https://github.com/cran/rstpm2
Tip revision: 45536c5580212aeb43a1cdf1a690e92cc843203c authored by Mark Clements on 07 January 2023, 02:40:02 UTC
version 1.5.9
version 1.5.9
Tip revision: 45536c5
splines.cpp
#include <splines.h>
namespace rstpm2 {
// mat qr_q(const mat& X, double tol) {
// Rcpp::NumericMatrix nmX = Rcpp::as<Rcpp::NumericMatrix>(Rcpp::wrap(X));
// Rcpp::NumericMatrix nmQ = qr_q(nmX, tol);
// return Rcpp::as<mat>(Rcpp::wrap(nmQ));
// }
SplineBasis::SplineBasis(int order) : order(order) {
ordm1 = order - 1;
rdel = arma::vec(ordm1);
ldel = arma::vec(ordm1);
a = arma::vec(order);
}
SplineBasis::SplineBasis(arma::vec knots, int order) : order(order), knots(knots) {
ordm1 = order - 1;
nknots = knots.size();
ncoef = nknots - order;
rdel = arma::vec(ordm1);
ldel = arma::vec(ordm1);
a = arma::vec(order);
}
int SplineBasis::set_cursor(double x)
{
int i;
/* don't assume x's are sorted */
curs = -1; /* Wall */
boundary = 0;
for (i = 0; i < nknots; i++) {
if (knots(i) >= x) curs = i;
if (knots(i) > x) break;
}
if (curs > nknots - order) {
int lastLegit = nknots - order;
if (x == knots(lastLegit)) {
boundary = 1; curs = lastLegit;
}
}
return curs;
}
void
SplineBasis::diff_table(double x, int ndiff)
{
int i;
for (i = 0; i < ndiff; i++) {
rdel(i) = knots(curs + i) - x;
ldel(i) = x - knots(curs - (i + 1));
}
}
double SplineBasis::slow_evaluate(double x, int nder)
{
int ti = curs,
lpt, apt, rpt, inner,
outer = ordm1;
if (boundary && nder == ordm1) { /* value is arbitrary */
return double(0);
}
while(nder--) { // FIXME: divides by zero
for(inner = outer, apt = 0, lpt = ti - outer; inner--; apt++, lpt++)
a(apt) = double(outer) * (a(apt + 1) - a(apt))/(knots(lpt + outer) - knots(lpt));
outer--;
}
diff_table(x, outer);
while(outer--)
for(apt = 0, lpt = outer, rpt = 0, inner = outer + 1;
inner--; lpt--, rpt++, apt++)
// FIXME: divides by zero
a(apt) = (a(apt + 1) * ldel(lpt) + a(apt) * rdel(rpt))/(rdel(rpt) + ldel(lpt));
return a(0);
}
/* fast evaluation of basis functions */
arma::vec SplineBasis::basis_funcs(double x)
{
arma::vec b(order);
diff_table(x, ordm1);
b(0) = double(1);
for (size_t j = 1; j <= (size_t)ordm1; j++) {
double saved = double(0);
for (size_t r = 0; r < j; r++) { // do not divide by zero
double den = rdel(r) + ldel(j - 1 - r);
if(den != double(0)) {
double term = b(r)/den;
b(r) = saved + rdel(r) * term;
saved = ldel(j - 1 - r) * term;
} else {
if(r != double(0) || rdel(r) != double(0))
b(r) = saved;
saved = double(0);
}
}
b(j) = saved;
}
return b;
}
arma:: vec SplineBasis::eval(double x, int ders) {
arma::vec val(ncoef);
val = arma::zeros(ncoef);
set_cursor(x);
int io = curs - order;
if (io < 0 || io > nknots) {
for (size_t j = 0; j < (size_t)order; j++) {
val(j+io) = double(0); // R_NaN;
}
} else if (ders > 0) { /* slow method for derivatives */
for(size_t i = 0; i < (size_t)order; i++) {
for(size_t j = 0; j < (size_t)order; j++) a(j) = double(0);
a(i) = double(1);
val(i+io) = slow_evaluate(x, ders);
}
} else { /* fast method for value */
arma::vec valtmp = basis_funcs(x);
for (size_t i=0; i<valtmp.size(); i++)
val(i+io)=valtmp(i);
}
return val;
}
arma::mat SplineBasis::basis(arma::vec x, int ders) {
arma::mat m(x.size(), ncoef);
for (size_t i=0; i<x.size(); i++) {
arma::vec v = eval(x(i), ders);
for (size_t j=0; j<v.size(); j++)
m(i,j)=v(j);
}
return m;
}
bs::bs() {} // default constructor
bs::bs(arma::vec boundary_knots, arma::vec interior_knots, int intercept) :
SplineBasis(4), boundary_knots(boundary_knots), interior_knots(interior_knots),
intercept(intercept) {
df = intercept + 3 + interior_knots.size();
this->nknots = interior_knots.size()+8;
this->ncoef = this->nknots - this->order;
this->knots = arma::vec(this->nknots);
for(size_t i=0; i<4;i++) {
this->knots(i)=boundary_knots(0);
this->knots(this->nknots-i-1)=boundary_knots(1);
}
if (interior_knots.size() > 0)
for(size_t i=0; i<interior_knots.size();i++)
this->knots(i+4)=interior_knots(i);
}
arma::vec bs::eval(double x, int ders) {
arma::vec v;
if (x<boundary_knots(0)) {
double k_pivot = double(0.75)*boundary_knots(0)+double(0.25)*interior_knots(0);
double delta = x - k_pivot;
v = bs::eval(k_pivot,0) +
bs::eval(k_pivot,1)*delta +
bs::eval(k_pivot,2)*delta*delta/2. +
bs::eval(k_pivot,3)*delta*delta*delta/6.;
}
else if (x>boundary_knots(1)) {
double k_pivot = double(0.75)*boundary_knots(1)+double(0.25)*interior_knots(interior_knots.size()-1);
double delta = x - k_pivot;
v = bs::eval(k_pivot,0) +
bs::eval(k_pivot,1)*delta +
bs::eval(k_pivot,2)*delta*delta/2. +
bs::eval(k_pivot,3)*delta*delta*delta/6.;
}
else {
v = SplineBasis::eval(x, ders).subvec(1-intercept,df-intercept);
}
return v;
}
arma::mat bs::basis(arma::vec x, int ders) {
arma::mat m(x.size(), df);
for (size_t i=0; i<x.size(); i++) {
arma::vec v = bs::eval(x(i), ders);
for (size_t j=0; j<v.size(); j++)
m(i,j)=v(j);
}
return m;
}
ns::ns() {} // default constructor
// ns(vec boundary_knots, vec interior_knots, int intercept=0) :
// bs(boundary_knots, interior_knots, intercept) {
// // calculate the Q matrix
// mat const_basis = bs::basis(boundary_knots, 2);
// mat qd = qr_q(const_basis.t());
// mat qsub(qd.n_rows, qd.n_cols-2);
// for (size_t i=0; i<qsub.n_rows; i++)
// for (size_t j=0; j<qsub.n_cols; j++)
// qsub(i,j) = qd(i,j+2);
// q_matrix = qsub.t();
// tl0 = q_matrix * bs::eval(boundary_knots(0), 0);
// tl1 = q_matrix * bs::eval(boundary_knots(0), 1);
// tr0 = q_matrix * bs::eval(boundary_knots(1), 0);
// tr1 = q_matrix * bs::eval(boundary_knots(1), 1);
// }
ns::ns(arma::vec boundary_knots, arma::vec interior_knots, arma::mat _q_matrix,
int intercept, int cure) :
bs(boundary_knots, interior_knots, intercept), q_matrix(_q_matrix), cure(cure) {
if (q_matrix.n_cols < q_matrix.n_rows)
q_matrix = q_matrix.t();
tl0 = q_matrix * bs::eval(boundary_knots(0), 0);
tl1 = q_matrix * bs::eval(boundary_knots(0), 1);
tr0 = q_matrix * bs::eval(boundary_knots(1), 0);
tr1 = q_matrix * bs::eval(boundary_knots(1), 1);
}
arma::vec ns::eval(double x, int der) {
if(x < this->boundary_knots(0)) {
if (der==0)
return tl0 + (x - this->boundary_knots(0))*tl1;
else if (der==1)
return tl1;
else return tl1*double(0);
} else if (x > this->boundary_knots(1)) {
if (der==0)
return tr0 + (x - this->boundary_knots(1))*tr1;
else if (der==1)
return tr1;
else return tr1*double(0);
}
else return q_matrix * bs::eval(x,der);
}
arma::mat ns::basis(arma::vec x, int ders) {
arma::mat m(x.size(), this->df-2-cure);
for (size_t i=0; i<x.size(); i++) {
arma::vec v = ns::eval(x(i), ders);
for (size_t j=0; j<v.size(); j++)
m(i,j)=v(j);
}
return m;
}
} // namespace rstpm2