), 'alpha', 0.5,...
'box_dodge', 1, 'box_dodge_amount', .55, 'dot_dodge_amount', .55, 'box_col_match', 0);
legend([h1{1} h2{1} h3{1}], {'Attention', 'Affect','ToM'});
title('Gradient GG');
set(gca,'XLim', [0 0.12], 'YLim', [-30 42]);
box off
exportfigbo(f,[RPATH 'F2.social.G3.png'],'png', 10)
end
% change in eccentricity
for i = 1
Xn = G3_last;
Xn(isnan(Xn)) = 0;
Xn(isinf(Xn)) = 0;
keep1 = union(find(strcmp(groupN,'Affect')), find(strcmp(groupN,'Perspective')));
keep1 = union(keep1,find(strcmp(groupN,'Presence')))
keep1 = union(keep1,find(strcmp(groupN,'Control')))
keep2 = intersect(find(abs(mean(Xn,2)) <666), find(sum(Xn,2)~=0));
keep3 = mintersect(find(~strcmp(group4,'Group3')),find(tpnum>0));
keep = mintersect(keep1, keep2,keep3);
Ck = Xn(keep,:);
ik = id(keep,:);
ink = idnum(keep);
gNk = groupN(keep);
ak = age(keep);
sk = cellstr(sex(keep));
A = term(ak);
S = term(sk);
GN = term(gNk);
Sub = term(ink);
%CHk = Days_last(keep);
Ck(Ck==0) = 1;
M = 1 + A + S + GN + random(Sub) + I ;
slm = SurfStatLinMod(Ck,M,SW);
for social_gradient_1 = 1
for i = 1:3
keep_presence = (find(strcmp(groupN(keep),'Presence')))
keep_affect = (find(strcmp(groupN(keep),'Affect')))
keep_perspective = (find(strcmp(groupN(keep),'Perspective')))
keep_control = (find(strcmp(groupN(keep),'Control')))
presence.rcc = mean(Ck(keep_control,find(ntw(i,:)>0)));
presence.a = mean(Ck(keep_presence,find(ntw(i,:)>0)));
presence.c = mean(Ck(keep_affect,find(ntw(i,:)>0)));
presence.t = mean(Ck(keep_perspective,find(ntw(i,:)>0)));
cl(2, :) = [0.8844 0.7828 0.0195];
cl(3, :) = [0.9412 0.2314 0.1255];
cl(4, :) = [0.1922 0.6392 0.3294];
cl(1, :) = [0.5 0.8 0.9];
fig_position = [200 200 600 400]; % coordinates for figures
d{1} = presence.rcc';
d{2} = presence.a';
d{3} = presence.c';
d{4} = presence.t';
means = cellfun(@mean, d);
variances = cellfun(@std, d);
f = figure('Position', fig_position);
h1 = raincloud_plot(d{1}, 'box_on', 1, 'color', cl(1,:), 'alpha', 0.5,...
'box_dodge', 1, 'box_dodge_amount', .15, 'dot_dodge_amount', .15,...
'box_col_match', 0);
h2 = raincloud_plot(d{2}, 'box_on', 1, 'color', cl(2,:), 'alpha', 0.5,...
'box_dodge', 1, 'box_dodge_amount', .35, 'dot_dodge_amount', .35, 'box_col_match', 0);
h3 = raincloud_plot(d{3}, 'box_on', 1, 'color', cl(3,:), 'alpha', 0.5,...
'box_dodge', 1, 'box_dodge_amount', .55, 'dot_dodge_amount', .55, 'box_col_match', 0);
h4 = raincloud_plot(d{4}, 'box_on', 1, 'color', cl(4,:), 'alpha', 0.5,...
'box_dodge', 1, 'box_dodge_amount', .75, 'dot_dodge_amount', .75, 'box_col_match', 0);
%legend([h1{1} h2{1} h3{1}], {'Attention', 'Affect','ToM'});
%title('Gradient 1');
set(gca,'XLim', [-0.01 0.01], 'YLim', [-350 400]);
box off
exportfigbo(f,[RPATH 'F2.change.g3network',num2str(i), '.png'],'png', 10)
end
end
for perspective = 1
slm = SurfStatT(slm,-(GN.Perspective-(0.5*(GN.Affect)+(GN.Presence))));
[pval, peak, clus, clusid] = SurfStatP(slm,mask==1,0.0025)
f = figure,
BoSurfStatViewData(pval.C,SN,''), SurfStatColLim([0 0.025])
exportfigbo(f,[RPATH 'F2.others-perspective.g3.png'],'png', 10)
slm = SurfStatT(slm,(GN.Perspective-(0.5*(GN.Affect)+(GN.Presence))));
[pval, peak, clus, clusid] = SurfStatP(slm,mask==1,0.0025)
f = figure,
BoSurfStatViewData(pval.C,SN,''), SurfStatColLim([0 0.025])
exportfigbo(f,[RPATH 'F2.perspective-others.g3.png'],'png', 10)
F2.G3perspective_slm = slm;
end
for affective = 1
slm = SurfStatT(slm,(GN.Affect-(0.5*(GN.Perspective)+(GN.Presence))));
[pval, peak, clus, clusid] = SurfStatP(slm,mask==1,0.0025)
f = figure,
BoSurfStatViewData(pval.C,SN,''), SurfStatColLim([0 0.025])
exportfigbo(f,[RPATH 'F2.affect-others.g3.png'],'png', 10)
F2.G3affect_slm = slm;
slm = SurfStatT(slm,-(GN.Affect-(0.5*(GN.Perspective)+(GN.Presence))));
[pval, peak, clus, clusid] = SurfStatP(slm,mask==1,0.0025)
f = figure,
BoSurfStatViewData(pval.C,SN,''), SurfStatColLim([0 0.025])
exportfigbo(f,[RPATH 'F2.others-affect.g3.png'],'png', 10)
end
for presence = 1
slm = SurfStatT(slm,(GN.Presence-(0.5*(GN.Affect)+(GN.Perspective))));
[pval, peak, clus, clusid] = SurfStatP(slm,mask==1,0.0025)
f = figure,
BoSurfStatViewData(pval.C,SN,''), SurfStatColLim([0 0.025])
exportfigbo(f,[RPATH 'F2.presence-others.g3.png'],'png', 10)
F2.G2presence_slm = slm;
slm = SurfStatT(slm,-(GN.Presence-(0.5*(GN.Affect)+(GN.Perspective))));
[pval, peak, clus, clusid] = SurfStatP(slm,mask==1,0.0025)
f = figure,
BoSurfStatViewData(pval.C,SN,''), SurfStatColLim([0 0.025])
exportfigbo(f,[RPATH 'F2.others-presence.g3.png'],'png', 10)
end
% yeo networks
for i = 1:7
slm = SurfStatLinMod(mean(Ck(:,find(yeo_networks==i)),2),M);
slm = SurfStatT(slm,(GN.Presence-(0.5*(GN.Affect)+(GN.Perspective))));
F2.yeo_changeG3(i,1) = slm.t
F2.yeo_changeG3(i,2) = (1 - tcdf(slm.t,slm.df))
end
for i = 1:7
slm = SurfStatLinMod(mean(Ck(:,find(yeo_networks==i)),2),M);
slm = SurfStatT(slm,(GN.Affect-(0.5*(GN.Perspective)+(GN.Presence))));
F2.yeo_changeG3(i,3) = slm.t
F2.yeo_changeG3(i,4) = (1 - tcdf(slm.t,slm.df))
end
for i = 1:7
slm = SurfStatLinMod(mean(Ck(:,find(yeo_networks==i)),2),M);
slm = SurfStatT(slm,(GN.Perspective-(0.5*(GN.Affect)+(GN.Presence))));
F2.yeo_changeG3(i,5) = slm.t
F2.yeo_changeG3(i,6) = (1 - tcdf(slm.t,slm.df))
end
% Social networks
for i = 1:3
slm = SurfStatLinMod(mean(Ck(:,find(ntw(i,:))),2),M);
slm = SurfStatT(slm,(GN.Presence-(0.5*(GN.Affect)+(GN.Perspective))));
F2.sn_changeG3(i,1) = slm.t
F2.sn_changeG3(i,2) = (1 - tcdf(slm.t,slm.df))
end
for i = 1:3
slm = SurfStatLinMod(mean(Ck(:,find(ntw(i,:))),2),M);
slm = SurfStatT(slm,(GN.Affect-(0.5*(GN.Perspective)+(GN.Presence))));
F2.sn_changeG3(i,3) = slm.t
F2.sn_changeG3(i,4) = (1 - tcdf(slm.t,slm.df))
end
for i = 1:3
slm = SurfStatLinMod(mean(Ck(:,find(ntw(i,:))),2),M);
slm = SurfStatT(slm,(GN.Perspective-(0.5*(GN.Affect)+(GN.Presence))));
F2.sn_changeG3(i,5) = slm.t
F2.sn_changeG3(i,6) = (1 - tcdf(slm.t,slm.df))
end
save('/Users/sofievalk/Documents/GitHub/micasoft/sandbox/sofie/social_gradients/F2.mat','F2')
end
end