####################################################### # These functions are copied from the retired R # package 'amer', written by Fabian Scheipl (fabian.scheipl@googlemail.com) ####################################################### # # I changed the original expand.call in amer to remove the use of .Internal expand.call <- function(call = sys.call(sys.parent(1))) { #given args: ans <- as.list(call) # ans1 <- ans[[1]] # ans <- lapply(ans[-1], eval, envir = sys.frame(sys.parent(2))) # ans <- c(ans1, ans) #possible args: frmls <- formals(safeDeparse(ans[[1]])) #remove formal args with no presets: frmls <- frmls[!sapply(frmls, is.symbol)] add <- which(!(names(frmls) %in% names(ans))) return(as.call(c(ans, frmls[add]))) } indsF <- function(m, fct, fctterm){ # add assign-like info to fctterm: # which penalization/ranef groups and coefficients (fixed/random) belong to which function # also include info on global intercept and by-level intercepts ranefinds <- reinds(m@Gp) indIntercept <- ifelse("(Intercept)" %in% names(fixef(m)), 1, 0) for(i in 1:length(fctterm)){ if(length(fct[[i]]$Z) == 1){ attr(fctterm[[i]], "indGrp") <- match(names(fct)[i], colnames(m@flist)) if(eval(attr(fct[[i]], "call")$allPen)) { #add pen. group(s) with grouping factor u.x.by indUGrp <- match(sub("f.", "u.", names(fct)[i]), colnames(m@flist)) attr(fctterm[[i]], "indGrp") <- c(attr(fctterm[[i]], "indGrp"), which(attr(m@flist, "assign")==indUGrp)) } attr(fctterm[[i]], "indPen") <- unlist(ranefinds[attr(fctterm[[i]], "indGrp")]) if(!(eval(attr(fct[[i]], "call")$allPen)||ncol(fct[[i]]$X[[1]])==0)){ attr(fctterm[[i]], "indUnpen") <- sapply(paste("^",colnames(fct[[i]]$X[[1]]),"$",sep=""), grep, x=names(m@fixef)) names(attr(fctterm[[i]], "indUnpen")) <- colnames(fct[[i]]$X[[1]]) } else attr(fctterm[[i]], "indUnpen") <- 0 attr(fctterm[[i]], "indConst") <- indIntercept attr(fctterm[[i]], "indGrp") <- list(attr(fctterm[[i]], "indGrp")) attr(fctterm[[i]], "indPen") <- list(attr(fctterm[[i]], "indPen")) attr(fctterm[[i]], "indUnpen") <- list(attr(fctterm[[i]], "indUnpen")) attr(fctterm[[i]], "indConst") <- list(attr(fctterm[[i]], "indConst")) } else { by <- eval(attr(fct[[i]],"call")$by, m@frame) attr(fctterm[[i]], "indGrp") <- vector(mode="list", length=nlevels(by)) attr(fctterm[[i]], "indPen") <- vector(mode="list", length=nlevels(by)) attr(fctterm[[i]], "indUnpen") <- vector(mode="list", length=nlevels(by)) attr(fctterm[[i]], "indConst") <- vector(mode="list", length=nlevels(by)) for(j in 1:nlevels(by)){ attr(fctterm[[i]], "indGrp")[[j]] <- grep(paste("^",paste(names(fct)[i],".",names(fct[[i]]$Z)[j],sep=""), "$", sep=""), colnames(m@flist)) attr(fctterm[[i]], "indPen")[[j]] <- ranefinds[[attr(fctterm[[i]], "indGrp")[[j]]]] if( ncol(fct[[i]]$X[[j]]) == 0){ attr(fctterm[[i]], "indUnpen")[[j]] <- 0 } else { attr(fctterm[[i]], "indUnpen")[[j]] <- sapply( paste("^",colnames(fct[[i]]$X[[j]]),"$",sep=""), grep, x=names(m@fixef)) names(attr(fctterm[[i]], "indUnpen")[[j]]) <- colnames(fct[[i]]$X[[j]]) } #add by-level intercept: indBy <- grep(paste("^",safeDeparse(attr(fct[[i]],"call")$by), levels(by)[j],"$", sep=""), names(m@fixef)) indBy <- indBy[!(indBy %in% attr(fctterm[[i]], "indUnpen")[[j]])] attr(fctterm[[i]], "indConst")[[j]] <- c(indIntercept, indBy) } } } return(fctterm) } safeDeparse <- function(expr){ ret <- paste(deparse(expr), collapse="") #rm whitespace gsub("[[:space:]][[:space:]]+", " ", ret) } expandBasis <- function(basis, by, varying, bySetToZero = T){ #multiply X, Z with varying #set up lists of design matrices if by-variable and/or allPen are given: allPen <- eval(attr(basis, "call")$allPen, parent.frame()) X <- basis$X Z <- basis$Z xName <- safeDeparse(attr(basis, "call")$x) if(!is.null(varying)){ xName <- paste(xName, "X", safeDeparse(attr(basis, "call")$varying), sep="") X <- cbind(varying, X * varying) Z <- Z * varying } if(!is.null(by)){ X.o <- X Z.o <- Z byName <- safeDeparse(attr(basis, "call")$by) if(!allPen){ basis$X <- basis$Z <- vector(mode="list", nlevels(by)) for(i in 1:nlevels(by)){ if(bySetToZero){ keep <- 1*(by == levels(by)[i]) } else keep <- rep(1, length(by)) #set X,Z partially to zero for each level of by-variable if(NCOL(X.o)){ basis$X[[i]] <- X.o * keep #naming scheme: x.fx.bylevel1.fx1, x.fx.bylevel1.fx2, ...,x.fx.bylevel2.fx1, or xXvarying.fx.bylevel1.fx1 colnames(basis$X[[i]]) <- paste(xName,".",byName,levels(by)[i], paste(".fx",1:NCOL(basis$X[[i]]),sep=""), sep="") } basis$Z[[i]] <- Z.o * keep } #naming scheme: bylevel1, bylevel2, ... names(basis$X) <- names(basis$Z) <- paste(byName, levels(by), sep="") } else { basis$X <- basis$Z <- vector(mode="list", 1) by <- C(by[, drop=TRUE], contr.treatment) #make sure treatment contrasts are used, unused levels dropped #basis$Z[[1]] <- Matrix(model.matrix(~ 0 + Z.o:by)) #TODO: can this be done without intermediate dense matrix? basis$Z[[1]] <- model.matrix(~ 0 + Z.o:by) #FIXME: ?constructing directly as sparse breaks transposing Z in subAZ? #cbind Z set partially to zero for each level of by-variable: ## for(i in 1:nlevels(by[, drop=TRUE])) { ## if(bySetToZero){ ## keep <- (by == levels(by[, drop=TRUE])[i]) ## } else keep <- 1 ## basis$Z[[1]] <- cBind(basis$Z[[1]], Z.o * keep) ## #basis$Z[[1]] <- Matrix(model.matrix(~ 0 + Z.o:by[, drop=TRUE])) ## } basis$X[[1]] <- X.o if(NCOL(X.o)) colnames(basis$X[[1]]) <- paste(xName,".",byName,paste(".fx",1:NCOL(X),sep=""), sep="") #naming scheme: u.x.by (also: name of duplicated by-variable in expandMf, subFcts) names(basis$X) <- paste("u", xName, byName, sep=".") } } else { if(NCOL(X)) colnames(X) <- paste(xName,paste(".fx",1:NCOL(X),sep=""), sep="") basis$X <- list(X) basis$Z <- list(Z) } return(basis) } subFcts <- function(rhs, fctterm, fct, fr) # replace formula parts for smooth functions with xi + (xi^2+ )... + xi^dimUnpen + (1|fcti) or # by*(xi + xi^2+ ... + xi^dimUnpen) + (1|fcti.1) + ... + (1|fcti.N) for by-variable with N levels { for(i in 1:length(fct)){ by <- eval(attr(fct[[i]],"call")$by, fr) allPen <- eval(attr(fct[[i]],"call")$allPen) diag <- eval(attr(fct[[i]],"call")$diag) replacement <- if(is.null(by)){ # 1 + x.fx1 + x.fx2+ ... + (1|f.x) paste(ifelse(ncol(fct[[i]]$X[[1]])!=0, paste(as.vector(sapply(fct[[i]]$X,colnames)),collapse=" + "), "1"), " + (1|",names(fct)[i],")",sep="") } else { if(allPen){ if(!diag){ # add correlated random effects for normally unpenalized part of basis grouped according to by and fake random intercept # (1 + x.fx1 + x.fx2+ ...|u.x.by) + (1|f.x.by) paste( paste(paste("(1", paste(as.vector(sapply(fct[[i]]$X,colnames)), collapse="+"), sep="+"), "|", names(fct[[i]]$X),")", sep=""), paste("(1|",names(fct)[i],")",sep="", collapse=" + "), sep =" + ") } else { # add independent random effects for normally unpenalized part of basis grouped according to by and fake random intercept # (1|u.x.by) + x.fx1|u.x.by) + x.fx2|u.x.by) + ... + (1|f.x.by) paste( paste(c("(1", paste("(0+", as.vector(sapply(fct[[i]]$X,colnames)),sep="")),"|", names(fct[[i]]$X),")",sep="",collapse=" + "), paste("(1|",names(fct)[i],")",sep="", collapse=" + "), sep =" + ") } } else { # add fixed effect for unpenalized part of basis + fake random intercept for each by-level # by + x.fx1.BYlevel1 + x.fx2.BYlevel1 +...+ (1|f.x.BYlevel1) + ... + x.fx1.BYlevelD + x.fx2.BYlevelD +... + (1|f.x.BYlevelD) paste(#deparse(attr(fct[[i]],"call")$by), ifelse(ncol(fct[[i]]$X[[1]])!=0, paste(as.vector(sapply(fct[[i]]$X,colnames)),collapse=" + "), "1"), paste("(1|",names(fct)[i],".",names(fct[[i]]$Z),")",sep="", collapse=" + "), sep =" + ") } } rhs <- sub(safeDeparse(fctterm[[i]]), replacement, rhs, fixed=T) } return(rhs) } expandMf <- function(fr, fct) # cbind model frame with design matrices for unpenalized&penalized parts of the smooth fcts. { for(i in 1:length(fct)){ #matrix with all unpenalized terms for fct newX <- do.call(cBind, fct[[i]]$X) #factor variables with no. of levels = no. of penalized basis fcts #newFact <- replicate(length(fct[[i]]$Z), rep(1:ncol(fct[[i]]$Z[[1]]), length=nrow(fct[[i]]$Z[[1]]))) newFact <- data.frame(factor(rep(1:ncol(fct[[i]]$Z[[1]]), length=nrow(fct[[i]]$Z[[1]])))) if(length(fct[[i]]$Z) > 1){ for(j in 2:length(fct[[i]]$Z)){ newFact <- cbind(newFact, factor(rep(1:ncol(fct[[i]]$Z[[1]]), length=nrow(fct[[i]]$Z[[1]])))) } } colnames(newFact) <- if(length(fct[[i]]$Z) == 1){ names(fct)[i] } else { paste(names(fct)[i],".",names(fct[[i]]$Z),sep="") } if(eval(attr(fct[[i]],"call")$allPen)){ # duplicate grouping factor for allPen-function groups so that assignment (which entries in ranef belong to which penalization # group) can be reconstructed from the fitted model object m if there is another random effect associated with the by-variable. # will need this for predict etc.. since attr(m@flist,"assign") only works the other way around.... newFact <- cBind(newFact, eval(attr(fct[[i]],"call")$by, fr)) colnames(newFact)[ncol(newFact)] <- names(fct[[i]]$X) } fr <- cBind(cBind(fr, newX),newFact) } return(fr) } subAZ <- function(m, fct) # replace design matrices for fake factors with designs for penalized spline basis { for(i in 1:length(fct)){ if(length(fct[[i]]$Z) == 1){ ind <- which(names(m$FL$fl)[attr(m$FL$fl, "assign")]==names(fct[i])) Zt <- as(t(fct[[i]]$Z[[1]]), "sparseMatrix") m$FL$trms[[ind]]$A <- m$FL$trms[[ind]]$Zt <- Zt dimnames(m$FL$trms[[ind]]$ST) <- list(safeDeparse(attr(fct[[i]], "call")[[1]]), safeDeparse(attr(fct[[i]], "call")[[1]])) } else { for(j in 1:length(fct[[i]]$Z)){ ind <- grep(paste("^",paste(names(fct[i]),names(fct[[i]]$Z)[j],sep='.'), "$", sep=""), names(m$FL$fl)[attr(m$FL$fl, "assign")]) Zt <- as(t(fct[[i]]$Z[[j]]), "sparseMatrix") m$FL$trms[[ind]]$A <- m$FL$trms[[ind]]$Zt <- Zt dimnames(m$FL$trms[[ind]]$ST) <- list(safeDeparse(attr(fct[[i]], "call")[[1]]), safeDeparse(attr(fct[[i]], "call")[[1]])) } } } return(m) } set.mfrow <- function (Nchains = 1, Nparms = 1, nplots = 1, sepplot = FALSE) # taken from coda { mfrow <- if (sepplot && Nchains > 1 && nplots == 1) { if (Nchains == 2) { switch(min(Nparms, 5), c(1, 2), c(2, 2), c(3, 2), c(4, 2), c(3, 2)) } else if (Nchains == 3) { switch(min(Nparms, 5), c(2, 2), c(2, 3), c(3, 3), c(2, 3), c(3, 3)) } else if (Nchains == 4) { if (Nparms == 1) c(2, 2) else c(4, 2) } else if (any(Nchains == c(5, 6, 10, 11, 12))) c(3, 2) else if (any(Nchains == c(7, 8, 9)) || Nchains >= 13) c(3, 3) } else { if (nplots == 1) { mfrow <- switch(min(Nparms, 13), c(1, 1), c(1, 2), c(2, 2), c(2, 2), c(3, 2), c(3, 2), c(3, 3), c(3, 3), c(3, 3), c(3, 2), c(3, 2), c(3, 2), c(3, 3)) } else { mfrow <- switch(min(Nparms, 13), c(1, 2), c(2, 2), c(3, 2), c(4, 2), c(3, 2), c(3, 2), c(4, 2), c(4, 2), c(4, 2), c(3, 2), c(3, 2), c(3, 2), c(4, 2)) } } return(mfrow) } tp <- function(x, degree=1, k = 15, by=NULL, allPen = FALSE, varying = NULL, diag=FALSE, knots= quantile(x, probs = (1:(k - degree))/(k - degree + 1)), centerscale=NULL, scaledknots=FALSE) { call <- as.list(expand.call(match.call())) stopifnot(is.numeric(x), is.factor(by)||is.null(by), is.numeric(varying)||is.null(varying), degree >= 0) degree <- as.integer(degree); call$degree <- degree knots <- eval(knots) if(is.null(centerscale)){ x <- scale(x) #make sure prediction data uses the same center/scale as the data used to fit the model: call$centerscale <- c(attr(x, "scaled:center"),attr(x, "scaled:scale")) x <- as.vector(x) } else x <- (x - centerscale[1])/centerscale[2] if(!scaledknots){ knots <- (knots - call$centerscale[1])/call$centerscale[2] call$scaledknots <- TRUE } if(length(unique(knots))!=length(knots)) warning("duplicate knots detected and removed.") knots <- sort(unique(knots)) call$knots <- knots if(k != length(knots)+ degree){ k <- length(knots) + degree; call$k <- k warning("set k to ", k," to conform with given knots and degree.") } if((knots[1]max(x)))) warning("knots outside range of variable.") if(is.null(by) && allPen) stop("allPen = TRUE only makes sense for smooths with a by-variable.") #design for unpenalised part: global polynomial trends (no intercept) if(degree>0){ X <- outer(x, 1:degree, "^")#poly(x, degree) #colnames(X) <- paste(as.character(call$x),".fx",1:NCOL(X),sep="") } else{ X <- matrix(nrow=length(x), ncol=0) } #design for penalised part: Z <- outer(x,knots,"-")^degree*outer(x,knots,">") res <- list(X=X, Z=Z, knots=knots) attr(res, "call") <- as.call(call) return(res) } bsp <- function(x, k=15, spline.degree = 3, diff.ord = 2, knots=NULL, by=NULL, allPen = FALSE, varying = NULL, diag=FALSE) { call <- as.list(expand.call(match.call())) stopifnot(diff.ord>=0, spline.degree>=0, is.numeric(x), k > spline.degree) if(is.null(call$knots)){ knots.no <- k - spline.degree + 1 #generate a B-Spline-Matrix with equidistant knots (adapted from code by Thomas Kneib): n<-length(x) xl<-min(x) xr<-max(x) xmin<-xl-(xr-xl)/100 xmax<-xr+(xr-xl)/100 dx<-(xmax-xmin)/(knots.no-1) knots<-seq(xmin-spline.degree*dx,xmax+spline.degree*dx,by=dx) call$knots <- knots } B<-spline.des(knots,x,spline.degree+1)$design #generate Penalization-Matrix D<-diag(k) if((d<-min(diff.ord,spline.degree)) degree of splines:\n new order of differences=",d,"\n")) if(d > 0) for(i in 1:d) D<-diff(D) call$diff.ord <- d #reparametrization: X = unpenalized part, Z =penalized part X <-rep(1,k) if(diff.ord>1) {for(i in 2:diff.ord) X <-cbind(X, knots[1:k]^(i-1)) } X <- (B%*%X)[,-1, drop=FALSE] Z <- B%*%t(D)%*%solve(tcrossprod(D)) res <- list(X=unname(X), Z=unname(Z)) attr(res, "call") <- as.call(call) return(res) }