https://github.com/RadioAstronomySoftwareGroup/pyuvdata
Raw File
Tip revision: 0b1b091eeec941c6081327cfd1d65f689feafd8c authored by Paul La Plante on 08 August 2020, 00:16 UTC
Merge branch 'Smithsonian-submillimeter_array' into master
Tip revision: 0b1b091
test_utils.py
# -*- mode: python; coding: utf-8 -*-
# Copyright (c) 2018 Radio Astronomy Software Group
# Licensed under the 2-clause BSD License

"""Tests for common utility functions."""
import os
import copy

import pytest
import numpy as np
from astropy import units
from astropy.time import Time
from astropy.coordinates import SkyCoord, Angle

from pyuvdata import UVData, UVFlag, UVCal
import pyuvdata.utils as uvutils
import pyuvdata.tests as uvtest
from pyuvdata.data import DATA_PATH


ref_latlonalt = (-26.7 * np.pi / 180.0, 116.7 * np.pi / 180.0, 377.8)
ref_xyz = (-2562123.42683, 5094215.40141, -2848728.58869)


@pytest.fixture
def uvcalibrate_init_data():
    uvdata = UVData()
    uvdata.read(
        os.path.join(DATA_PATH, "zen.2458098.45361.HH.uvh5_downselected"),
        file_type="uvh5",
    )
    uvcal = UVCal()
    uvcal.read_calfits(
        os.path.join(DATA_PATH, "zen.2458098.45361.HH.omni.calfits_downselected")
    )

    yield uvdata, uvcal


@pytest.fixture
def uvcalibrate_data(uvcalibrate_init_data):
    uvdata, uvcal = uvcalibrate_init_data

    # fix the antenna names in the uvcal object to match the uvdata object
    uvcal.antenna_names = [name.replace("ant", "HH") for name in uvcal.antenna_names]

    yield uvdata, uvcal


def test_XYZ_from_LatLonAlt():
    """Test conversion from lat/lon/alt to ECEF xyz with reference values."""
    out_xyz = uvutils.XYZ_from_LatLonAlt(
        ref_latlonalt[0], ref_latlonalt[1], ref_latlonalt[2]
    )
    # Got reference by forcing http://www.oc.nps.edu/oc2902w/coord/llhxyz.htm
    # to give additional precision.
    assert np.allclose(ref_xyz, out_xyz, rtol=0, atol=1e-3)

    # test error checking
    pytest.raises(
        ValueError,
        uvutils.XYZ_from_LatLonAlt,
        ref_latlonalt[0],
        ref_latlonalt[1],
        np.array([ref_latlonalt[2], ref_latlonalt[2]]),
    )
    pytest.raises(
        ValueError,
        uvutils.XYZ_from_LatLonAlt,
        ref_latlonalt[0],
        np.array([ref_latlonalt[1], ref_latlonalt[1]]),
        ref_latlonalt[2],
    )


def test_LatLonAlt_from_XYZ():
    """Test conversion from ECEF xyz to lat/lon/alt with reference values."""
    out_latlonalt = uvutils.LatLonAlt_from_XYZ(ref_xyz)
    # Got reference by forcing http://www.oc.nps.edu/oc2902w/coord/llhxyz.htm
    # to give additional precision.
    assert np.allclose(ref_latlonalt, out_latlonalt, rtol=0, atol=1e-3)
    pytest.raises(ValueError, uvutils.LatLonAlt_from_XYZ, ref_latlonalt)

    # test passing multiple values
    xyz_mult = np.stack((np.array(ref_xyz), np.array(ref_xyz)))
    lat_vec, lon_vec, alt_vec = uvutils.LatLonAlt_from_XYZ(xyz_mult)
    assert np.allclose(
        ref_latlonalt, (lat_vec[1], lon_vec[1], alt_vec[1]), rtol=0, atol=1e-3
    )
    # check error if array transposed
    with pytest.raises(ValueError) as cm:
        uvutils.LatLonAlt_from_XYZ(xyz_mult.T)
    assert str(cm.value).startswith(
        "The expected shape of ECEF xyz array is (Npts, 3)."
    )

    # check error if only 2 coordinates
    with pytest.raises(ValueError) as cm:
        uvutils.LatLonAlt_from_XYZ(xyz_mult[:, 0:2])
    assert str(cm.value).startswith(
        "The expected shape of ECEF xyz array is (Npts, 3)."
    )

    # test error checking
    pytest.raises(ValueError, uvutils.LatLonAlt_from_XYZ, ref_xyz[0:1])


@pytest.fixture(scope="module")
def enu_ecef_info():
    """Some setup info for ENU/ECEF calculations."""
    center_lat = -30.7215261207 * np.pi / 180.0
    center_lon = 21.4283038269 * np.pi / 180.0
    center_alt = 1051.7
    # fmt: off
    lats = (np.array([-30.72218216, -30.72138101, -30.7212785, -30.7210011,
                     -30.72159853, -30.72206199, -30.72174614, -30.72188775,
                     -30.72183915, -30.72100138])
            * np.pi / 180.0)
    lons = (np.array([21.42728211, 21.42811727, 21.42814544, 21.42795736,
                     21.42686739, 21.42918772, 21.42785662, 21.4286408,
                     21.42750933, 21.42896567])
            * np.pi / 180.0)
    alts = np.array([1052.25, 1051.35, 1051.2, 1051., 1051.45, 1052.04, 1051.68,
                     1051.87, 1051.77, 1051.06])
    # used pymap3d, which implements matlab code, as a reference.
    x = [5109327.46674067, 5109339.76407785, 5109344.06370947,
         5109365.11297147, 5109372.115673, 5109266.94314734,
         5109329.89620962, 5109295.13656657, 5109337.21810468,
         5109329.85680612]

    y = [2005130.57953031, 2005221.35184577, 2005225.93775268,
         2005214.8436201, 2005105.42364036, 2005302.93158317,
         2005190.65566222, 2005257.71335575, 2005157.78980089,
         2005304.7729239]

    z = [-3239991.24516348, -3239914.4185286, -3239904.57048431,
         -3239878.02656316, -3239935.20415493, -3239979.68381865,
         -3239949.39266985, -3239962.98805772, -3239958.30386264,
         -3239878.08403833]

    east = [-97.87631659, -17.87126443, -15.17316938, -33.19049252, -137.60520964,
            84.67346748, -42.84049408, 32.28083937, -76.1094745, 63.40285935]
    north = [-72.7437482, 16.09066646, 27.45724573, 58.21544651, -8.02964511,
             -59.41961437, -24.39698388, -40.09891961, -34.70965816, 58.18410876]
    up = [0.54883333, -0.35004539, -0.50007736, -0.70035299, -0.25148791, 0.33916067,
          -0.02019057, 0.16979185, 0.06945155, -0.64058124]
    # fmt: on
    yield (
        center_lat,
        center_lon,
        center_alt,
        lats,
        lons,
        alts,
        x,
        y,
        z,
        east,
        north,
        up,
    )


def test_xyz_from_latlonalt(enu_ecef_info):
    """Test calculating xyz from lat lot alt."""
    (
        center_lat,
        center_lon,
        center_alt,
        lats,
        lons,
        alts,
        x,
        y,
        z,
        east,
        north,
        up,
    ) = enu_ecef_info
    xyz = uvutils.XYZ_from_LatLonAlt(lats, lons, alts)
    assert np.allclose(np.stack((x, y, z), axis=1), xyz, atol=1e-3)


def test_enu_from_ecef(enu_ecef_info):
    """Test calculating ENU from ECEF coordinates."""
    (
        center_lat,
        center_lon,
        center_alt,
        lats,
        lons,
        alts,
        x,
        y,
        z,
        east,
        north,
        up,
    ) = enu_ecef_info
    xyz = uvutils.XYZ_from_LatLonAlt(lats, lons, alts)

    enu = uvutils.ENU_from_ECEF(xyz, center_lat, center_lon, center_alt)
    assert np.allclose(np.stack((east, north, up), axis=1), enu, atol=1e-3)


@pytest.mark.parametrize("shape_type", ["transpose", "Nblts,2", "Nblts,1"])
def test_enu_from_ecef_shape_errors(enu_ecef_info, shape_type):
    """Test ENU_from_ECEF input shape errors."""
    (
        center_lat,
        center_lon,
        center_alt,
        lats,
        lons,
        alts,
        x,
        y,
        z,
        east,
        north,
        up,
    ) = enu_ecef_info
    xyz = uvutils.XYZ_from_LatLonAlt(lats, lons, alts)
    if shape_type == "transpose":
        xyz = xyz.T.copy()
    elif shape_type == "Nblts,2":
        xyz = xyz.copy()[:, 0:2]
    elif shape_type == "Nblts,1":
        xyz = xyz.copy()[:, 0:1]

    # check error if array transposed
    with pytest.raises(ValueError) as cm:
        uvutils.ENU_from_ECEF(xyz, center_lat, center_lon, center_alt)
    assert str(cm.value).startswith(
        "The expected shape of ECEF xyz array is (Npts, 3)."
    )


def test_enu_from_ecef_magnitude_error(enu_ecef_info):
    """Test ENU_from_ECEF input magnitude errors."""
    (
        center_lat,
        center_lon,
        center_alt,
        lats,
        lons,
        alts,
        x,
        y,
        z,
        east,
        north,
        up,
    ) = enu_ecef_info
    xyz = uvutils.XYZ_from_LatLonAlt(lats, lons, alts)
    # error checking
    with pytest.raises(ValueError) as cm:
        uvutils.ENU_from_ECEF(xyz / 2.0, center_lat, center_lon, center_alt)
    assert str(cm.value).startswith(
        "ECEF vector magnitudes must be on the order of the radius of the earth"
    )


def test_ecef_from_enu_roundtrip(enu_ecef_info):
    """Test ECEF_from_ENU values."""
    (
        center_lat,
        center_lon,
        center_alt,
        lats,
        lons,
        alts,
        x,
        y,
        z,
        east,
        north,
        up,
    ) = enu_ecef_info
    xyz = uvutils.XYZ_from_LatLonAlt(lats, lons, alts)
    enu = uvutils.ENU_from_ECEF(xyz, center_lat, center_lon, center_alt)
    # check that a round trip gives the original value.
    xyz_from_enu = uvutils.ECEF_from_ENU(enu, center_lat, center_lon, center_alt)
    assert np.allclose(xyz, xyz_from_enu, atol=1e-3)


@pytest.mark.parametrize("shape_type", ["transpose", "Nblts,2", "Nblts,1"])
def test_ecef_from_enu_shape_errors(enu_ecef_info, shape_type):
    (
        center_lat,
        center_lon,
        center_alt,
        lats,
        lons,
        alts,
        x,
        y,
        z,
        east,
        north,
        up,
    ) = enu_ecef_info
    xyz = uvutils.XYZ_from_LatLonAlt(lats, lons, alts)
    enu = uvutils.ENU_from_ECEF(xyz, center_lat, center_lon, center_alt)
    if shape_type == "transpose":
        enu = enu.copy().T
    elif shape_type == "Nblts,2":
        enu = enu.copy()[:, 0:2]
    elif shape_type == "Nblts,1":
        enu = enu.copy()[:, 0:1]

    # check error if array transposed
    with pytest.raises(ValueError) as cm:
        uvutils.ECEF_from_ENU(enu, center_lat, center_lon, center_alt)
    assert str(cm.value).startswith("The expected shape of the ENU array is (Npts, 3).")


def test_ecef_from_enu_single(enu_ecef_info):
    """Test single coordinate transform."""
    (
        center_lat,
        center_lon,
        center_alt,
        lats,
        lons,
        alts,
        x,
        y,
        z,
        east,
        north,
        up,
    ) = enu_ecef_info
    xyz = uvutils.XYZ_from_LatLonAlt(lats, lons, alts)
    # check passing a single value
    enu_single = uvutils.ENU_from_ECEF(xyz[0, :], center_lat, center_lon, center_alt)

    assert np.allclose(np.array((east[0], north[0], up[0])), enu_single, atol=1e-3)


def test_ecef_from_enu_single_roundtrip(enu_ecef_info):
    """Test single coordinate roundtrip."""
    (
        center_lat,
        center_lon,
        center_alt,
        lats,
        lons,
        alts,
        x,
        y,
        z,
        east,
        north,
        up,
    ) = enu_ecef_info
    xyz = uvutils.XYZ_from_LatLonAlt(lats, lons, alts)
    # check passing a single value
    enu = uvutils.ENU_from_ECEF(xyz, center_lat, center_lon, center_alt)

    enu_single = uvutils.ENU_from_ECEF(xyz[0, :], center_lat, center_lon, center_alt)
    assert np.allclose(np.array((east[0], north[0], up[0])), enu[0, :], atol=1e-3)

    xyz_from_enu = uvutils.ECEF_from_ENU(enu_single, center_lat, center_lon, center_alt)
    assert np.allclose(xyz[0, :], xyz_from_enu, atol=1e-3)


def test_mwa_ecef_conversion():
    """
    Test based on comparing the antenna locations in a Cotter uvfits file to
    the antenna locations in MWA_tools.
    """

    test_data_file = os.path.join(DATA_PATH, "mwa128_ant_layouts.npz")
    f = np.load(test_data_file)

    # From the STABXYZ table in a cotter-generated uvfits file, obsid = 1066666832
    xyz = f["stabxyz"]
    # From the East/North/Height columns in a cotter-generated metafits file,
    # obsid = 1066666832
    enh = f["ENH"]
    # From a text file antenna_locations.txt in MWA_Tools/scripts
    txt_topo = f["txt_topo"]

    # From the unphased uvw coordinates of obsid 1066666832, positions relative
    # to antenna 0
    # these aren't used in the current test, but are interesting and might help
    # with phasing diagnosis in the future
    uvw_topo = f["uvw_topo"]
    # Sky coordinates are flipped for uvw derived values
    uvw_topo = -uvw_topo
    uvw_topo += txt_topo[0]

    # transpose these arrays to get them into the right shape
    txt_topo = txt_topo.T
    uvw_topo = uvw_topo.T

    # ARRAYX, ARRAYY, ARRAYZ in ECEF frame from Cotter file
    arrcent = f["arrcent"]
    lat, lon, alt = uvutils.LatLonAlt_from_XYZ(arrcent)

    # The STABXYZ coordinates are defined with X through the local meridian,
    # so rotate back to the prime meridian
    new_xyz = uvutils.ECEF_from_rotECEF(xyz.T, lon)
    # add in array center to get real ECEF
    ecef_xyz = new_xyz + arrcent

    enu = uvutils.ENU_from_ECEF(ecef_xyz, lat, lon, alt)

    assert np.allclose(enu, enh)

    # test other direction of ECEF rotation
    rot_xyz = uvutils.rotECEF_from_ECEF(new_xyz, lon)
    assert np.allclose(rot_xyz.T, xyz)


def test_phasing_funcs():
    # these tests are based on a notebook where I tested against the mwa_tools
    # phasing code
    ra_hrs = 12.1
    dec_degs = -42.3
    mjd = 55780.1

    array_center_xyz = np.array([-2559454.08, 5095372.14, -2849057.18])
    lat_lon_alt = uvutils.LatLonAlt_from_XYZ(array_center_xyz)

    obs_time = Time(mjd, format="mjd", location=(lat_lon_alt[1], lat_lon_alt[0]))

    icrs_coord = SkyCoord(
        ra=Angle(ra_hrs, unit="hr"), dec=Angle(dec_degs, unit="deg"), obstime=obs_time
    )
    gcrs_coord = icrs_coord.transform_to("gcrs")

    # in east/north/up frame (relative to array center) in meters: (Nants, 3)
    ants_enu = np.array([-101.94, 0156.41, 0001.24])

    ant_xyz_abs = uvutils.ECEF_from_ENU(
        ants_enu, lat_lon_alt[0], lat_lon_alt[1], lat_lon_alt[2]
    )

    array_center_coord = SkyCoord(
        x=array_center_xyz[0] * units.m,
        y=array_center_xyz[1] * units.m,
        z=array_center_xyz[2] * units.m,
        frame="itrs",
        obstime=obs_time,
    )

    itrs_coord = SkyCoord(
        x=ant_xyz_abs[0] * units.m,
        y=ant_xyz_abs[1] * units.m,
        z=ant_xyz_abs[2] * units.m,
        frame="itrs",
        obstime=obs_time,
    )

    gcrs_array_center = array_center_coord.transform_to("gcrs")
    gcrs_from_itrs_coord = itrs_coord.transform_to("gcrs")

    gcrs_rel = (
        (gcrs_from_itrs_coord.cartesian - gcrs_array_center.cartesian).get_xyz().T
    )

    gcrs_uvw = uvutils.phase_uvw(gcrs_coord.ra.rad, gcrs_coord.dec.rad, gcrs_rel.value)

    mwa_tools_calcuvw_u = -97.122828
    mwa_tools_calcuvw_v = 50.388281
    mwa_tools_calcuvw_w = -151.27976

    assert np.allclose(gcrs_uvw[0, 0], mwa_tools_calcuvw_u, atol=1e-3)
    assert np.allclose(gcrs_uvw[0, 1], mwa_tools_calcuvw_v, atol=1e-3)
    assert np.allclose(gcrs_uvw[0, 2], mwa_tools_calcuvw_w, atol=1e-3)

    # also test unphasing
    temp2 = uvutils.unphase_uvw(
        gcrs_coord.ra.rad, gcrs_coord.dec.rad, np.squeeze(gcrs_uvw)
    )
    assert np.allclose(gcrs_rel.value, temp2)


def test_pol_funcs():
    """ Test utility functions to convert between polarization strings and numbers """

    pol_nums = [-8, -7, -6, -5, -4, -3, -2, -1, 1, 2, 3, 4]
    pol_str = ["yx", "xy", "yy", "xx", "lr", "rl", "ll", "rr", "pI", "pQ", "pU", "pV"]
    assert pol_nums == uvutils.polstr2num(pol_str)
    assert pol_str == uvutils.polnum2str(pol_nums)
    # Check individuals
    assert -6 == uvutils.polstr2num("YY")
    assert "pV" == uvutils.polnum2str(4)
    # Check errors
    pytest.raises(KeyError, uvutils.polstr2num, "foo")
    pytest.raises(ValueError, uvutils.polstr2num, 1)
    pytest.raises(ValueError, uvutils.polnum2str, 7.3)
    # Check parse
    assert uvutils.parse_polstr("xX") == "xx"
    assert uvutils.parse_polstr("XX") == "xx"
    assert uvutils.parse_polstr("i") == "pI"


def test_pol_funcs_x_orientation():
    """Test functions to convert between pol strings and numbers with x_orientation."""

    pol_nums = [-8, -7, -6, -5, -4, -3, -2, -1, 1, 2, 3, 4]

    x_orient1 = "e"
    pol_str = ["ne", "en", "nn", "ee", "lr", "rl", "ll", "rr", "pI", "pQ", "pU", "pV"]
    assert pol_nums == uvutils.polstr2num(pol_str, x_orientation=x_orient1)
    assert pol_str == uvutils.polnum2str(pol_nums, x_orientation=x_orient1)
    # Check individuals
    assert -6 == uvutils.polstr2num("NN", x_orientation=x_orient1)
    assert "pV" == uvutils.polnum2str(4)
    # Check errors
    pytest.raises(KeyError, uvutils.polstr2num, "foo", x_orientation=x_orient1)
    pytest.raises(ValueError, uvutils.polstr2num, 1, x_orientation=x_orient1)
    pytest.raises(ValueError, uvutils.polnum2str, 7.3, x_orientation=x_orient1)
    # Check parse
    assert uvutils.parse_polstr("eE", x_orientation=x_orient1) == "ee"
    assert uvutils.parse_polstr("xx", x_orientation=x_orient1) == "ee"
    assert uvutils.parse_polstr("NN", x_orientation=x_orient1) == "nn"
    assert uvutils.parse_polstr("yy", x_orientation=x_orient1) == "nn"
    assert uvutils.parse_polstr("i", x_orientation=x_orient1) == "pI"

    x_orient2 = "n"
    pol_str = ["en", "ne", "ee", "nn", "lr", "rl", "ll", "rr", "pI", "pQ", "pU", "pV"]
    assert pol_nums == uvutils.polstr2num(pol_str, x_orientation=x_orient2)
    assert pol_str == uvutils.polnum2str(pol_nums, x_orientation=x_orient2)
    # Check individuals
    assert -6 == uvutils.polstr2num("EE", x_orientation=x_orient2)
    assert "pV" == uvutils.polnum2str(4)
    # Check errors
    pytest.raises(KeyError, uvutils.polstr2num, "foo", x_orientation=x_orient2)
    pytest.raises(ValueError, uvutils.polstr2num, 1, x_orientation=x_orient2)
    pytest.raises(ValueError, uvutils.polnum2str, 7.3, x_orientation=x_orient2)
    # Check parse
    assert uvutils.parse_polstr("nN", x_orientation=x_orient2) == "nn"
    assert uvutils.parse_polstr("xx", x_orientation=x_orient2) == "nn"
    assert uvutils.parse_polstr("EE", x_orientation=x_orient2) == "ee"
    assert uvutils.parse_polstr("yy", x_orientation=x_orient2) == "ee"
    assert uvutils.parse_polstr("i", x_orientation=x_orient2) == "pI"

    # check warnings for non-recognized x_orientation
    with uvtest.check_warnings(UserWarning, "x_orientation not recognized"):
        assert uvutils.polstr2num("xx", x_orientation="foo") == -5

    with uvtest.check_warnings(UserWarning, "x_orientation not recognized"):
        assert uvutils.polnum2str(-6, x_orientation="foo") == "yy"


def test_jones_num_funcs():
    """Test functions to convert between jones polarization strings and numbers."""

    jnums = [-8, -7, -6, -5, -4, -3, -2, -1]
    jstr = ["Jyx", "Jxy", "Jyy", "Jxx", "Jlr", "Jrl", "Jll", "Jrr"]
    assert jnums == uvutils.jstr2num(jstr)
    assert jstr, uvutils.jnum2str(jnums)
    # Check shorthands
    jstr = ["yx", "xy", "yy", "y", "xx", "x", "lr", "rl", "ll", "l", "rr", "r"]
    jnums = [-8, -7, -6, -6, -5, -5, -4, -3, -2, -2, -1, -1]
    assert jnums == uvutils.jstr2num(jstr)
    # Check individuals
    assert -6 == uvutils.jstr2num("jyy")
    assert "Jxy" == uvutils.jnum2str(-7)
    # Check errors
    pytest.raises(KeyError, uvutils.jstr2num, "foo")
    pytest.raises(ValueError, uvutils.jstr2num, 1)
    pytest.raises(ValueError, uvutils.jnum2str, 7.3)

    # check parse method
    assert uvutils.parse_jpolstr("x") == "Jxx"
    assert uvutils.parse_jpolstr("xy") == "Jxy"
    assert uvutils.parse_jpolstr("XY") == "Jxy"


def test_jones_num_funcs_x_orientation():
    """Test functions to convert jones pol strings and numbers with x_orientation."""

    jnums = [-8, -7, -6, -5, -4, -3, -2, -1]
    x_orient1 = "east"
    jstr = ["Jne", "Jen", "Jnn", "Jee", "Jlr", "Jrl", "Jll", "Jrr"]
    assert jnums == uvutils.jstr2num(jstr, x_orientation=x_orient1)
    assert jstr == uvutils.jnum2str(jnums, x_orientation=x_orient1)
    # Check shorthands
    jstr = ["ne", "en", "nn", "n", "ee", "e", "lr", "rl", "ll", "l", "rr", "r"]
    jnums = [-8, -7, -6, -6, -5, -5, -4, -3, -2, -2, -1, -1]
    assert jnums == uvutils.jstr2num(jstr, x_orientation=x_orient1)
    # Check individuals
    assert -6 == uvutils.jstr2num("jnn", x_orientation=x_orient1)
    assert "Jen" == uvutils.jnum2str(-7, x_orientation=x_orient1)
    # Check errors
    pytest.raises(KeyError, uvutils.jstr2num, "foo", x_orientation=x_orient1)
    pytest.raises(ValueError, uvutils.jstr2num, 1, x_orientation=x_orient1)
    pytest.raises(ValueError, uvutils.jnum2str, 7.3, x_orientation=x_orient1)

    # check parse method
    assert uvutils.parse_jpolstr("e", x_orientation=x_orient1) == "Jee"
    assert uvutils.parse_jpolstr("x", x_orientation=x_orient1) == "Jee"
    assert uvutils.parse_jpolstr("y", x_orientation=x_orient1) == "Jnn"
    assert uvutils.parse_jpolstr("en", x_orientation=x_orient1) == "Jen"
    assert uvutils.parse_jpolstr("NE", x_orientation=x_orient1) == "Jne"

    jnums = [-8, -7, -6, -5, -4, -3, -2, -1]
    x_orient2 = "north"
    jstr = ["Jen", "Jne", "Jee", "Jnn", "Jlr", "Jrl", "Jll", "Jrr"]
    assert jnums == uvutils.jstr2num(jstr, x_orientation=x_orient2)
    assert jstr == uvutils.jnum2str(jnums, x_orientation=x_orient2)
    # Check shorthands
    jstr = ["en", "ne", "ee", "e", "nn", "n", "lr", "rl", "ll", "l", "rr", "r"]
    jnums = [-8, -7, -6, -6, -5, -5, -4, -3, -2, -2, -1, -1]
    assert jnums == uvutils.jstr2num(jstr, x_orientation=x_orient2)
    # Check individuals
    assert -6 == uvutils.jstr2num("jee", x_orientation=x_orient2)
    assert "Jne" == uvutils.jnum2str(-7, x_orientation=x_orient2)
    # Check errors
    pytest.raises(KeyError, uvutils.jstr2num, "foo", x_orientation=x_orient2)
    pytest.raises(ValueError, uvutils.jstr2num, 1, x_orientation=x_orient2)
    pytest.raises(ValueError, uvutils.jnum2str, 7.3, x_orientation=x_orient2)

    # check parse method
    assert uvutils.parse_jpolstr("e", x_orientation=x_orient2) == "Jee"
    assert uvutils.parse_jpolstr("x", x_orientation=x_orient2) == "Jnn"
    assert uvutils.parse_jpolstr("y", x_orientation=x_orient2) == "Jee"
    assert uvutils.parse_jpolstr("en", x_orientation=x_orient2) == "Jen"
    assert uvutils.parse_jpolstr("NE", x_orientation=x_orient2) == "Jne"

    # check warnings for non-recognized x_orientation
    with uvtest.check_warnings(UserWarning, "x_orientation not recognized"):
        assert uvutils.jstr2num("x", x_orientation="foo") == -5

    with uvtest.check_warnings(UserWarning, "x_orientation not recognized"):
        assert uvutils.jnum2str(-6, x_orientation="foo") == "Jyy"


def test_conj_pol():
    """ Test function to conjugate pols """

    pol_nums = [-8, -7, -6, -5, -4, -3, -2, -1, 1, 2, 3, 4]
    cpol_nums = [-7, -8, -6, -5, -3, -4, -2, -1, 1, 2, 3, 4]
    assert pol_nums == uvutils.conj_pol(cpol_nums)
    assert uvutils.conj_pol(pol_nums) == cpol_nums
    # fmt: off
    pol_str = ['yx', 'xy', 'yy', 'xx', 'ee', 'nn', 'en', 'ne', 'lr', 'rl', 'll',
               'rr', 'pI', 'pQ', 'pU', 'pV']
    cpol_str = ['xy', 'yx', 'yy', 'xx', 'ee', 'nn', 'ne', 'en', 'rl', 'lr', 'll',
                'rr', 'pI', 'pQ', 'pU', 'pV']
    # fmt: on
    assert pol_str == uvutils.conj_pol(cpol_str)
    assert uvutils.conj_pol(pol_str) == cpol_str
    assert [pol_str, pol_nums] == uvutils.conj_pol([cpol_str, cpol_nums])

    # Test error with jones
    cjstr = ["Jxy", "Jyx", "Jyy", "Jxx", "Jrl", "Jlr", "Jll", "Jrr"]
    assert pytest.raises(KeyError, uvutils.conj_pol, cjstr)

    # Test invalid pol
    with pytest.raises(ValueError) as cm:
        uvutils.conj_pol(2.3)
    assert str(cm.value).startswith(
        "Polarization not recognized, cannot be conjugated."
    )


def test_redundancy_finder():
    """
    Check that get_baseline_redundancies and get_antenna_redundancies return consistent
    redundant groups for a test file with the HERA19 layout.
    """
    uvd = UVData()
    uvd.read_uvfits(
        os.path.join(DATA_PATH, "fewant_randsrc_airybeam_Nsrc100_10MHz.uvfits")
    )

    uvd.select(times=uvd.time_array[0])
    uvd.unphase_to_drift(use_ant_pos=True)
    # uvw_array is now equivalent to baseline positions
    uvd.conjugate_bls(convention="ant1<ant2", use_enu=True)

    tol = 0.05  # meters

    bl_positions = uvd.uvw_array
    bl_pos_backup = copy.deepcopy(uvd.uvw_array)

    pytest.raises(
        ValueError,
        uvutils.get_baseline_redundancies,
        uvd.baseline_array,
        bl_positions[0:2, 0:1],
    )

    baseline_groups, vec_bin_centers, lens = uvutils.get_baseline_redundancies(
        uvd.baseline_array, bl_positions, tol=tol
    )

    for gi, gp in enumerate(baseline_groups):
        for bl in gp:
            bl_ind = np.where(uvd.baseline_array == bl)
            bl_vec = bl_positions[bl_ind]
            assert np.allclose(
                np.sqrt(np.dot(bl_vec, vec_bin_centers[gi])), lens[gi], atol=tol
            )

    # Shift the baselines around in a circle. Check that the same baselines are
    # recovered to the corresponding tolerance increase.
    # This moves one baseline at a time by a fixed displacement and checks that
    # the redundant groups are the same.

    hightol = 0.25  # meters. Less than the smallest baseline in the file.
    Nbls = uvd.Nbls
    Nshifts = 5
    shift_angs = np.linspace(0, 2 * np.pi, Nshifts)
    base_shifts = np.stack(
        (
            (hightol - tol) * np.cos(shift_angs),
            (hightol - tol) * np.sin(shift_angs),
            np.zeros(Nshifts),
        )
    ).T
    for sh in base_shifts:
        for bi in range(Nbls):
            # Shift one baseline at a time.
            bl_positions_new = uvd.uvw_array
            bl_positions_new[bi] += sh

            (
                baseline_groups_new,
                vec_bin_centers,
                lens,
            ) = uvutils.get_baseline_redundancies(
                uvd.baseline_array, bl_positions_new, tol=hightol
            )

            for gi, gp in enumerate(baseline_groups_new):
                for bl in gp:
                    bl_ind = np.where(uvd.baseline_array == bl)
                    bl_vec = bl_positions[bl_ind]
                    assert np.allclose(
                        np.sqrt(np.abs(np.dot(bl_vec, vec_bin_centers[gi]))),
                        lens[gi],
                        atol=hightol,
                    )

            # Compare baseline groups:
            a = [tuple(el) for el in baseline_groups]
            b = [tuple(el) for el in baseline_groups_new]
            assert set(a) == set(b)

    tol = 0.05

    antpos, antnums = uvd.get_ENU_antpos()

    baseline_groups_ants, vec_bin_centers, lens = uvutils.get_antenna_redundancies(
        antnums, antpos, tol=tol, include_autos=False
    )
    # Under these conditions, should see 19 redundant groups in the file.
    assert len(baseline_groups_ants) == 19

    # Check with conjugated baseline redundancies returned
    # Ensure at least one baseline has u==0 and v!=0 (for coverage of this case)
    bl_positions[16, 0] = 0
    (
        baseline_groups,
        vec_bin_centers,
        lens,
        conjugates,
    ) = uvutils.get_baseline_redundancies(
        uvd.baseline_array, bl_positions, tol=tol, with_conjugates=True
    )

    # restore baseline (16,0) and repeat to get correct groups
    bl_positions = bl_pos_backup
    (
        baseline_groups,
        vec_bin_centers,
        lens,
        conjugates,
    ) = uvutils.get_baseline_redundancies(
        uvd.baseline_array, bl_positions, tol=tol, with_conjugates=True
    )

    # Apply flips to compare with get_antenna_redundancies().
    bl_gps_unconj = copy.deepcopy(baseline_groups)
    for gi, gp in enumerate(bl_gps_unconj):
        for bi, bl in enumerate(gp):
            if bl in conjugates:
                bl_gps_unconj[gi][bi] = uvutils.baseline_index_flip(bl, len(antnums))
    bl_gps_unconj = [sorted(bgp) for bgp in bl_gps_unconj]
    assert np.all(sorted(baseline_groups_ants) == sorted(bl_gps_unconj))
    for gi, gp in enumerate(baseline_groups):
        for bl in gp:
            bl_ind = np.where(uvd.baseline_array == bl)
            bl_vec = bl_positions[bl_ind]
            if bl in conjugates:
                bl_vec *= -1
            assert np.isclose(
                np.sqrt(np.dot(bl_vec, vec_bin_centers[gi])), lens[gi], atol=tol
            )


def test_high_tolerance_redundancy_error():
    """
    Confirm that an error is raised if the redundancy tolerance is set too high,
    such that baselines end up in multiple
    """
    uvd = UVData()
    uvd.read_uvfits(
        os.path.join(DATA_PATH, "fewant_randsrc_airybeam_Nsrc100_10MHz.uvfits")
    )

    uvd.select(times=uvd.time_array[0])
    uvd.unphase_to_drift(use_ant_pos=True)
    # uvw_array is now equivalent to baseline positions
    uvd.conjugate_bls(convention="ant1<ant2", use_enu=True)
    bl_positions = uvd.uvw_array

    tol = 20.05  # meters

    with pytest.raises(ValueError) as cm:
        (
            baseline_groups,
            vec_bin_centers,
            lens,
            conjugates,
        ) = uvutils.get_baseline_redundancies(
            uvd.baseline_array, bl_positions, tol=tol, with_conjugates=True
        )
    assert "Some baselines are falling into" in str(cm.value)


def test_redundancy_conjugates():
    """
    Check that redundancy finding with conjugation works.

    Check that the correct baselines are flipped.
    """
    Nants = 10
    tol = 0.5
    ant1_arr = np.tile(np.arange(Nants), Nants)
    ant2_arr = np.repeat(np.arange(Nants), Nants)
    Nbls = ant1_arr.size
    bl_inds = uvutils.antnums_to_baseline(ant1_arr, ant2_arr, Nants)

    maxbl = 100.0
    bl_vecs = np.random.uniform(-maxbl, maxbl, (Nbls, 3))
    bl_vecs[0, 0] = 0
    bl_vecs[1, 0:2] = 0

    expected_conjugates = []
    for i, (u, v, w) in enumerate(bl_vecs):
        uneg = u < -tol
        uzer = np.isclose(u, 0.0, atol=tol)
        vneg = v < -tol
        vzer = np.isclose(v, 0.0, atol=tol)
        wneg = w < -tol
        if uneg or (uzer and vneg) or (uzer and vzer and wneg):
            expected_conjugates.append(bl_inds[i])
    bl_gps, vecs, lens, conjugates = uvutils.get_baseline_redundancies(
        bl_inds, bl_vecs, tol=tol, with_conjugates=True
    )

    assert sorted(conjugates) == sorted(expected_conjugates)


def test_redundancy_finder_fully_redundant_array():
    """Test the redundancy finder for a fully redundant array."""
    uvd = UVData()
    uvd.read_uvfits(os.path.join(DATA_PATH, "test_redundant_array.uvfits"))
    uvd.select(times=uvd.time_array[0])

    tol = 1  # meters
    bl_positions = uvd.uvw_array

    (
        baseline_groups,
        vec_bin_centers,
        lens,
        conjugates,
    ) = uvutils.get_baseline_redundancies(
        uvd.baseline_array, bl_positions, tol=tol, with_conjugates=True
    )

    # Only 1 set of redundant baselines
    assert len(baseline_groups) == 1
    #  Should return the input baselines
    assert baseline_groups[0].sort() == np.unique(uvd.baseline_array).sort()


def test_str_to_bytes():
    test_str = "HERA"

    with uvtest.check_warnings(
        DeprecationWarning, "_str_to_bytes is deprecated and will be removed"
    ):
        test_bytes = uvutils._str_to_bytes(test_str)
    assert type(test_bytes) == bytes
    assert test_bytes == b"\x48\x45\x52\x41"
    return


def test_bytes_to_str():
    test_bytes = b"\x48\x45\x52\x41"
    with uvtest.check_warnings(
        DeprecationWarning, "_bytes_to_str is deprecated and will be removed"
    ):
        test_str = uvutils._bytes_to_str(test_bytes)
    assert type(test_str) == str
    assert test_str == "HERA"
    return


def test_reorder_conj_pols_non_list():
    pytest.raises(ValueError, uvutils.reorder_conj_pols, 4)


def test_reorder_conj_pols_strings():
    pols = ["xx", "xy", "yx"]
    corder = uvutils.reorder_conj_pols(pols)
    assert np.array_equal(corder, [0, 2, 1])


def test_reorder_conj_pols_ints():
    pols = [-5, -7, -8]  # 'xx', 'xy', 'yx'
    corder = uvutils.reorder_conj_pols(pols)
    assert np.array_equal(corder, [0, 2, 1])


def test_reorder_conj_pols_missing_conj():
    pols = ["xx", "xy"]  # Missing 'yx'
    pytest.raises(ValueError, uvutils.reorder_conj_pols, pols)


def test_collapse_mean_no_return_no_weights():
    # Fake data
    data = np.zeros((50, 25))
    for i in range(data.shape[1]):
        data[:, i] = i * np.ones_like(data[:, i])
    out = uvutils.collapse(data, "mean", axis=0)
    out1 = uvutils.mean_collapse(data, axis=0)
    # Actual values are tested in test_mean_no_weights
    assert np.array_equal(out, out1)


def test_collapse_mean_returned_no_weights():
    # Fake data
    data = np.zeros((50, 25))
    for i in range(data.shape[1]):
        data[:, i] = i * np.ones_like(data[:, i])
    out, wo = uvutils.collapse(data, "mean", axis=0, return_weights=True)
    out1, wo1 = uvutils.mean_collapse(data, axis=0, return_weights=True)
    # Actual values are tested in test_mean_no_weights
    assert np.array_equal(out, out1)
    assert np.array_equal(wo, wo1)


def test_collapse_mean_returned_with_weights():
    # Fake data
    data = np.zeros((50, 25))
    for i in range(data.shape[1]):
        data[:, i] = i * np.ones_like(data[:, i]) + 1
    w = 1.0 / data
    out, wo = uvutils.collapse(data, "mean", weights=w, axis=0, return_weights=True)
    out1, wo1 = uvutils.mean_collapse(data, weights=w, axis=0, return_weights=True)
    # Actual values are tested in test_mean_weights
    assert np.array_equal(out, out1)
    assert np.array_equal(wo, wo1)


def test_collapse_mean_returned_with_weights_and_weights_square():
    # Fake data
    data = np.zeros((50, 25))
    for i in range(data.shape[1]):
        data[:, i] = i * np.ones_like(data[:, i]) + 1
    w = 1.0 / data
    out, wo, wso = uvutils.collapse(
        data, "mean", weights=w, axis=0, return_weights=True, return_weights_square=True
    )
    out1, wo1, wso1 = uvutils.mean_collapse(
        data, weights=w, axis=0, return_weights=True, return_weights_square=True
    )
    # Actual values are tested in test_mean_weights
    assert np.array_equal(out, out1)
    assert np.array_equal(wo, wo1)
    assert np.array_equal(wso, wso1)


def test_collapse_mean_returned_with_weights_square_no_return_weights():
    # Fake data
    data = np.zeros((50, 25))
    for i in range(data.shape[1]):
        data[:, i] = i * np.ones_like(data[:, i]) + 1
    w = 1.0 / data
    out, wso = uvutils.collapse(
        data,
        "mean",
        weights=w,
        axis=0,
        return_weights=False,
        return_weights_square=True,
    )
    out1, wso1 = uvutils.mean_collapse(
        data, weights=w, axis=0, return_weights=False, return_weights_square=True
    )
    # Actual values are tested in test_mean_weights
    assert np.array_equal(out, out1)
    assert np.array_equal(wso, wso1)


def test_collapse_absmean_no_return_no_weights():
    # Fake data
    data = np.zeros((50, 25))
    for i in range(data.shape[1]):
        data[:, i] = (-1) ** i * np.ones_like(data[:, i])
    out = uvutils.collapse(data, "absmean", axis=0)
    out1 = uvutils.absmean_collapse(data, axis=0)
    # Actual values are tested in test_absmean_no_weights
    assert np.array_equal(out, out1)


def test_collapse_quadmean_no_return_no_weights():
    # Fake data
    data = np.zeros((50, 25))
    for i in range(data.shape[1]):
        data[:, i] = i * np.ones_like(data[:, i])
    out = uvutils.collapse(data, "quadmean", axis=0)
    out1 = uvutils.quadmean_collapse(data, axis=0)
    # Actual values are tested elsewhere?
    assert np.array_equal(out, out1)


def test_collapse_quadmean_returned_with_weights_and_weights_square():
    # Fake data
    data = np.zeros((50, 25))
    for i in range(data.shape[1]):
        data[:, i] = i * np.ones_like(data[:, i]) + 1
    w = 1.0 / data
    out, wo, wso = uvutils.collapse(
        data,
        "quadmean",
        weights=w,
        axis=0,
        return_weights=True,
        return_weights_square=True,
    )
    out1, wo1, wso1 = uvutils.quadmean_collapse(
        data, weights=w, axis=0, return_weights=True, return_weights_square=True
    )
    # Actual values are tested elsewhere?
    assert np.array_equal(out, out1)
    assert np.array_equal(wo, wo1)
    assert np.array_equal(wso, wso1)


def test_collapse_quadmean_returned_with_weights_square_no_return_weights():
    # Fake data
    data = np.zeros((50, 25))
    for i in range(data.shape[1]):
        data[:, i] = i * np.ones_like(data[:, i]) + 1
    w = 1.0 / data
    out, wso = uvutils.collapse(
        data,
        "quadmean",
        weights=w,
        axis=0,
        return_weights=False,
        return_weights_square=True,
    )
    out1, wso1 = uvutils.quadmean_collapse(
        data, weights=w, axis=0, return_weights=False, return_weights_square=True
    )
    # Actual values are tested elsewhere?
    assert np.array_equal(out, out1)
    assert np.array_equal(wso, wso1)


def test_collapse_quadmean_returned_without_weights_square_with_return_weights():
    # Fake data
    data = np.zeros((50, 25))
    for i in range(data.shape[1]):
        data[:, i] = i * np.ones_like(data[:, i]) + 1
    w = 1.0 / data
    out, wo = uvutils.collapse(
        data,
        "quadmean",
        weights=w,
        axis=0,
        return_weights=True,
        return_weights_square=False,
    )
    out1, wo1 = uvutils.quadmean_collapse(
        data, weights=w, axis=0, return_weights=True, return_weights_square=False
    )
    # Actual values are tested elsewhere?
    assert np.array_equal(out, out1)
    assert np.array_equal(wo, wo1)


def test_collapse_quadmean_returned_with_weights_square_without_weights():
    # Fake data
    data = np.zeros((50, 25))
    for i in range(data.shape[1]):
        data[:, i] = i * np.ones_like(data[:, i]) + 1
    w = 1.0 / data
    out, wo = uvutils.collapse(
        data,
        "quadmean",
        weights=w,
        axis=0,
        return_weights=False,
        return_weights_square=True,
    )
    out1, wo1 = uvutils.quadmean_collapse(
        data, weights=w, axis=0, return_weights=False, return_weights_square=True
    )
    # Actual values are tested elsewhere?
    assert np.array_equal(out, out1)
    assert np.array_equal(wo, wo1)


def test_collapse_or_no_return_no_weights():
    # Fake data
    data = np.zeros((50, 25), np.bool)
    data[0, 8] = True
    o = uvutils.collapse(data, "or", axis=0)
    o1 = uvutils.or_collapse(data, axis=0)
    assert np.array_equal(o, o1)


def test_collapse_and_no_return_no_weights():
    # Fake data
    data = np.zeros((50, 25), np.bool)
    data[0, :] = True
    o = uvutils.collapse(data, "and", axis=0)
    o1 = uvutils.and_collapse(data, axis=0)
    assert np.array_equal(o, o1)


def test_collapse_error():
    pytest.raises(ValueError, uvutils.collapse, np.ones((2, 3)), "fooboo")


def test_mean_no_weights():
    # Fake data
    data = np.zeros((50, 25))
    for i in range(data.shape[1]):
        data[:, i] = i * np.ones_like(data[:, i])
    out, wo = uvutils.mean_collapse(data, axis=0, return_weights=True)
    assert np.array_equal(out, np.arange(data.shape[1]))
    assert np.array_equal(wo, data.shape[0] * np.ones(data.shape[1]))
    out, wo = uvutils.mean_collapse(data, axis=1, return_weights=True)
    assert np.all(out == np.mean(np.arange(data.shape[1])))
    assert len(out) == data.shape[0]
    assert np.array_equal(wo, data.shape[1] * np.ones(data.shape[0]))
    out, wo = uvutils.mean_collapse(data, return_weights=True)
    assert out == np.mean(np.arange(data.shape[1]))
    assert wo == data.size
    out = uvutils.mean_collapse(data)
    assert out == np.mean(np.arange(data.shape[1]))


def test_mean_weights_and_weights_square():
    # Fake data
    data = np.zeros((50, 25))
    for i in range(data.shape[1]):
        data[:, i] = i * np.ones_like(data[:, i]) + 1
    w = 1.0 / data
    out, wo, wso = uvutils.mean_collapse(
        data, weights=w, axis=0, return_weights=True, return_weights_square=True
    )
    assert np.allclose(out * wo, data.shape[0])
    assert np.allclose(wo, float(data.shape[0]) / (np.arange(data.shape[1]) + 1))
    assert np.allclose(wso, float(data.shape[0]) / (np.arange(data.shape[1]) + 1) ** 2)
    out, wo, wso = uvutils.mean_collapse(
        data, weights=w, axis=1, return_weights=True, return_weights_square=True
    )
    assert np.allclose(out * wo, data.shape[1])
    assert np.allclose(wo, np.sum(1.0 / (np.arange(data.shape[1]) + 1)))
    assert np.allclose(wso, np.sum(1.0 / (np.arange(data.shape[1]) + 1) ** 2))

    # Zero weights
    w = np.ones_like(w)
    w[0, :] = 0
    w[:, 0] = 0
    out, wo = uvutils.mean_collapse(data, weights=w, axis=0, return_weights=True)
    ans = np.arange(data.shape[1]).astype(np.float) + 1
    ans[0] = np.inf
    assert np.array_equal(out, ans)
    ans = (data.shape[0] - 1) * np.ones(data.shape[1])
    ans[0] = 0
    assert np.all(wo == ans)
    out, wo = uvutils.mean_collapse(data, weights=w, axis=1, return_weights=True)
    ans = np.mean(np.arange(data.shape[1])[1:] + 1) * np.ones(data.shape[0])
    ans[0] = np.inf
    assert np.all(out == ans)
    ans = (data.shape[1] - 1) * np.ones(data.shape[0])
    ans[0] = 0
    assert np.all(wo == ans)


def test_mean_infs():
    # Fake data
    data = np.zeros((50, 25))
    for i in range(data.shape[1]):
        data[:, i] = i * np.ones_like(data[:, i])
    data[:, 0] = np.inf
    data[0, :] = np.inf
    out, wo = uvutils.mean_collapse(data, axis=0, return_weights=True)
    ans = np.arange(data.shape[1]).astype(np.float)
    ans[0] = np.inf
    assert np.array_equal(out, ans)
    ans = (data.shape[0] - 1) * np.ones(data.shape[1])
    ans[0] = 0
    assert np.all(wo == ans)
    out, wo = uvutils.mean_collapse(data, axis=1, return_weights=True)
    ans = np.mean(np.arange(data.shape[1])[1:]) * np.ones(data.shape[0])
    ans[0] = np.inf
    assert np.all(out == ans)
    ans = (data.shape[1] - 1) * np.ones(data.shape[0])
    ans[0] = 0
    assert np.all(wo == ans)


def test_absmean():
    # Fake data
    data1 = np.zeros((50, 25))
    for i in range(data1.shape[1]):
        data1[:, i] = (-1) ** i * np.ones_like(data1[:, i])
    data2 = np.ones_like(data1)
    out1 = uvutils.absmean_collapse(data1)
    out2 = uvutils.absmean_collapse(data2)
    assert out1 == out2


def test_quadmean():
    # Fake data
    data = np.zeros((50, 25))
    for i in range(data.shape[1]):
        data[:, i] = i * np.ones_like(data[:, i])
    o1, w1 = uvutils.quadmean_collapse(data, return_weights=True)
    o2, w2 = uvutils.mean_collapse(np.abs(data) ** 2, return_weights=True)
    o3 = uvutils.quadmean_collapse(data)  # without return_weights
    o2 = np.sqrt(o2)
    assert o1 == o2
    assert w1 == w2
    assert o1 == o3


def test_or_collapse():
    # Fake data
    data = np.zeros((50, 25), np.bool)
    data[0, 8] = True
    o = uvutils.or_collapse(data, axis=0)
    ans = np.zeros(25, np.bool)
    ans[8] = True
    assert np.array_equal(o, ans)
    o = uvutils.or_collapse(data, axis=1)
    ans = np.zeros(50, np.bool)
    ans[0] = True
    assert np.array_equal(o, ans)
    o = uvutils.or_collapse(data)
    assert o


def test_or_collapse_weights():
    # Fake data
    data = np.zeros((50, 25), np.bool)
    data[0, 8] = True
    w = np.ones_like(data, np.float)
    o, wo = uvutils.or_collapse(data, axis=0, weights=w, return_weights=True)
    ans = np.zeros(25, np.bool)
    ans[8] = True
    assert np.array_equal(o, ans)
    assert np.array_equal(wo, np.ones_like(o, dtype=np.float))
    w[0, 8] = 0.3
    with uvtest.check_warnings(UserWarning, "Currently weights are"):
        o = uvutils.or_collapse(data, axis=0, weights=w)
    assert np.array_equal(o, ans)


def test_or_collapse_errors():
    data = np.zeros(5)
    pytest.raises(ValueError, uvutils.or_collapse, data)


def test_and_collapse():
    # Fake data
    data = np.zeros((50, 25), np.bool)
    data[0, :] = True
    o = uvutils.and_collapse(data, axis=0)
    ans = np.zeros(25, np.bool)
    assert np.array_equal(o, ans)
    o = uvutils.and_collapse(data, axis=1)
    ans = np.zeros(50, np.bool)
    ans[0] = True
    assert np.array_equal(o, ans)
    o = uvutils.and_collapse(data)
    assert not o


def test_and_collapse_weights():
    # Fake data
    data = np.zeros((50, 25), np.bool)
    data[0, :] = True
    w = np.ones_like(data, np.float)
    o, wo = uvutils.and_collapse(data, axis=0, weights=w, return_weights=True)
    ans = np.zeros(25, np.bool)
    assert np.array_equal(o, ans)
    assert np.array_equal(wo, np.ones_like(o, dtype=np.float))
    w[0, 8] = 0.3
    with uvtest.check_warnings(UserWarning, "Currently weights are"):
        o = uvutils.and_collapse(data, axis=0, weights=w)
    assert np.array_equal(o, ans)


def test_and_collapse_errors():
    data = np.zeros(5)
    pytest.raises(ValueError, uvutils.and_collapse, data)


@pytest.mark.filterwarnings("ignore:The uvw_array does not match the expected values")
def test_uvcalibrate_apply_gains_oldfiles():
    # read data
    uvd = UVData()
    uvd.read(os.path.join(DATA_PATH, "zen.2457698.40355.xx.HH.uvcAA.uvh5"))
    # give it an x_orientation
    uvd.x_orientation = "east"
    uvc = UVCal()
    uvc.read_calfits(os.path.join(DATA_PATH, "zen.2457698.40355.xx.gain.calfits"))
    # assign gain scale manually
    uvc.gain_scale = "Jy"
    # downselect to match each other in shape (but not in actual values!)
    uvd.select(frequencies=uvd.freq_array[0, :10])
    uvc.select(times=uvc.time_array[:3])
    key = (43, 72, "xx")
    ant1 = (43, "Jxx")
    ant2 = (72, "Jxx")

    # division calibrate
    uvc.gain_convention = "divide"
    with pytest.warns(DeprecationWarning) as warninfo:
        uvdcal = uvutils.uvcalibrate(
            uvd, uvc, prop_flags=True, flag_missing=False, inplace=False
        )
    warns = {warn.message.args[0] for warn in warninfo}
    ant_expected = {
        "All antenna names with data on UVData are missing "
        "on UVCal. They do all have matching antenna numbers on "
        "UVCal. Currently the data will be calibrated using the "
        "matching antenna number, but that will be deprecated in "
        "version 2.2 and this will become an error."
    }
    missing_times = [2457698.4036761867, 2457698.4038004624]
    time_expected = {
        f"Time {this_time} exists on UVData but not on UVCal. "
        "This will become an error in version 2.2"
        for this_time in missing_times
    }
    freq_expected = {
        f"Frequency {this_freq} exists on UVData but not on UVCal. "
        "This will become an error in version 2.2"
        for this_freq in uvd.freq_array[0, :]
    }
    assert warns == (ant_expected | time_expected | freq_expected)

    np.testing.assert_array_almost_equal(
        uvdcal.get_data(key),
        uvd.get_data(key) / (uvc.get_gains(ant1) * uvc.get_gains(ant2).conj()).T,
    )
    assert uvdcal.vis_units == "Jy"

    # test undo
    with pytest.warns(DeprecationWarning) as warninfo:
        uvdcal = uvutils.uvcalibrate(
            uvdcal, uvc, prop_flags=True, flag_missing=False, inplace=False, undo=True
        )
    warns = {warn.message.args[0] for warn in warninfo}
    assert warns == (ant_expected | time_expected | freq_expected)

    np.testing.assert_array_almost_equal(uvd.get_data(key), uvdcal.get_data(key))
    assert uvdcal.vis_units == "UNCALIB"

    # multiplication calibrate
    uvc.gain_convention = "multiply"
    with pytest.warns(DeprecationWarning) as warninfo:
        uvdcal = uvutils.uvcalibrate(
            uvd, uvc, prop_flags=False, flag_missing=False, inplace=False
        )
    warns = {warn.message.args[0] for warn in warninfo}
    assert warns == (ant_expected | time_expected | freq_expected)

    np.testing.assert_array_almost_equal(
        uvdcal.get_data(key),
        uvd.get_data(key) * (uvc.get_gains(ant1) * uvc.get_gains(ant2).conj()).T,
    )
    assert uvdcal.vis_units == "Jy"


@pytest.mark.filterwarnings("ignore:The uvw_array does not match the expected values")
def test_uvcalibrate_delay_oldfiles():
    uvd = UVData()
    uvd.read(os.path.join(DATA_PATH, "zen.2457698.40355.xx.HH.uvcAA.uvh5"))

    uvc = UVCal()
    uvc.read_calfits(os.path.join(DATA_PATH, "zen.2457698.40355.xx.delay.calfits"))
    # downselect to match each other in shape (but not in actual time values!)
    uvc.select(times=uvc.time_array[:3], frequencies=uvd.freq_array[0, :])
    uvc.gain_convention = "multiply"
    with pytest.warns(DeprecationWarning) as warninfo:
        uvdcal = uvutils.uvcalibrate(
            uvd, uvc, prop_flags=False, flag_missing=False, inplace=False
        )
    warns = {warn.message.args[0] for warn in warninfo}
    ant_expected = {
        "All antenna names with data on UVData are missing "
        "on UVCal. They do all have matching antenna numbers on "
        "UVCal. Currently the data will be calibrated using the "
        "matching antenna number, but that will be deprecated in "
        "version 2.2 and this will become an error."
    }
    missing_times = [2457698.4036761867, 2457698.4038004624]
    time_expected = {
        f"Time {this_time} exists on UVData but not on UVCal. "
        "This will become an error in version 2.2"
        for this_time in missing_times
    }
    assert warns == (ant_expected | time_expected)

    uvc.convert_to_gain()
    with pytest.warns(DeprecationWarning) as warninfo:
        uvdcal2 = uvutils.uvcalibrate(
            uvd, uvc, prop_flags=False, flag_missing=False, inplace=False
        )
    warns = {warn.message.args[0] for warn in warninfo}
    assert warns == (ant_expected | time_expected)

    assert uvdcal == uvdcal2


def test_uvcalibrate_divide(uvcalibrate_data):
    uvd, uvc = uvcalibrate_data

    # set the gain_scale to "Jy" to test that vis units are set properly
    assert uvc.gain_convention == "divide"
    assert uvc.gain_scale is None

    uvdcal = uvutils.uvcalibrate(uvd, uvc, inplace=False)
    assert uvdcal.vis_units == "UNCALIB"

    key = (1, 13, "xx")
    ant1 = (1, "Jxx")
    ant2 = (13, "Jxx")

    np.testing.assert_array_almost_equal(
        uvdcal.get_data(key),
        uvd.get_data(key) / (uvc.get_gains(ant1) * uvc.get_gains(ant2).conj()).T,
    )

    # test undo
    uvdcal = uvutils.uvcalibrate(
        uvdcal, uvc, prop_flags=True, flag_missing=False, inplace=False, undo=True
    )

    np.testing.assert_array_almost_equal(uvd.get_data(key), uvdcal.get_data(key))
    assert uvdcal.vis_units == "UNCALIB"


def test_uvcalibrate_multiply(uvcalibrate_data):
    uvd, uvc = uvcalibrate_data

    # use multiply gain convention
    uvc.gain_convention = "multiply"

    # set the gain_scale to "Jy" to test that vis units are set properly in that case
    uvc.gain_scale = "Jy"
    uvdcal = uvutils.uvcalibrate(uvd, uvc, inplace=False)

    key = (12, 23, "xx")
    ant1 = (12, "Jxx")
    ant2 = (23, "Jxx")

    np.testing.assert_array_almost_equal(
        uvdcal.get_data(key),
        uvd.get_data(key) * (uvc.get_gains(ant1) * uvc.get_gains(ant2).conj()).T,
    )
    assert uvdcal.vis_units == "Jy"

    # test undo
    uvdcal = uvutils.uvcalibrate(
        uvdcal, uvc, prop_flags=True, flag_missing=False, inplace=False, undo=True
    )

    np.testing.assert_array_almost_equal(uvd.get_data(key), uvdcal.get_data(key))
    assert uvdcal.vis_units == "UNCALIB"


@pytest.mark.filterwarnings("ignore:Combined frequencies are not contiguous.")
def test_uvcalibrate_dterm_handling(uvcalibrate_data):
    uvd, uvc = uvcalibrate_data

    # test d-term exception
    with pytest.raises(
        ValueError, match="Cannot apply D-term calibration without -7 or -8"
    ):
        uvutils.uvcalibrate(uvd, uvc, Dterm_cal=True)

    # d-term not implemented error
    uvcDterm = copy.deepcopy(uvc)
    uvcDterm.jones_array = np.array([-7, -8])
    uvcDterm = uvc + uvcDterm
    with pytest.raises(
        NotImplementedError, match="D-term calibration is not yet implemented."
    ):
        uvutils.uvcalibrate(uvd, uvcDterm, Dterm_cal=True)


@pytest.mark.filterwarnings("ignore:Cannot preserve total_quality_array")
def test_uvcalibrate_flag_propagation(uvcalibrate_data):
    uvd, uvc = uvcalibrate_data

    # test flag propagation
    uvc.flag_array[0] = True
    uvc.gain_array[1] = 0.0
    uvdcal = uvutils.uvcalibrate(
        uvd, uvc, prop_flags=True, flag_missing=False, inplace=False
    )

    assert np.all(uvdcal.get_flags(1, 13, "xx"))  # assert completely flagged
    assert np.all(uvdcal.get_flags(0, 12, "xx"))  # assert completely flagged
    np.testing.assert_array_almost_equal(
        uvd.get_data(1, 13, "xx"), uvdcal.get_data(1, 13, "xx")
    )
    np.testing.assert_array_almost_equal(
        uvd.get_data(0, 12, "xx"), uvdcal.get_data(0, 12, "xx")
    )

    uvc_sub = uvc.select(antenna_nums=[1, 12], inplace=False)
    with pytest.warns(DeprecationWarning) as warninfo:
        uvdcal = uvutils.uvcalibrate(
            uvd, uvc_sub, prop_flags=True, flag_missing=False, inplace=False
        )
    warns = {warn.message.args[0] for warn in warninfo}
    uvdata_unique_nums = np.unique(np.append(uvd.ant_1_array, uvd.ant_2_array))
    uvd.antenna_names = np.array(uvd.antenna_names)
    missing_ants = uvdata_unique_nums.tolist()
    missing_ants.remove(1)
    missing_ants.remove(12)
    missing_ant_names = [
        uvd.antenna_names[np.where(uvd.antenna_numbers == antnum)[0][0]]
        for antnum in missing_ants
    ]
    ant_expected = {
        f"Antennas {missing_ant_names} have data on UVData but "
        "are missing on UVCal. Currently calibration will "
        "proceed and since flag_missing is False, the data "
        "for these antennas will not be calibrated or "
        "flagged. This will become an error in version 2.2, "
        "to continue calibration and flag missing "
        "antennas in the future, set ant_check=False.",
    }

    assert not np.any(uvdcal.get_flags(13, 24, "xx"))  # assert no flags exist
    with pytest.warns(DeprecationWarning) as warninfo:
        uvdcal = uvutils.uvcalibrate(
            uvd, uvc_sub, prop_flags=True, flag_missing=True, inplace=False
        )
    warns = {warn.message.args[0] for warn in warninfo}
    ant_expected = {
        f"Antennas {missing_ant_names} have data on UVData but "
        "are missing on UVCal. Currently calibration will "
        "proceed and since flag_missing is True, the data "
        "for these antennas will be flagged. This will "
        "become an error in version 2.2, to continue "
        "calibration and flag missing antennas in the "
        "future, set ant_check=False."
    }

    assert warns == ant_expected

    assert np.all(uvdcal.get_flags(13, 24, "xx"))  # assert completely flagged

    with pytest.warns(UserWarning) as warninfo:
        uvdcal = uvutils.uvcalibrate(
            uvd, uvc_sub, prop_flags=True, ant_check=False, inplace=False
        )
    warns = {warn.message.args[0] for warn in warninfo}
    ant_expected = {
        f"Antennas {missing_ant_names} have data on UVData but are missing "
        "on UVCal. Since ant_check is False, calibration will "
        "proceed and the data for these antennas will be flagged."
    }

    assert warns == ant_expected

    assert np.all(uvdcal.get_flags(13, 24, "xx"))  # assert completely flagged


@pytest.mark.filterwarnings("ignore:Cannot preserve total_quality_array")
def test_uvcalibrate_flag_propagation_name_mismatch(uvcalibrate_init_data):
    uvd, uvc = uvcalibrate_init_data

    # test flag propagation
    uvc.flag_array[0] = True
    uvc.gain_array[1] = 0.0
    with uvtest.check_warnings(
        DeprecationWarning,
        match="All antenna names with data on UVData are missing "
        "on UVCal. They do all have matching antenna numbers on "
        "UVCal. Currently the data will be calibrated using the "
        "matching antenna number, but that will be deprecated in "
        "version 2.2 and this will become an error.",
    ):
        uvdcal = uvutils.uvcalibrate(
            uvd, uvc, prop_flags=True, flag_missing=False, inplace=False
        )

    assert np.all(uvdcal.get_flags(1, 13, "xx"))  # assert completely flagged
    assert np.all(uvdcal.get_flags(0, 12, "xx"))  # assert completely flagged
    np.testing.assert_array_almost_equal(
        uvd.get_data(1, 13, "xx"), uvdcal.get_data(1, 13, "xx")
    )
    np.testing.assert_array_almost_equal(
        uvd.get_data(0, 12, "xx"), uvdcal.get_data(0, 12, "xx")
    )

    uvc_sub = uvc.select(antenna_nums=[1, 12], inplace=False)
    with pytest.warns(DeprecationWarning) as warninfo:
        uvdcal = uvutils.uvcalibrate(
            uvd, uvc_sub, prop_flags=True, flag_missing=False, inplace=False
        )
    warns = {warn.message.args[0] for warn in warninfo}
    uvdata_unique_nums = np.unique(np.append(uvd.ant_1_array, uvd.ant_2_array))
    uvd.antenna_names = np.array(uvd.antenna_names)
    missing_ants = uvdata_unique_nums.tolist()
    missing_ants.remove(1)
    missing_ants.remove(12)
    missing_ant_names = [
        uvd.antenna_names[np.where(uvd.antenna_numbers == antnum)[0][0]]
        for antnum in missing_ants
    ]
    present_ant_names = [
        uvd.antenna_names[np.where(uvd.antenna_numbers == antnum)[0][0]]
        for antnum in [1, 12]
    ]
    ant_expected = {
        f"Antennas {present_ant_names} have data on UVData but "
        "are missing on UVCal. They do have matching antenna "
        "numbers on UVCal. Currently the data for these antennas "
        "will be calibrated using the matching antenna number, "
        "but that will be deprecated in "
        "version 2.2 and this will become an error.",
        f"Antennas {missing_ant_names} have data on UVData but "
        "are missing on UVCal. Currently calibration will "
        "proceed and since flag_missing is False, the data "
        "for these antennas will not be calibrated or "
        "flagged. This will become an error in version 2.2, "
        "to continue calibration and flag missing "
        "antennas in the future, set ant_check=False.",
    }

    assert not np.any(uvdcal.get_flags(13, 24, "xx"))  # assert no flags exist
    with pytest.warns(DeprecationWarning) as warninfo:
        uvdcal = uvutils.uvcalibrate(
            uvd, uvc_sub, prop_flags=True, flag_missing=True, inplace=False
        )
    warns = {warn.message.args[0] for warn in warninfo}

    ant_expected = {
        f"Antennas {present_ant_names} have data on UVData but "
        "are missing on UVCal. They do have matching antenna "
        "numbers on UVCal. Currently the data for these antennas "
        "will be calibrated using the matching antenna number, "
        "but that will be deprecated in "
        "version 2.2 and this will become an error.",
        f"Antennas {missing_ant_names} have data on UVData but "
        "are missing on UVCal. Currently calibration will "
        "proceed and since flag_missing is True, the data "
        "for these antennas will be flagged. This will "
        "become an error in version 2.2, to continue "
        "calibration and flag missing antennas in the "
        "future, set ant_check=False.",
    }

    assert warns == ant_expected

    assert np.all(uvdcal.get_flags(13, 24, "xx"))  # assert completely flagged

    with uvtest.check_warnings(
        UserWarning,
        match="All antenna names with data on UVData are missing "
        "on UVCal. Since ant_check is False, calibration will "
        "proceed but all data will be flagged.",
    ):
        uvdcal = uvutils.uvcalibrate(
            uvd, uvc_sub, prop_flags=True, ant_check=False, inplace=False
        )

    assert np.all(uvdcal.flag_array)  # assert completely flagged


def test_uvcalibrate_extra_cal_antennas(uvcalibrate_data):
    uvd, uvc = uvcalibrate_data

    # remove some antennas from the data
    uvd.select(antenna_nums=[0, 1, 12, 13])

    uvdcal = uvutils.uvcalibrate(uvd, uvc, inplace=False)

    key = (1, 13, "xx")
    ant1 = (1, "Jxx")
    ant2 = (13, "Jxx")

    np.testing.assert_array_almost_equal(
        uvdcal.get_data(key),
        uvd.get_data(key) / (uvc.get_gains(ant1) * uvc.get_gains(ant2).conj()).T,
    )


def test_uvcalibrate_antenna_names_mismatch(uvcalibrate_init_data):
    uvd, uvc = uvcalibrate_init_data

    with uvtest.check_warnings(
        DeprecationWarning,
        match="All antenna names with data on UVData are missing "
        "on UVCal. They do all have matching antenna numbers on "
        "UVCal. Currently the data will be calibrated using the "
        "matching antenna number, but that will be deprecated in "
        "version 2.2 and this will become an error.",
    ):
        uvdcal = uvutils.uvcalibrate(uvd, uvc, inplace=False)

    key = (1, 13, "xx")
    ant1 = (1, "Jxx")
    ant2 = (13, "Jxx")

    np.testing.assert_array_almost_equal(
        uvdcal.get_data(key),
        uvd.get_data(key) / (uvc.get_gains(ant1) * uvc.get_gains(ant2).conj()).T,
    )

    # now test that they're all flagged if ant_check is False
    with uvtest.check_warnings(
        UserWarning,
        match="All antenna names with data on UVData are missing "
        "on UVCal. Since ant_check is False, calibration will "
        "proceed but all data will be flagged.",
    ):
        uvdcal = uvutils.uvcalibrate(uvd, uvc, ant_check=False, inplace=False)

    assert np.all(uvdcal.flag_array)  # assert completely flagged


def test_uvcalibrate_time_mismatch(uvcalibrate_data):
    uvd, uvc = uvcalibrate_data

    # change times to get warnings
    uvc.time_array = uvc.time_array + 1
    with pytest.warns(DeprecationWarning) as warninfo:
        uvdcal = uvutils.uvcalibrate(uvd, uvc, inplace=False)
    warns = {warn.message.args[0] for warn in warninfo}
    expected = {
        f"Time {this_time} exists on UVData but not on UVCal. "
        "This will become an error in version 2.2"
        for this_time in np.unique(uvd.time_array)
    }
    assert warns == expected

    key = (1, 13, "xx")
    ant1 = (1, "Jxx")
    ant2 = (13, "Jxx")

    np.testing.assert_array_almost_equal(
        uvdcal.get_data(key),
        uvd.get_data(key) / (uvc.get_gains(ant1) * uvc.get_gains(ant2).conj()).T,
    )


def test_uvcalibrate_time_wrong_size(uvcalibrate_data):
    uvd, uvc = uvcalibrate_data

    # downselect by one time to get error
    uvc.select(times=uvc.time_array[1:])
    with pytest.raises(
        ValueError,
        match="The uvcal object has more than one time but fewer than the "
        "number of unique times on the uvdata object.",
    ):
        uvutils.uvcalibrate(uvd, uvc, inplace=False)


@pytest.mark.parametrize("len_time_range", [0, 1])
def test_uvcalibrate_time_types(uvcalibrate_data, len_time_range):
    uvd, uvc = uvcalibrate_data

    # only one time
    uvc.select(times=uvc.time_array[0])
    if len_time_range == 0:
        uvc.time_range = None
    else:
        # check cal runs fine with a good time range
        uvdcal = uvutils.uvcalibrate(uvd, uvc, inplace=False)

        key = (1, 13, "xx")
        ant1 = (1, "Jxx")
        ant2 = (13, "Jxx")

        np.testing.assert_array_almost_equal(
            uvdcal.get_data(key),
            uvd.get_data(key) / (uvc.get_gains(ant1) * uvc.get_gains(ant2).conj()).T,
        )

        # then change time_range to get warnings
        uvc.time_range = np.array(uvc.time_range) + 1

    with uvtest.check_warnings(
        DeprecationWarning,
        match=(
            "Times do not match between UVData and UVCal. "
            "Set time_check=False to apply calibration anyway. "
            "This will become an error in version 2.2"
        ),
    ):
        uvdcal = uvutils.uvcalibrate(uvd, uvc, inplace=False)

    key = (1, 13, "xx")
    ant1 = (1, "Jxx")
    ant2 = (13, "Jxx")

    np.testing.assert_array_almost_equal(
        uvdcal.get_data(key),
        uvd.get_data(key) / (uvc.get_gains(ant1) * uvc.get_gains(ant2).conj()).T,
    )

    # set time_check=False to test the user warning
    with uvtest.check_warnings(
        UserWarning,
        match=(
            "Times do not match between UVData and UVCal "
            "but time_check is False, so calibration "
            "will be applied anyway."
        ),
    ):
        uvdcal2 = uvutils.uvcalibrate(uvd, uvc, inplace=False, time_check=False)

    assert uvdcal == uvdcal2


@pytest.mark.filterwarnings("ignore:Combined frequencies are not contiguous.")
def test_uvcalibrate_extra_cal_times(uvcalibrate_data):
    uvd, uvc = uvcalibrate_data

    uvc2 = copy.deepcopy(uvc)
    uvc2.time_array = uvc.time_array + 1
    uvc_use = uvc + uvc2

    uvdcal = uvutils.uvcalibrate(uvd, uvc_use, inplace=False)

    key = (1, 13, "xx")
    ant1 = (1, "Jxx")
    ant2 = (13, "Jxx")

    np.testing.assert_array_almost_equal(
        uvdcal.get_data(key),
        uvd.get_data(key) / (uvc.get_gains(ant1) * uvc.get_gains(ant2).conj()).T,
    )


def test_uvcalibrate_freq_mismatch(uvcalibrate_data):
    uvd, uvc = uvcalibrate_data

    # change some frequencies to get warnings
    maxf = np.max(uvc.freq_array)
    uvc.freq_array[0, uvc.Nfreqs // 2 :] = uvc.freq_array[0, uvc.Nfreqs // 2 :] + maxf
    with pytest.warns(DeprecationWarning) as warninfo:
        uvdcal = uvutils.uvcalibrate(uvd, uvc, inplace=False)
    warns = {warn.message.args[0] for warn in warninfo}
    expected = {
        f"Frequency {this_freq} exists on UVData but not on UVCal. "
        "This will become an error in version 2.2"
        for this_freq in uvd.freq_array[0, uvd.Nfreqs // 2 :]
    }
    assert warns == expected

    key = (1, 13, "xx")
    ant1 = (1, "Jxx")
    ant2 = (13, "Jxx")

    np.testing.assert_array_almost_equal(
        uvdcal.get_data(key),
        uvd.get_data(key) / (uvc.get_gains(ant1) * uvc.get_gains(ant2).conj()).T,
    )


@pytest.mark.filterwarnings("ignore:Combined frequencies are not evenly spaced.")
def test_uvcalibrate_extra_cal_freqs(uvcalibrate_data):
    uvd, uvc = uvcalibrate_data

    uvc2 = copy.deepcopy(uvc)
    uvc2.freq_array = uvc.freq_array + np.max(uvc.freq_array)
    uvc_use = uvc + uvc2

    uvdcal = uvutils.uvcalibrate(uvd, uvc_use, inplace=False)

    key = (1, 13, "xx")
    ant1 = (1, "Jxx")
    ant2 = (13, "Jxx")

    np.testing.assert_array_almost_equal(
        uvdcal.get_data(key),
        uvd.get_data(key) / (uvc.get_gains(ant1) * uvc.get_gains(ant2).conj()).T,
    )


def test_uvcalibrate_feedpol_mismatch(uvcalibrate_data):
    uvd, uvc = uvcalibrate_data

    # downselect the feed polarization to get warnings
    uvc.select(jones=uvutils.jstr2num("Jnn", x_orientation=uvc.x_orientation))
    with pytest.warns(
        DeprecationWarning,
        match=(
            "Feed polarization e exists on UVData but not on UVCal. "
            "This will become an error in version 2.2"
        ),
    ):
        uvdcal = uvutils.uvcalibrate(uvd, uvc, inplace=False)

    key = (1, 13, "nn")
    ant1 = (1, "Jnn")
    ant2 = (13, "Jnn")

    np.testing.assert_array_almost_equal(
        uvdcal.get_data(key),
        uvd.get_data(key) / (uvc.get_gains(ant1) * uvc.get_gains(ant2).conj()).T,
    )


@pytest.mark.filterwarnings("ignore:The uvw_array does not match the expected values")
def test_apply_uvflag():
    # load data and insert some flags
    uvd = UVData()
    uvd.read(os.path.join(DATA_PATH, "zen.2457698.40355.xx.HH.uvcAA.uvh5"))
    uvd.flag_array[uvd.antpair2ind(9, 20)] = True

    # load a UVFlag into flag type
    uvf = UVFlag(uvd)
    uvf.to_flag()

    # insert flags for 2 out of 3 times
    uvf.flag_array[uvf.antpair2ind(9, 10)[:2]] = True

    # apply flags and check for basic flag propagation
    uvdf = uvutils.apply_uvflag(uvd, uvf, inplace=False)
    assert np.all(uvdf.flag_array[uvdf.antpair2ind(9, 10)][:2])

    # test inplace
    uvdf = copy.deepcopy(uvd)
    uvutils.apply_uvflag(uvdf, uvf, inplace=True)
    assert np.all(uvdf.flag_array[uvdf.antpair2ind(9, 10)][:2])

    # test flag missing
    uvf2 = uvf.select(bls=uvf.get_antpairs()[:-1], inplace=False)
    uvdf = uvutils.apply_uvflag(uvd, uvf2, inplace=False, flag_missing=True)
    assert np.all(uvdf.flag_array[uvdf.antpair2ind(uvf.get_antpairs()[-1])])
    uvdf = uvutils.apply_uvflag(uvd, uvf2, inplace=False, flag_missing=False)
    assert not np.any(uvdf.flag_array[uvdf.antpair2ind(uvf.get_antpairs()[-1])])

    # test force polarization
    uvdf = copy.deepcopy(uvd)
    uvdf2 = copy.deepcopy(uvd)
    uvdf2.polarization_array[0] = -6
    uvdf += uvdf2
    uvdf = uvutils.apply_uvflag(uvdf, uvf, inplace=False, force_pol=True)
    assert np.all(uvdf.flag_array[uvdf.antpair2ind(9, 10)][:2])
    with pytest.raises(ValueError) as cm:
        uvutils.apply_uvflag(uvdf, uvf, inplace=False, force_pol=False)
    assert "Input uvf and uvd polarizations do not match" in str(cm.value)

    # test unflag first
    uvdf = uvutils.apply_uvflag(uvd, uvf, inplace=False, unflag_first=True)
    assert np.all(uvdf.flag_array[uvdf.antpair2ind(9, 10)][:2])
    assert not np.any(uvdf.flag_array[uvdf.antpair2ind(9, 20)])

    # convert uvf to waterfall and test
    uvfw = copy.deepcopy(uvf)
    uvfw.to_waterfall(method="or")
    uvdf = uvutils.apply_uvflag(uvd, uvfw, inplace=False)
    assert np.all(uvdf.flag_array[uvdf.antpair2ind(9, 10)][:2])
    assert np.all(uvdf.flag_array[uvdf.antpair2ind(9, 20)][:2])
    assert np.all(uvdf.flag_array[uvdf.antpair2ind(20, 22)][:2])

    # test mode exception
    uvfm = copy.deepcopy(uvf)
    uvfm.mode = "metric"
    with pytest.raises(ValueError) as cm:
        uvutils.apply_uvflag(uvd, uvfm)
    assert "UVFlag must be flag mode" in str(cm.value)

    # test polarization exception
    uvd2 = copy.deepcopy(uvd)
    uvd2.polarization_array[0] = -6
    uvf2 = UVFlag(uvd)
    uvf2.to_flag()
    uvd2.polarization_array[0] = -8
    with pytest.raises(ValueError) as cm:
        uvutils.apply_uvflag(uvd2, uvf2, force_pol=False)
    assert "Input uvf and uvd polarizations do not match" in str(cm.value)

    # test time and frequency mismatch exceptions
    uvf2 = uvf.select(frequencies=uvf.freq_array[:, :2], inplace=False)
    with pytest.raises(ValueError) as cm:
        uvutils.apply_uvflag(uvd, uvf2)
    assert "UVFlag and UVData have mismatched frequency arrays" in str(cm.value)

    uvf2 = copy.deepcopy(uvf)
    uvf2.freq_array += 1.0
    with pytest.raises(ValueError) as cm:
        uvutils.apply_uvflag(uvd, uvf2)
    assert "UVFlag and UVData have mismatched frequency arrays" in str(cm.value)

    uvf2 = uvf.select(times=np.unique(uvf.time_array)[:2], inplace=False)
    with pytest.raises(ValueError) as cm:
        uvutils.apply_uvflag(uvd, uvf2)
    assert "UVFlag and UVData have mismatched time arrays" in str(cm.value)

    uvf2 = copy.deepcopy(uvf)
    uvf2.time_array += 1.0
    with pytest.raises(ValueError) as cm:
        uvutils.apply_uvflag(uvd, uvf2)
    assert "UVFlag and UVData have mismatched time arrays" in str(cm.value)

    # assert implicit broadcasting works
    uvf2 = uvf.select(frequencies=uvf.freq_array[:, :1], inplace=False)
    uvd2 = uvutils.apply_uvflag(uvd, uvf2, inplace=False)
    assert np.all(uvd2.get_flags(9, 10)[:2])
    uvf2 = uvf.select(times=np.unique(uvf.time_array)[:1], inplace=False)
    uvd2 = uvutils.apply_uvflag(uvd, uvf2, inplace=False)
    assert np.all(uvd2.get_flags(9, 10))


def test_upos_tol_reds():
    # Checks that the u-positive convention in get_antenna_redundancies
    # is enforced to the specificed tolerance.

    # Make a layout with two NS baselines, one with u ~ -2*eps, and another with u == 0
    # This would previously cause one to be flipped, when they should be redundant.

    eps = 1e-5
    tol = 3 * eps

    ant_pos = np.array(
        [[-eps, 1.0, 0.0], [1.0, 1.0, 0.0], [eps, 0.0, 0.0], [1.0, 0.0, 0.0]]
    )

    ant_nums = np.arange(4)

    red_grps, _, _ = uvutils.get_antenna_redundancies(ant_nums, ant_pos, tol=tol)

    assert len(red_grps) == 4


class FakeClass:
    def __init__(self):
        pass


def test_parse_ants_error():
    test_obj = FakeClass()
    with pytest.raises(
        ValueError,
        match=(
            "UVBased objects must have all the following attributes in order "
            "to call 'parse_ants': "
        ),
    ):
        uvutils.parse_ants(test_obj, ant_str="")
back to top