#!/usr/bin/env python # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # # # CitcomS.py by Eh Tan, Eun-seo Choi, and Pururav Thoutireddy. # Copyright (C) 2002-2005, California Institute of Technology. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # def controller(name="controller", facility="controller"): return Controller(name, facility) from pyre.simulations.SimulationController import SimulationController import journal class Controller(SimulationController): def __init__(self, name, facility): SimulationController.__init__(self, name, facility) self.step = 0 self.clock = 0.0 self.done = False self.solver = None return def initialize(self, app): self.solver = app.solver self.solver.initialize(app) return def launch(self, app): # 0th step self.solver.launch(app) # do io for 0th step self.save() return def march(self, totalTime=0, steps=0): """explicit time loop""" if (self.step + 1) >= steps: self.step += 1 self.endSimulation() return while 1: # notify solvers we are starting a new timestep self.startTimestep() # synchronize boundary information #self.applyBoundaryConditions() # compute an acceptable timestep dt = self.stableTimestep() # advance self.advance(dt) # update smulation clock and step number self.clock += dt self.step += 1 # notify solver we finished a timestep self.endTimestep(totalTime, steps) # do io self.save() # are we done? if self.done: break # end of time advance loop # Notify solver we are done self.endSimulation() return def endTimestep(self, totalTime, steps): # are we done? if steps and self.step >= steps: self.done = True if totalTime and self.clock >= totalTime: self.done = True # solver can terminate time marching by returning True self.done = self.solver.endTimestep(self.clock, self.step, self.done) return def endSimulation(self): self.solver.endSimulation(self.step) return def save(self): step = self.step self.solver.timesave(self.clock, step) self.solver.save(step, self.inventory.monitoringFrequency) return