\name{K} \alias{K} \title{Kendall Distribution Function of an Archimedean Copula} \description{ Compute the \emph{Kendall distribution function} of an Archimedean copula, defined as \deqn{K(u) = P(C(U_1,U_2,\dots,U_d) \le u),}{K(u) = P(C(U1,U2,\dots,Ud) <= u),} where \eqn{u \in [0,1]}{u in [0,1]}, and the \eqn{d}-dimensional \eqn{(U_1,U_2,\dots,U_d)}{(U1,U2,\dots,Ud)} is distributed according to the copula \eqn{C}. Note that the random variable \eqn{C(U_1,U_2,\dots,U_d)}{C(U_1,U_2,...,U_d)} is known as \emph{probability integral transform}. Its distribution function \eqn{K} is equal to the identity if \eqn{d = 1}, but is non-trivial for \eqn{d \ge 2}{d >= 2}. } \usage{ K(u, cop, d, n.MC=0) } \arguments{ \item{u}{evaluation point(s) (have to be in \eqn{[0,1]}).} \item{cop}{acopula with specified parameter.} \item{d}{dimension.} \item{n.MC}{\code{\link{integer}}, if positive, a Monte Carlo approach is applied with sample size equal to \code{n.MC}; otherwise (\code{n.MC=0}) the exact formula is used based on the generator derivatives as found by Hofert et al. (2011b).} } \details{ For a completely monotone Archimedean generator \eqn{\psi}{psi}, \deqn{K(u)=\sum_{k=0}^{d-1} \frac{\psi^{(k)}(\psi^{-1}(u))}{k!} (-\psi^{-1}(u))^k,\ u\in[0,1];}{% K(u)=sum(k=0,...,d-1) psi^{(k)}(psi^{-1}(u))/k! (-psi^{-1}(u))^k, u in [0,1];} see Barbe et al. (1996). } \value{Kendall distribution function at \code{u}} \author{Marius Hofert} \references{ Barbe, P., Genest, C., Ghoudi, K., and R\enc{é}{e}millard, B. (1996), On Kendall's Process, \emph{Journal of Multivariate Analysis}, \bold{58}, 197--229. Hofert, M., \enc{Mächler}{Maechler}, M., and McNeil, A. J. (2011b), Likelihood inference for Archimedean copulas, submitted. } \seealso{ \code{\link{gnacopula}}, \code{\link{htrafo}} or \code{\link{emde}} (where \code{\link{K}} is used). } \examples{ tau <- 0.5 (theta <- copGumbel@tauInv(tau)) # 2 d <- 20 (cop <- onacopulaL("Gumbel", list(theta,1:d))) ## compute Kendall distribution function u <- seq(0,1, length.out = 255) Ku <- K(u, cop=cop@copula, d=d) # exact Ku.MC <- K(u, cop=cop@copula, d=d, n.MC=1000) # via Monte Carlo ## build sample from K set.seed(1) n <- 200 U <- rnacopula(n, cop) W <- pnacopula(cop, u=U) ## plot empirical distribution function based on W ## and the corresponding theoretical Kendall distribution function ## (exact and via Monte Carlo) plot(ecdf(W), col="blue", xlim=c(0,1), verticals=TRUE, main = expression("Empirical"~ F[n]( C(U) ) ~ "and its Kendall distribution"~K(u)), do.points=FALSE, asp=1) abline(0,1, lty=2); abline(h=0:1, v=0:1, lty=3, col="gray") lines(u, Ku.MC, col="red") lines(u, Ku, col="black") legend(.2,.6, expression(F[n],K(u), K[MC](u)), col=c("blue","red","black"), lty=1, bty="n", xjust = 0.25, yjust = 0.5) } \keyword{distribution}