https://github.com/tom-n-walker/uphill-plants-soil-carbon
Tip revision: a9e7a872d22a45dbd91bb00751d522812138eefd authored by Tom Walker on 08 February 2022, 15:18:56 UTC
Additional and revised analysis in response to author comments.
Additional and revised analysis in response to author comments.
Tip revision: a9e7a87
small_functions.R
################################################################################
#### Project: Lowland plant migrations alpine soil C loss
#### Title: Small functions
#### Author: Tom Walker (thomas.walker@usys.ethz.ch)
#### Date: 26 May 2021
#### ---------------------------------------------------------------------------
# calculate CWMs for trait data
add_cwm_traits <- function(.x, .y){
# apply a weighted average to each bin
cwm_list <- lapply(.y, function(y){
match_trait <- match(colnames(.x), colnames(y))
trait_value <- y[, match_trait] %>% as.matrix %>% as.vector
cwm_trait <- .x %>%
apply(1, function(.x){weighted.mean(w = .x, x = trait_value)})
return(cwm_trait)
})
# bind into data frame
cwm_bound <- do.call(cbind, cwm_list) %>% as.data.frame %>% as_tibble
# return
return(cwm_bound)
}
# calculate biomass from cover data
biomass <- function(x, y){
# index for bare ground
bare_index <- colnames(x) %in% "bare.ground"
# select vegetation types
bio_out <- data.frame(vege_bio = x[, !bare_index] %>% rowSums,
focal_bio = rowSums(y)) %>%
as_tibble %>%
mutate(bkgnd_bio = vege_bio - focal_bio)
# return
return(bio_out)
}
# format treatment information from collar data to grid-id
join_treats <- function(.x, .y){
out <- left_join(.x, .y) %>%
# format treatments correctly
mutate(elevation = substr(marc_treatment, 1, 1),
block = paste0(elevation, num_in_string(marc_treatment)),
treatment = substr(marc_treatment, nchar(marc_treatment), nchar(marc_treatment))) %>%
# add leading zero to block
mutate(block = ifelse(
nchar(block) == 3,
block,
paste0(substr(block, 1, 1), "0", substr(block, 2, 2))
)) %>%
# select columns
select(grid_id, elevation:treatment)
return(out)
}
# match soil data rows to plant data treatments
match_soil <- function(.x, .y, match){
# matching variables
match_by <- c("elevation","block", "treatment")
names(match_by) <- c("elevation", "block", match)
# join data and return
out <- left_join(.x, .y, by = match_by) %>%
select(Soil.temp:CUE)
return(out)
}
# get number from string
num_in_string <- function(x){
out <- str_extract_all(x, "[:digit:]", simplify = T) %>%
apply(1, paste0, collapse = "")
return(out)
}
# take DF, calculate relative abundance, transpose, make DF
ra_t_df <- function(x){
out <- x %>%
apply(1, function(x) x/sum(x, na.rm = T)) %>%
t
out[is.na(out)] <- 0
out <- as_tibble(out)
return(out)
}
# subset focal data set by site-presences
select_focals <- function(focals, site){
tf <- focals[, site] == "Y"
out <- focals %>% filter(tf) %>%
transmute(accepted_name = make.names(accepted_name))
return(out)
}
# subset, make column names, spread ----
sub_col_spread <- function(traits, subset){
# select subset
now <- traits[, c("accepted_name", subset)]
colnames(now) <- c("accepted_name", "value")
out <- now %>%
pivot_wider(names_from = accepted_name, values_from = value)
return(out)
}
# subset cover data for background plants only
subset_bckgnd <- function(.x, .y){
match_focals <- colnames(.x) %in% .y$accepted_name
out <- .x[, !match_focals]
return(out)
}
# subset cover data for focals only
subset_focals <- function(.x, .y){
match_focals <- colnames(.x) %in% .y$accepted_name
out <- .x[, match_focals]
return(out)
}