# This file is a part of Julia. License is MIT: http://julialang.org/license # Filter b = [1., 2., 3., 4.] x = [1., 1., 0., 1., 1., 0., 0., 0.] @test filt(b, 1., x) == [1., 3., 5., 8., 7., 5., 7., 4.] @test filt(b, [1., -0.5], x) == [1., 3.5, 6.75, 11.375, 12.6875, 11.34375, 12.671875, 10.3359375] # With ranges @test filt(b, 1., 1.0:10.0) == [1., 4., 10., 20., 30., 40., 50., 60., 70., 80.] @test filt(1.:4., 1., 1.0:10.0) == [1., 4., 10., 20., 30., 40., 50., 60., 70., 80.] # Across an array is the same as channel-by-channel @test filt(b, 1., [x 1.0:8.0]) == [filt(b, 1., x) filt(b, 1., 1.0:8.0)] @test filt(b, [1., -0.5], [x 1.0:8.0]) == [filt(b, [1., -0.5], x) filt(b, [1., -0.5], 1.0:8.0)] si = zeros(3) @test filt(b, 1., [x 1.0:8.0], si) == [filt(b, 1., x, si) filt(b, 1., 1.0:8.0, si)] @test si == zeros(3) # Will likely fail if/when arrayviews are implemented si = [zeros(3) ones(3)] @test filt(b, 1., [x 1.0:8.0], si) == [filt(b, 1., x, zeros(3)) filt(b, 1., 1.0:8.0, ones(3))] # With initial conditions: a lowpass 5-pole butterworth filter with W_n = 0.25, # and a stable initial filter condition matched to the initial value b = [0.003279216306360201,0.016396081531801006,0.03279216306360201,0.03279216306360201,0.016396081531801006,0.003279216306360201] a = [1.0,-2.4744161749781606,2.8110063119115782,-1.703772240915465,0.5444326948885326,-0.07231566910295834] si = [0.9967207836936347,-1.4940914728163142,1.2841226760316475,-0.4524417279474106,0.07559488540931815] @test filt(b, a, ones(10), si) ≈ ones(10) # Shouldn't affect DC offset @test_throws ArgumentError filt!([1, 2], [1], [1], [1]) @test xcorr([1, 2], [3, 4]) == [4, 11, 6] # Shift-Functions @test fftshift([1 2 3]) == [3 1 2] @test fftshift([1, 2, 3]) == [3, 1, 2] @test fftshift([1 2 3; 4 5 6]) == [6 4 5; 3 1 2] @test fftshift([1 2 3; 4 5 6], 1) == [4 5 6; 1 2 3] @test fftshift([1 2 3; 4 5 6], ()) == [1 2 3; 4 5 6] @test fftshift([1 2 3; 4 5 6], (1,2)) == [6 4 5; 3 1 2] @test fftshift([1 2 3; 4 5 6], 1:2) == [6 4 5; 3 1 2] @test ifftshift([1 2 3]) == [2 3 1] @test ifftshift([1, 2, 3]) == [2, 3, 1] @test ifftshift([1 2 3; 4 5 6]) == [5 6 4; 2 3 1] @test ifftshift([1 2 3; 4 5 6], 1) == [4 5 6; 1 2 3] @test ifftshift([1 2 3; 4 5 6], ()) == [1 2 3; 4 5 6] @test ifftshift([1 2 3; 4 5 6], (1,2)) == [5 6 4; 2 3 1] @test ifftshift([1 2 3; 4 5 6], 1:2) == [5 6 4; 2 3 1] # Convolution a = [1., 2., 1., 2.] b = [1., 2., 3.] @test conv(a, b) ≈ [1., 4., 8., 10., 7., 6.] @test conv(complex.(a, ones(4)), complex(b)) ≈ complex.([1., 4., 8., 10., 7., 6.], [1., 3., 6., 6., 5., 3.]) # Discrete cosine transform (DCT) tests if Base.fftw_vendor() != :mkl a = rand(8,11) + im*rand(8,11) @test norm(idct(dct(a)) - a) < 1e-8 X = reshape([1,2,7,2,1,5,9,-1,3,4,6,9],3,4) Y = rand(17,14) Y[3:5,9:12] = X sX = view(Y,3:5,9:12) true_Xdct = [ 13.856406460551018 -3.863239728836245 2.886751345948129 -0.274551994240164; -2.828427124746190 -2.184015211898548 -4.949747468305834 3.966116180118245; 4.898979485566356 -0.194137576915510 -2.857738033247041 2.731723009609389 ] true_Xdct_1 = [ 5.773502691896258 4.618802153517007 6.350852961085884 10.969655114602890; -4.242640687119286 -2.121320343559643 4.242640687119286 -3.535533905932738; 1.632993161855452 2.041241452319315 5.715476066494083 0.408248290463863 ] true_Xdct_2 = [ 8. -3.854030797826254 -3.0 3.761176226848022; 4.0 -2.071929829606556 4.0 -2.388955165168770; 12. -0.765366864730179 4.0 -1.847759065022573 ] Xdct = dct(X) Xdct! = float(X); dct!(Xdct!) Xdct_1 = dct(X,1) Xdct!_1 = float(X); dct!(Xdct!_1,1) Xdct_2 = dct(X,2) Xdct!_2 = float(X); dct!(Xdct!_2,2) Xidct = idct(true_Xdct) Xidct! = copy(true_Xdct); idct!(Xidct!) Xidct_1 = idct(true_Xdct_1,1) Xidct!_1 = copy(true_Xdct_1); idct!(Xidct!_1,1) Xidct_2 = idct(true_Xdct_2,2) Xidct!_2 = copy(true_Xdct_2); idct!(Xidct!_2,2) pXdct = plan_dct(X)*(X) pXdct! = float(X); plan_dct!(pXdct!)*(pXdct!) pXdct_1 = plan_dct(X,1)*(X) pXdct!_1 = float(X); plan_dct!(pXdct!_1,1)*(pXdct!_1) pXdct_2 = plan_dct(X,2)*(X) pXdct!_2 = float(X); plan_dct!(pXdct!_2,2)*(pXdct!_2) pXidct = plan_idct(true_Xdct)*(true_Xdct) pXidct! = copy(true_Xdct); plan_idct!(pXidct!)*(pXidct!) pXidct_1 = plan_idct(true_Xdct_1,1)*(true_Xdct_1) pXidct!_1 = copy(true_Xdct_1); plan_idct!(pXidct!_1,1)*(pXidct!_1) pXidct_2 = plan_idct(true_Xdct_2,2)*(true_Xdct_2) pXidct!_2 = copy(true_Xdct_2); plan_idct!(pXidct!_2,2)*(pXidct!_2) sXdct = dct(sX) psXdct = plan_dct(sX)*(sX) sYdct! = copy(Y); sXdct! = view(sYdct!,3:5,9:12); dct!(sXdct!) psYdct! = copy(Y); psXdct! = view(psYdct!,3:5,9:12); plan_dct!(psXdct!)*(psXdct!) for i = 1:length(X) @test Xdct[i] ≈ true_Xdct[i] @test Xdct![i] ≈ true_Xdct[i] @test Xdct_1[i] ≈ true_Xdct_1[i] @test Xdct!_1[i] ≈ true_Xdct_1[i] @test Xdct_2[i] ≈ true_Xdct_2[i] @test Xdct!_2[i] ≈ true_Xdct_2[i] @test pXdct[i] ≈ true_Xdct[i] @test pXdct![i] ≈ true_Xdct[i] @test pXdct_1[i] ≈ true_Xdct_1[i] @test pXdct!_1[i] ≈ true_Xdct_1[i] @test pXdct_2[i] ≈ true_Xdct_2[i] @test pXdct!_2[i] ≈ true_Xdct_2[i] @test Xidct[i] ≈ X[i] @test Xidct![i] ≈ X[i] @test Xidct_1[i] ≈ X[i] @test Xidct!_1[i] ≈ X[i] @test Xidct_2[i] ≈ X[i] @test Xidct!_2[i] ≈ X[i] @test pXidct[i] ≈ X[i] @test pXidct![i] ≈ X[i] @test pXidct_1[i] ≈ X[i] @test pXidct!_1[i] ≈ X[i] @test pXidct_2[i] ≈ X[i] @test pXidct!_2[i] ≈ X[i] @test sXdct[i] ≈ true_Xdct[i] @test psXdct[i] ≈ true_Xdct[i] @test sXdct![i] ≈ true_Xdct[i] @test psXdct![i] ≈ true_Xdct[i] end end # fftw_vendor() != :mkl