//===--- GenCall.cpp - Swift IR Generation for Function Calls -------------===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See https://swift.org/LICENSE.txt for license information // See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// // // This file implements IR generation for function signature lowering // in Swift. This includes creating the IR type, collecting IR attributes, // performing calls, and supporting prologue and epilogue emission. // //===----------------------------------------------------------------------===// #include "swift/ABI/MetadataValues.h" #include "swift/AST/ASTContext.h" #include "swift/AST/GenericEnvironment.h" #include "swift/Runtime/Config.h" #include "swift/IRGen/Linking.h" #include "swift/SIL/SILModule.h" #include "swift/SIL/SILType.h" #include "clang/AST/ASTContext.h" #include "clang/AST/RecordLayout.h" #include "clang/Basic/TargetInfo.h" #include "clang/CodeGen/CodeGenABITypes.h" #include "clang/CodeGen/ModuleBuilder.h" #include "llvm/IR/GlobalPtrAuthInfo.h" #include "llvm/Support/Compiler.h" #include "CallEmission.h" #include "EntryPointArgumentEmission.h" #include "Explosion.h" #include "GenCall.h" #include "GenFunc.h" #include "GenHeap.h" #include "GenObjC.h" #include "GenPointerAuth.h" #include "GenPoly.h" #include "GenProto.h" #include "GenType.h" #include "IRGenFunction.h" #include "IRGenModule.h" #include "LoadableTypeInfo.h" #include "NativeConventionSchema.h" #include "Signature.h" #include "StructLayout.h" using namespace swift; using namespace irgen; static Size getYieldOnceCoroutineBufferSize(IRGenModule &IGM) { return NumWords_YieldOnceBuffer * IGM.getPointerSize(); } static Alignment getYieldOnceCoroutineBufferAlignment(IRGenModule &IGM) { return IGM.getPointerAlignment(); } static Size getYieldManyCoroutineBufferSize(IRGenModule &IGM) { return NumWords_YieldManyBuffer * IGM.getPointerSize(); } static Alignment getYieldManyCoroutineBufferAlignment(IRGenModule &IGM) { return IGM.getPointerAlignment(); } static Size getCoroutineContextSize(IRGenModule &IGM, CanSILFunctionType fnType) { switch (fnType->getCoroutineKind()) { case SILCoroutineKind::None: llvm_unreachable("expand a coroutine"); case SILCoroutineKind::YieldOnce: return getYieldOnceCoroutineBufferSize(IGM); case SILCoroutineKind::YieldMany: return getYieldManyCoroutineBufferSize(IGM); } llvm_unreachable("bad kind"); } AsyncContextLayout irgen::getAsyncContextLayout(IRGenModule &IGM, SILFunction *function) { SubstitutionMap forwardingSubstitutionMap = function->getForwardingSubstitutionMap(); CanSILFunctionType originalType = function->getLoweredFunctionType(); CanSILFunctionType substitutedType = originalType->substGenericArgs( IGM.getSILModule(), forwardingSubstitutionMap, IGM.getMaximalTypeExpansionContext()); auto layout = getAsyncContextLayout( IGM, originalType, substitutedType, forwardingSubstitutionMap); return layout; } static Size getAsyncContextHeaderSize(IRGenModule &IGM) { return 2 * IGM.getPointerSize(); } AsyncContextLayout irgen::getAsyncContextLayout( IRGenModule &IGM, CanSILFunctionType originalType, CanSILFunctionType substitutedType, SubstitutionMap substitutionMap) { // FIXME: everything about this type is way more complicated than it // needs to be now that we no longer pass and return things in memory // in the async context and therefore the layout is totally static. SmallVector typeInfos; SmallVector valTypes; // AsyncContext * __ptrauth_swift_async_context_parent Parent; { auto ty = SILType(); auto &ti = IGM.getSwiftContextPtrTypeInfo(); valTypes.push_back(ty); typeInfos.push_back(&ti); } // TaskContinuationFunction * __ptrauth_swift_async_context_resume // ResumeParent; { auto ty = SILType(); auto &ti = IGM.getTaskContinuationFunctionPtrTypeInfo(); valTypes.push_back(ty); typeInfos.push_back(&ti); } return AsyncContextLayout(IGM, LayoutStrategy::Optimal, valTypes, typeInfos, originalType, substitutedType, substitutionMap); } AsyncContextLayout::AsyncContextLayout( IRGenModule &IGM, LayoutStrategy strategy, ArrayRef fieldTypes, ArrayRef fieldTypeInfos, CanSILFunctionType originalType, CanSILFunctionType substitutedType, SubstitutionMap substitutionMap) : StructLayout(IGM, /*decl=*/nullptr, LayoutKind::NonHeapObject, strategy, fieldTypeInfos, /*typeToFill*/ nullptr), originalType(originalType), substitutedType(substitutedType), substitutionMap(substitutionMap) { assert(fieldTypeInfos.size() == fieldTypes.size() && "type infos don't match types"); assert(this->isFixedLayout()); assert(this->getSize() == getAsyncContextHeaderSize(IGM)); } Alignment IRGenModule::getAsyncContextAlignment() const { return Alignment(MaximumAlignment); } Optional FunctionPointerKind::getStaticAsyncContextSize(IRGenModule &IGM) const { if (!isSpecial()) return None; auto headerSize = getAsyncContextHeaderSize(IGM); headerSize = headerSize.roundUpToAlignment(IGM.getPointerAlignment()); switch (getSpecialKind()) { case SpecialKind::TaskFutureWaitThrowing: case SpecialKind::TaskFutureWait: case SpecialKind::AsyncLetWait: case SpecialKind::AsyncLetWaitThrowing: case SpecialKind::AsyncLetGet: case SpecialKind::AsyncLetGetThrowing: case SpecialKind::AsyncLetFinish: case SpecialKind::TaskGroupWaitNext: case SpecialKind::DistributedExecuteTarget: // The current guarantee for all of these functions is the same. // See TaskFutureWaitAsyncContext. // // If you add a new special runtime function, it is highly recommended // that you make calls to it allocate a little more memory than this! // These frames being this small is very arguably a mistake. return headerSize + 3 * IGM.getPointerSize(); } llvm_unreachable("covered switch"); } void IRGenFunction::setupAsync(unsigned asyncContextIndex) { llvm::Value *c = CurFn->getArg(asyncContextIndex); asyncContextLocation = createAlloca(c->getType(), IGM.getPointerAlignment()); IRBuilder builder(IGM.getLLVMContext(), IGM.DebugInfo != nullptr); // Insert the stores after the coro.begin. builder.SetInsertPoint(getEarliestInsertionPoint()->getParent(), getEarliestInsertionPoint()->getIterator()); builder.CreateStore(c, asyncContextLocation); } llvm::Value *IRGenFunction::getAsyncTask() { auto call = Builder.CreateCall(IGM.getGetCurrentTaskFn(), {}); call->setDoesNotThrow(); call->setCallingConv(IGM.SwiftCC); return call; } llvm::Value *IRGenFunction::getAsyncContext() { assert(isAsync()); return Builder.CreateLoad(asyncContextLocation); } void IRGenFunction::storeCurrentAsyncContext(llvm::Value *context) { context = Builder.CreateBitCast(context, IGM.SwiftContextPtrTy); Builder.CreateStore(context, asyncContextLocation); } llvm::CallInst *IRGenFunction::emitSuspendAsyncCall( unsigned asyncContextIndex, llvm::StructType *resultTy, ArrayRef args, bool restoreCurrentContext) { auto *id = Builder.CreateIntrinsicCall(llvm::Intrinsic::coro_suspend_async, {resultTy}, args); if (restoreCurrentContext) { llvm::Value *calleeContext = Builder.CreateExtractValue(id, asyncContextIndex); calleeContext = Builder.CreateBitOrPointerCast(calleeContext, IGM.Int8PtrTy); llvm::Constant *projectFn = cast(args[2])->stripPointerCasts(); llvm::Value *context = Builder.CreateCall(projectFn, {calleeContext}); storeCurrentAsyncContext(context); } return id; } llvm::Type *ExplosionSchema::getScalarResultType(IRGenModule &IGM) const { if (size() == 0) { return IGM.VoidTy; } else if (size() == 1) { return begin()->getScalarType(); } else { SmallVector elts; for (auto &elt : *this) elts.push_back(elt.getScalarType()); return llvm::StructType::get(IGM.getLLVMContext(), elts); } } static void addDereferenceableAttributeToBuilder(IRGenModule &IGM, llvm::AttrBuilder &b, const TypeInfo &ti) { // The addresses of empty values are undefined, so we can't safely mark them // dereferenceable. if (ti.isKnownEmpty(ResilienceExpansion::Maximal)) return; // If we know the type to have a fixed nonempty size, then the pointer is // dereferenceable to at least that size. // TODO: Would be nice to have a "getMinimumKnownSize" on TypeInfo for // dynamic-layout aggregates. if (auto fixedTI = dyn_cast(&ti)) { b.addAttribute( llvm::Attribute::getWithDereferenceableBytes(IGM.getLLVMContext(), fixedTI->getFixedSize().getValue())); } } static void addIndirectValueParameterAttributes(IRGenModule &IGM, llvm::AttributeList &attrs, const TypeInfo &ti, unsigned argIndex) { llvm::AttrBuilder b; // Value parameter pointers can't alias or be captured. b.addAttribute(llvm::Attribute::NoAlias); b.addAttribute(llvm::Attribute::NoCapture); // The parameter must reference dereferenceable memory of the type. addDereferenceableAttributeToBuilder(IGM, b, ti); attrs = attrs.addParamAttributes(IGM.getLLVMContext(), argIndex, b); } static void addInoutParameterAttributes(IRGenModule &IGM, SILType paramSILType, llvm::AttributeList &attrs, const TypeInfo &ti, unsigned argIndex, bool aliasable) { llvm::AttrBuilder b; // Thanks to exclusivity checking, it is not possible to alias inouts except // those that are inout_aliasable. if (!aliasable && paramSILType.getASTType()->getAnyPointerElementType()) { // To ward against issues with LLVM's alias analysis, for now, only add the // attribute if it's a pointer being passed inout. b.addAttribute(llvm::Attribute::NoAlias); } // Aliasing inouts can't be captured without doing unsafe stuff. b.addAttribute(llvm::Attribute::NoCapture); // The inout must reference dereferenceable memory of the type. addDereferenceableAttributeToBuilder(IGM, b, ti); attrs = attrs.addParamAttributes(IGM.getLLVMContext(), argIndex, b); } static llvm::CallingConv::ID getFreestandingConvention(IRGenModule &IGM) { // TODO: use a custom CC that returns three scalars efficiently return IGM.SwiftCC; } /// Expand the requirements of the given abstract calling convention /// into a "physical" calling convention. llvm::CallingConv::ID irgen::expandCallingConv(IRGenModule &IGM, SILFunctionTypeRepresentation convention, bool isAsync) { switch (convention) { case SILFunctionTypeRepresentation::CFunctionPointer: case SILFunctionTypeRepresentation::ObjCMethod: case SILFunctionTypeRepresentation::CXXMethod: case SILFunctionTypeRepresentation::Block: return llvm::CallingConv::C; case SILFunctionTypeRepresentation::Method: case SILFunctionTypeRepresentation::WitnessMethod: case SILFunctionTypeRepresentation::Closure: case SILFunctionTypeRepresentation::Thin: case SILFunctionTypeRepresentation::Thick: if (isAsync) return IGM.SwiftAsyncCC; return getFreestandingConvention(IGM); } llvm_unreachable("bad calling convention!"); } static void addIndirectResultAttributes(IRGenModule &IGM, llvm::AttributeList &attrs, unsigned paramIndex, bool allowSRet, llvm::Type *storageType) { llvm::AttrBuilder b; b.addAttribute(llvm::Attribute::NoAlias); b.addAttribute(llvm::Attribute::NoCapture); if (allowSRet) { assert(storageType); b.addStructRetAttr(storageType); } attrs = attrs.addParamAttributes(IGM.getLLVMContext(), paramIndex, b); } void IRGenModule::addSwiftAsyncContextAttributes(llvm::AttributeList &attrs, unsigned argIndex) { llvm::AttrBuilder b; b.addAttribute(llvm::Attribute::SwiftAsync); attrs = attrs.addParamAttributes(this->getLLVMContext(), argIndex, b); } void IRGenModule::addSwiftSelfAttributes(llvm::AttributeList &attrs, unsigned argIndex) { llvm::AttrBuilder b; b.addAttribute(llvm::Attribute::SwiftSelf); attrs = attrs.addParamAttributes(this->getLLVMContext(), argIndex, b); } void IRGenModule::addSwiftErrorAttributes(llvm::AttributeList &attrs, unsigned argIndex) { llvm::AttrBuilder b; // Don't add the swifterror attribute on ABIs that don't pass it in a register. // We create a shadow stack location of the swifterror parameter for the // debugger on such platforms and so we can't mark the parameter with a // swifterror attribute. if (ShouldUseSwiftError) b.addAttribute(llvm::Attribute::SwiftError); // The error result should not be aliased, captured, or pointed at invalid // addresses regardless. b.addAttribute(llvm::Attribute::NoAlias); b.addAttribute(llvm::Attribute::NoCapture); b.addDereferenceableAttr(getPointerSize().getValue()); attrs = attrs.addParamAttributes(this->getLLVMContext(), argIndex, b); } void irgen::addByvalArgumentAttributes(IRGenModule &IGM, llvm::AttributeList &attrs, unsigned argIndex, Alignment align, llvm::Type *storageType) { llvm::AttrBuilder b; b.addByValAttr(storageType); b.addAttribute(llvm::Attribute::getWithAlignment( IGM.getLLVMContext(), llvm::Align(align.getValue()))); attrs = attrs.addParamAttributes(IGM.getLLVMContext(), argIndex, b); } static llvm::Attribute::AttrKind attrKindForExtending(bool signExtend) { if (signExtend) return llvm::Attribute::SExt; return llvm::Attribute::ZExt; } namespace swift { namespace irgen { namespace { class SignatureExpansion { IRGenModule &IGM; CanSILFunctionType FnType; public: SmallVector ParamIRTypes; llvm::Type *ResultIRType = nullptr; llvm::AttributeList Attrs; ForeignFunctionInfo ForeignInfo; CoroutineInfo CoroInfo; bool CanUseSRet = true; bool CanUseError = true; bool CanUseSelf = true; unsigned AsyncContextIdx; unsigned AsyncResumeFunctionSwiftSelfIdx = 0; FunctionPointerKind FnKind; SignatureExpansion(IRGenModule &IGM, CanSILFunctionType fnType, FunctionPointerKind fnKind) : IGM(IGM), FnType(fnType), FnKind(fnKind) { } /// Expand the components of the primary entrypoint of the function type. void expandFunctionType(); /// Expand the components of the continuation entrypoint of the /// function type. void expandCoroutineContinuationType(); // Expand the components for the async continuation entrypoint of the // function type (the function to be called on returning). void expandAsyncReturnType(); // Expand the components for the async suspend call of the function type. void expandAsyncAwaitType(); // Expand the components for the primary entrypoint of the async function // type. void expandAsyncEntryType(); Signature getSignature(); private: void expand(SILParameterInfo param); llvm::Type *addIndirectResult(); SILFunctionConventions getSILFuncConventions() const { return SILFunctionConventions(FnType, IGM.getSILModule()); } unsigned getCurParamIndex() { return ParamIRTypes.size(); } bool claimSRet() { bool result = CanUseSRet; CanUseSRet = false; return result; } bool claimSelf() { auto Ret = CanUseSelf; assert(CanUseSelf && "Multiple self parameters?!"); CanUseSelf = false; return Ret; } bool claimError() { auto Ret = CanUseError; assert(CanUseError && "Multiple error parameters?!"); CanUseError = false; return Ret; } /// Add a pointer to the given type as the next parameter. void addPointerParameter(llvm::Type *storageType) { ParamIRTypes.push_back(storageType->getPointerTo()); } void addCoroutineContextParameter(); void addAsyncParameters(); void expandResult(); llvm::Type *expandDirectResult(); void expandIndirectResults(); void expandParameters(); void expandExternalSignatureTypes(); void expandCoroutineResult(bool forContinuation); void expandCoroutineContinuationParameters(); }; } // end anonymous namespace } // end namespace irgen } // end namespace swift llvm::Type *SignatureExpansion::addIndirectResult() { auto resultType = getSILFuncConventions().getSILResultType( IGM.getMaximalTypeExpansionContext()); const TypeInfo &resultTI = IGM.getTypeInfo(resultType); auto storageTy = resultTI.getStorageType(); addIndirectResultAttributes(IGM, Attrs, ParamIRTypes.size(), claimSRet(), storageTy); addPointerParameter(storageTy); return IGM.VoidTy; } /// Expand all of the direct and indirect result types. void SignatureExpansion::expandResult() { if (FnType->isAsync()) { // The result will be stored within the SwiftContext that is passed to async // functions. ResultIRType = IGM.VoidTy; return; } if (FnType->isCoroutine()) { // This should be easy enough to support if we need to: use the // same algorithm but add the direct results to the results as if // they were unioned in. return expandCoroutineResult(/*for continuation*/ false); } auto fnConv = getSILFuncConventions(); // Disable the use of sret if we have multiple indirect results. if (fnConv.getNumIndirectSILResults() > 1) CanUseSRet = false; // Expand the direct result. ResultIRType = expandDirectResult(); // Expand the indirect results. expandIndirectResults(); } void SignatureExpansion::expandIndirectResults() { auto fnConv = getSILFuncConventions(); // Expand the indirect results. for (auto indirectResultType : fnConv.getIndirectSILResultTypes(IGM.getMaximalTypeExpansionContext())) { auto storageTy = IGM.getStorageType(indirectResultType); auto useSRet = claimSRet(); // We need to use opaque types or non fixed size storage types because llvm // does type based analysis based on the type of sret arguments. if (useSRet && !isa(IGM.getTypeInfo(indirectResultType))) { storageTy = IGM.OpaqueTy; } addIndirectResultAttributes(IGM, Attrs, ParamIRTypes.size(), useSRet, storageTy); addPointerParameter(storageTy); } } namespace { class YieldSchema { SILType YieldTy; const TypeInfo &YieldTI; Optional NativeSchema; bool IsIndirect; public: YieldSchema(IRGenModule &IGM, SILFunctionConventions fnConv, SILYieldInfo yield) : YieldTy( fnConv.getSILType(yield, IGM.getMaximalTypeExpansionContext())), YieldTI(IGM.getTypeInfo(YieldTy)) { if (isFormalIndirect()) { IsIndirect = true; } else { NativeSchema.emplace(IGM, &YieldTI, /*result*/ true); IsIndirect = NativeSchema->requiresIndirect(); } } SILType getSILType() const { return YieldTy; } const TypeInfo &getTypeInfo() const { return YieldTI; } /// Should the yielded value be yielded as a pointer? bool isIndirect() const { return IsIndirect; } /// Is the yielded value formally indirect? bool isFormalIndirect() const { return YieldTy.isAddress(); } llvm::PointerType *getIndirectPointerType() const { assert(isIndirect()); return YieldTI.getStorageType()->getPointerTo(); } const NativeConventionSchema &getDirectSchema() const { assert(!isIndirect()); return *NativeSchema; } void enumerateDirectComponents(llvm::function_ref fn) { getDirectSchema().enumerateComponents([&](clang::CharUnits begin, clang::CharUnits end, llvm::Type *componentTy) { fn(componentTy); }); } }; } void SignatureExpansion::expandCoroutineResult(bool forContinuation) { assert(FnType->getNumResults() == 0 && "having both normal and yield results is currently unsupported"); // The return type may be different for the ramp function vs. the // continuations. if (forContinuation) { switch (FnType->getCoroutineKind()) { case SILCoroutineKind::None: llvm_unreachable("should have been filtered out before here"); // Yield-once coroutines just return void from the continuation. case SILCoroutineKind::YieldOnce: ResultIRType = IGM.VoidTy; return; // Yield-many coroutines yield the same types from the continuation // as they do from the ramp function. case SILCoroutineKind::YieldMany: break; } } SmallVector components; // The continuation pointer. components.push_back(IGM.Int8PtrTy); auto fnConv = getSILFuncConventions(); for (auto yield : FnType->getYields()) { YieldSchema schema(IGM, fnConv, yield); // If the individual value must be yielded indirectly, add a pointer. if (schema.isIndirect()) { components.push_back(schema.getIndirectPointerType()); continue; } // Otherwise, collect all the component types. schema.enumerateDirectComponents([&](llvm::Type *type) { components.push_back(type); }); } // Find the maximal sequence of the component types that we can // convince the ABI to pass directly. // When counting components, ignore the continuation pointer. unsigned numDirectComponents = components.size() - 1; SmallVector overflowTypes; while (clang::CodeGen::swiftcall:: shouldPassIndirectly(IGM.ClangCodeGen->CGM(), components, /*asReturnValue*/ true)) { // If we added a pointer to the end of components, remove it. if (!overflowTypes.empty()) components.pop_back(); // Remove the last component and add it as an overflow type. overflowTypes.push_back(components.pop_back_val()); --numDirectComponents; // Add a pointer to the end of components. components.push_back(IGM.Int8PtrTy); } // We'd better have been able to pass at least two pointers. assert(components.size() >= 2 || overflowTypes.empty()); CoroInfo.NumDirectYieldComponents = numDirectComponents; // Replace the pointer type we added to components with the real // pointer-to-overflow type. if (!overflowTypes.empty()) { std::reverse(overflowTypes.begin(), overflowTypes.end()); // TODO: should we use some sort of real layout here instead of // trusting LLVM's? components.back() = llvm::StructType::get(IGM.getLLVMContext(), overflowTypes) ->getPointerTo(); } ResultIRType = components.size() == 1 ? components.front() : llvm::StructType::get(IGM.getLLVMContext(), components); } void SignatureExpansion::expandCoroutineContinuationParameters() { // The coroutine context. addCoroutineContextParameter(); // Whether this is an unwind resumption. ParamIRTypes.push_back(IGM.Int1Ty); } void SignatureExpansion::addAsyncParameters() { // using TaskContinuationFunction = // SWIFT_CC(swift) // void (SWIFT_ASYNC_CONTEXT AsyncContext *); AsyncContextIdx = getCurParamIndex(); Attrs = Attrs.addParamAttribute(IGM.getLLVMContext(), AsyncContextIdx, llvm::Attribute::SwiftAsync); ParamIRTypes.push_back(IGM.SwiftContextPtrTy); } void SignatureExpansion::addCoroutineContextParameter() { // Flag that the context is dereferenceable and unaliased. auto contextSize = getCoroutineContextSize(IGM, FnType); Attrs = Attrs.addDereferenceableParamAttr(IGM.getLLVMContext(), getCurParamIndex(), contextSize.getValue()); Attrs = Attrs.addParamAttribute(IGM.getLLVMContext(), getCurParamIndex(), llvm::Attribute::NoAlias); ParamIRTypes.push_back(IGM.Int8PtrTy); } NativeConventionSchema::NativeConventionSchema(IRGenModule &IGM, const TypeInfo *ti, bool IsResult) : Lowering(IGM.ClangCodeGen->CGM()) { if (auto *loadable = dyn_cast(ti)) { // Lower the type according to the Swift ABI. loadable->addToAggLowering(IGM, Lowering, Size(0)); Lowering.finish(); // Should we pass indirectly according to the ABI? RequiresIndirect = Lowering.shouldPassIndirectly(IsResult); } else { Lowering.finish(); RequiresIndirect = true; } } llvm::Type *NativeConventionSchema::getExpandedType(IRGenModule &IGM) const { if (empty()) return IGM.VoidTy; SmallVector elts; Lowering.enumerateComponents([&](clang::CharUnits offset, clang::CharUnits end, llvm::Type *type) { elts.push_back(type); }); if (elts.size() == 1) return elts[0]; auto &ctx = IGM.getLLVMContext(); return llvm::StructType::get(ctx, elts, /*packed*/ false); } std::pair NativeConventionSchema::getCoercionTypes( IRGenModule &IGM, SmallVectorImpl &expandedTyIndicesMap) const { auto &ctx = IGM.getLLVMContext(); if (empty()) { auto type = llvm::StructType::get(ctx); return {type, type}; } clang::CharUnits lastEnd = clang::CharUnits::Zero(); llvm::SmallSet overlappedWithSuccessor; unsigned idx = 0; // Mark overlapping ranges. Lowering.enumerateComponents( [&](clang::CharUnits offset, clang::CharUnits end, llvm::Type *type) { if (offset < lastEnd) { overlappedWithSuccessor.insert(idx); } lastEnd = end; ++idx; }); // Create the coercion struct with only the integer portion of overlapped // components and non-overlapped components. idx = 0; lastEnd = clang::CharUnits::Zero(); SmallVector elts; bool packed = false; Lowering.enumerateComponents( [&](clang::CharUnits begin, clang::CharUnits end, llvm::Type *type) { bool overlapped = overlappedWithSuccessor.count(idx) || (idx && overlappedWithSuccessor.count(idx - 1)); ++idx; if (overlapped && !isa(type)) { // keep the old lastEnd for padding. return; } // Add padding (which may include padding for overlapped non-integer // components). if (begin != lastEnd) { auto paddingSize = begin - lastEnd; assert(!paddingSize.isNegative()); auto padding = llvm::ArrayType::get(llvm::Type::getInt8Ty(ctx), paddingSize.getQuantity()); elts.push_back(padding); } if (!packed && !begin.isMultipleOf(clang::CharUnits::fromQuantity( IGM.DataLayout.getABITypeAlignment(type)))) packed = true; elts.push_back(type); expandedTyIndicesMap.push_back(idx - 1); lastEnd = begin + clang::CharUnits::fromQuantity( IGM.DataLayout.getTypeAllocSize(type)); assert(end <= lastEnd); }); auto *coercionType = llvm::StructType::get(ctx, elts, packed); if (overlappedWithSuccessor.empty()) return {coercionType, llvm::StructType::get(ctx)}; // Create the coercion struct with only the non-integer overlapped // components. idx = 0; lastEnd = clang::CharUnits::Zero(); elts.clear(); packed = false; Lowering.enumerateComponents( [&](clang::CharUnits begin, clang::CharUnits end, llvm::Type *type) { bool overlapped = overlappedWithSuccessor.count(idx) || (idx && overlappedWithSuccessor.count(idx - 1)); ++idx; if (!overlapped || (overlapped && isa(type))) { // Ignore and keep the old lastEnd for padding. return; } // Add padding. if (begin != lastEnd) { auto paddingSize = begin - lastEnd; assert(!paddingSize.isNegative()); auto padding = llvm::ArrayType::get(llvm::Type::getInt8Ty(ctx), paddingSize.getQuantity()); elts.push_back(padding); } if (!packed && !begin.isMultipleOf(clang::CharUnits::fromQuantity( IGM.DataLayout.getABITypeAlignment(type)))) packed = true; elts.push_back(type); expandedTyIndicesMap.push_back(idx - 1); lastEnd = begin + clang::CharUnits::fromQuantity( IGM.DataLayout.getTypeAllocSize(type)); assert(end <= lastEnd); }); auto *overlappedCoercionType = llvm::StructType::get(ctx, elts, packed); return {coercionType, overlappedCoercionType}; } // TODO: Direct to Indirect result conversion could be handled in a SIL // AddressLowering pass. llvm::Type *SignatureExpansion::expandDirectResult() { // Handle the direct result type, checking for supposedly scalar // result types that we actually want to return indirectly. auto resultType = getSILFuncConventions().getSILResultType( IGM.getMaximalTypeExpansionContext()); // Fast-path the empty tuple type. if (auto tuple = resultType.getAs()) if (tuple->getNumElements() == 0) return IGM.VoidTy; switch (FnType->getLanguage()) { case SILFunctionLanguage::C: llvm_unreachable("Expanding C/ObjC parameters in the wrong place!"); break; case SILFunctionLanguage::Swift: { auto &ti = IGM.getTypeInfo(resultType); auto &native = ti.nativeReturnValueSchema(IGM); if (native.requiresIndirect()) return addIndirectResult(); // Disable the use of sret if we have a non-trivial direct result. if (!native.empty()) CanUseSRet = false; return native.getExpandedType(IGM); } } llvm_unreachable("Not a valid SILFunctionLanguage."); } static const clang::FieldDecl * getLargestUnionField(const clang::RecordDecl *record, const clang::ASTContext &ctx) { const clang::FieldDecl *largestField = nullptr; clang::CharUnits unionSize = clang::CharUnits::Zero(); for (auto field : record->fields()) { assert(!field->isBitField()); clang::CharUnits fieldSize = ctx.getTypeSizeInChars(field->getType()); if (unionSize < fieldSize) { unionSize = fieldSize; largestField = field; } } assert(largestField && "empty union?"); return largestField; } namespace { /// A CRTP class for working with Clang's ABIArgInfo::Expand /// argument type expansions. template struct ClangExpand { IRGenModule &IGM; const clang::ASTContext &Ctx; ClangExpand(IRGenModule &IGM) : IGM(IGM), Ctx(IGM.getClangASTContext()) {} Impl &asImpl() { return *static_cast(this); } void visit(clang::CanQualType type, Args... args) { switch (type->getTypeClass()) { #define TYPE(Class, Base) #define NON_CANONICAL_TYPE(Class, Base) \ case clang::Type::Class: #define DEPENDENT_TYPE(Class, Base) \ case clang::Type::Class: #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) \ case clang::Type::Class: #include "clang/AST/TypeNodes.inc" llvm_unreachable("canonical or dependent type in ABI lowering"); // These shouldn't occur in expandable struct types. case clang::Type::IncompleteArray: case clang::Type::VariableArray: llvm_unreachable("variable-sized or incomplete array in ABI lowering"); // We should only ever get ObjC pointers, not underlying objects. case clang::Type::ObjCInterface: case clang::Type::ObjCObject: llvm_unreachable("ObjC object type in ABI lowering"); // We should only ever get function pointers. case clang::Type::FunctionProto: case clang::Type::FunctionNoProto: llvm_unreachable("non-pointer function type in ABI lowering"); // We currently never import C++ code, and we should be able to // kill Expand before we do. case clang::Type::LValueReference: case clang::Type::RValueReference: case clang::Type::MemberPointer: case clang::Type::Auto: case clang::Type::DeducedTemplateSpecialization: llvm_unreachable("C++ type in ABI lowering?"); case clang::Type::Pipe: llvm_unreachable("OpenCL type in ABI lowering?"); case clang::Type::ExtInt: llvm_unreachable("ExtInt type in ABI lowering?"); case clang::Type::ConstantMatrix: { llvm_unreachable("ConstantMatrix type in ABI lowering?"); } case clang::Type::ConstantArray: { auto array = Ctx.getAsConstantArrayType(type); auto elt = Ctx.getCanonicalType(array->getElementType()); auto &&context = asImpl().beginArrayElements(elt); uint64_t n = array->getSize().getZExtValue(); for (uint64_t i = 0; i != n; ++i) { asImpl().visitArrayElement(elt, i, context, args...); } return; } case clang::Type::Record: { auto record = cast(type)->getDecl(); if (record->isUnion()) { auto largest = getLargestUnionField(record, Ctx); asImpl().visitUnionField(record, largest, args...); } else { auto &&context = asImpl().beginStructFields(record); for (auto field : record->fields()) { asImpl().visitStructField(record, field, context, args...); } } return; } case clang::Type::Complex: { auto elt = type.castAs().getElementType(); asImpl().visitComplexElement(elt, 0, args...); asImpl().visitComplexElement(elt, 1, args...); return; } // Just handle this types as opaque integers. case clang::Type::Enum: case clang::Type::Atomic: asImpl().visitScalar(convertTypeAsInteger(type), args...); return; case clang::Type::Builtin: asImpl().visitScalar( convertBuiltinType(type.castAs()), args...); return; case clang::Type::Vector: case clang::Type::ExtVector: asImpl().visitScalar( convertVectorType(type.castAs()), args...); return; case clang::Type::Pointer: case clang::Type::BlockPointer: case clang::Type::ObjCObjectPointer: asImpl().visitScalar(IGM.Int8PtrTy, args...); return; } llvm_unreachable("bad type kind"); } Size getSizeOfType(clang::QualType type) { auto clangSize = Ctx.getTypeSizeInChars(type); return Size(clangSize.getQuantity()); } private: llvm::Type *convertVectorType(clang::CanQual type) { auto eltTy = convertBuiltinType(type->getElementType().castAs()); return llvm::FixedVectorType::get(eltTy, type->getNumElements()); } llvm::Type *convertBuiltinType(clang::CanQual type) { switch (type.getTypePtr()->getKind()) { #define BUILTIN_TYPE(Id, SingletonId) #define PLACEHOLDER_TYPE(Id, SingletonId) \ case clang::BuiltinType::Id: #include "clang/AST/BuiltinTypes.def" case clang::BuiltinType::Dependent: llvm_unreachable("placeholder type in ABI lowering"); // We should never see these unadorned. case clang::BuiltinType::ObjCId: case clang::BuiltinType::ObjCClass: case clang::BuiltinType::ObjCSel: llvm_unreachable("bare Objective-C object type in ABI lowering"); // This should never be the type of an argument or field. case clang::BuiltinType::Void: llvm_unreachable("bare void type in ABI lowering"); // We should never see the OpenCL builtin types at all. case clang::BuiltinType::OCLImage1dRO: case clang::BuiltinType::OCLImage1dRW: case clang::BuiltinType::OCLImage1dWO: case clang::BuiltinType::OCLImage1dArrayRO: case clang::BuiltinType::OCLImage1dArrayRW: case clang::BuiltinType::OCLImage1dArrayWO: case clang::BuiltinType::OCLImage1dBufferRO: case clang::BuiltinType::OCLImage1dBufferRW: case clang::BuiltinType::OCLImage1dBufferWO: case clang::BuiltinType::OCLImage2dRO: case clang::BuiltinType::OCLImage2dRW: case clang::BuiltinType::OCLImage2dWO: case clang::BuiltinType::OCLImage2dArrayRO: case clang::BuiltinType::OCLImage2dArrayRW: case clang::BuiltinType::OCLImage2dArrayWO: case clang::BuiltinType::OCLImage2dDepthRO: case clang::BuiltinType::OCLImage2dDepthRW: case clang::BuiltinType::OCLImage2dDepthWO: case clang::BuiltinType::OCLImage2dArrayDepthRO: case clang::BuiltinType::OCLImage2dArrayDepthRW: case clang::BuiltinType::OCLImage2dArrayDepthWO: case clang::BuiltinType::OCLImage2dMSAARO: case clang::BuiltinType::OCLImage2dMSAARW: case clang::BuiltinType::OCLImage2dMSAAWO: case clang::BuiltinType::OCLImage2dArrayMSAARO: case clang::BuiltinType::OCLImage2dArrayMSAARW: case clang::BuiltinType::OCLImage2dArrayMSAAWO: case clang::BuiltinType::OCLImage2dMSAADepthRO: case clang::BuiltinType::OCLImage2dMSAADepthRW: case clang::BuiltinType::OCLImage2dMSAADepthWO: case clang::BuiltinType::OCLImage2dArrayMSAADepthRO: case clang::BuiltinType::OCLImage2dArrayMSAADepthRW: case clang::BuiltinType::OCLImage2dArrayMSAADepthWO: case clang::BuiltinType::OCLImage3dRO: case clang::BuiltinType::OCLImage3dRW: case clang::BuiltinType::OCLImage3dWO: case clang::BuiltinType::OCLSampler: case clang::BuiltinType::OCLEvent: case clang::BuiltinType::OCLClkEvent: case clang::BuiltinType::OCLQueue: case clang::BuiltinType::OCLReserveID: case clang::BuiltinType::OCLIntelSubgroupAVCMcePayload: case clang::BuiltinType::OCLIntelSubgroupAVCImePayload: case clang::BuiltinType::OCLIntelSubgroupAVCRefPayload: case clang::BuiltinType::OCLIntelSubgroupAVCSicPayload: case clang::BuiltinType::OCLIntelSubgroupAVCMceResult: case clang::BuiltinType::OCLIntelSubgroupAVCImeResult: case clang::BuiltinType::OCLIntelSubgroupAVCRefResult: case clang::BuiltinType::OCLIntelSubgroupAVCSicResult: case clang::BuiltinType::OCLIntelSubgroupAVCImeResultSingleRefStreamout: case clang::BuiltinType::OCLIntelSubgroupAVCImeResultDualRefStreamout: case clang::BuiltinType::OCLIntelSubgroupAVCImeSingleRefStreamin: case clang::BuiltinType::OCLIntelSubgroupAVCImeDualRefStreamin: llvm_unreachable("OpenCL type in ABI lowering"); // We should never see ARM SVE types at all. #define SVE_TYPE(Name, Id, ...) case clang::BuiltinType::Id: #include "clang/Basic/AArch64SVEACLETypes.def" llvm_unreachable("ARM SVE type in ABI lowering"); // We should never see PPC MMA types at all. #define PPC_VECTOR_TYPE(Name, Id, Size) case clang::BuiltinType::Id: #include "clang/Basic/PPCTypes.def" llvm_unreachable("PPC MMA type in ABI lowering"); // We should never see RISC-V V types at all. #define RVV_TYPE(Name, Id, Size) case clang::BuiltinType::Id: #include "clang/Basic/RISCVVTypes.def" llvm_unreachable("RISC-V V type in ABI lowering"); // Handle all the integer types as opaque values. #define BUILTIN_TYPE(Id, SingletonId) #define SIGNED_TYPE(Id, SingletonId) \ case clang::BuiltinType::Id: #define UNSIGNED_TYPE(Id, SingletonId) \ case clang::BuiltinType::Id: #include "clang/AST/BuiltinTypes.def" return convertTypeAsInteger(type); // Lower all the floating-point values by their semantics. case clang::BuiltinType::Half: return convertFloatingType(Ctx.getTargetInfo().getHalfFormat()); case clang::BuiltinType::Float: return convertFloatingType(Ctx.getTargetInfo().getFloatFormat()); case clang::BuiltinType::Double: return convertFloatingType(Ctx.getTargetInfo().getDoubleFormat()); case clang::BuiltinType::LongDouble: return convertFloatingType(Ctx.getTargetInfo().getLongDoubleFormat()); case clang::BuiltinType::Float16: llvm_unreachable("When upstream support is added for Float16 in " "clang::TargetInfo, use the implementation here"); case clang::BuiltinType::BFloat16: return convertFloatingType(Ctx.getTargetInfo().getBFloat16Format()); case clang::BuiltinType::Float128: return convertFloatingType(Ctx.getTargetInfo().getFloat128Format()); case clang::BuiltinType::Ibm128: return convertFloatingType(Ctx.getTargetInfo().getIbm128Format()); // nullptr_t -> void* case clang::BuiltinType::NullPtr: return IGM.Int8PtrTy; } llvm_unreachable("bad builtin type"); } llvm::Type *convertFloatingType(const llvm::fltSemantics &format) { if (&format == &llvm::APFloat::IEEEhalf()) return llvm::Type::getHalfTy(IGM.getLLVMContext()); if (&format == &llvm::APFloat::IEEEsingle()) return llvm::Type::getFloatTy(IGM.getLLVMContext()); if (&format == &llvm::APFloat::IEEEdouble()) return llvm::Type::getDoubleTy(IGM.getLLVMContext()); if (&format == &llvm::APFloat::IEEEquad()) return llvm::Type::getFP128Ty(IGM.getLLVMContext()); if (&format == &llvm::APFloat::PPCDoubleDouble()) return llvm::Type::getPPC_FP128Ty(IGM.getLLVMContext()); if (&format == &llvm::APFloat::x87DoubleExtended()) return llvm::Type::getX86_FP80Ty(IGM.getLLVMContext()); llvm_unreachable("bad float format"); } llvm::Type *convertTypeAsInteger(clang::QualType type) { auto size = getSizeOfType(type); return llvm::IntegerType::get(IGM.getLLVMContext(), size.getValueInBits()); } }; /// A CRTP specialization of ClangExpand which projects down to /// various aggregate elements of an address. /// /// Subclasses should only have to define visitScalar. template class ClangExpandProjection : public ClangExpand { using super = ClangExpand; using super::asImpl; using super::IGM; using super::Ctx; using super::getSizeOfType; protected: IRGenFunction &IGF; ClangExpandProjection(IRGenFunction &IGF) : super(IGF.IGM), IGF(IGF) {} public: void visit(clang::CanQualType type, Address addr) { assert(addr.getType() == IGM.Int8PtrTy); super::visit(type, addr); } Size beginArrayElements(clang::CanQualType element) { return getSizeOfType(element); } void visitArrayElement(clang::CanQualType element, unsigned i, Size elementSize, Address arrayAddr) { asImpl().visit(element, createGEPAtOffset(arrayAddr, elementSize * i)); } void visitComplexElement(clang::CanQualType element, unsigned i, Address complexAddr) { Address addr = complexAddr; if (i) { addr = createGEPAtOffset(complexAddr, getSizeOfType(element)); } asImpl().visit(element, addr); } void visitUnionField(const clang::RecordDecl *record, const clang::FieldDecl *field, Address structAddr) { asImpl().visit(Ctx.getCanonicalType(field->getType()), structAddr); } const clang::ASTRecordLayout & beginStructFields(const clang::RecordDecl *record) { return Ctx.getASTRecordLayout(record); } void visitStructField(const clang::RecordDecl *record, const clang::FieldDecl *field, const clang::ASTRecordLayout &layout, Address structAddr) { auto fieldIndex = field->getFieldIndex(); assert(!field->isBitField()); auto fieldOffset = Size(layout.getFieldOffset(fieldIndex) / 8); asImpl().visit(Ctx.getCanonicalType(field->getType()), createGEPAtOffset(structAddr, fieldOffset)); } private: Address createGEPAtOffset(Address addr, Size offset) { if (offset.isZero()) { return addr; } else { return IGF.Builder.CreateConstByteArrayGEP(addr, offset); } } }; /// A class for collecting the types of a Clang ABIArgInfo::Expand /// argument expansion. struct ClangExpandTypeCollector : ClangExpand { SmallVectorImpl &Types; ClangExpandTypeCollector(IRGenModule &IGM, SmallVectorImpl &types) : ClangExpand(IGM), Types(types) {} bool beginArrayElements(clang::CanQualType element) { return true; } void visitArrayElement(clang::CanQualType element, unsigned i, bool _) { visit(element); } void visitComplexElement(clang::CanQualType element, unsigned i) { visit(element); } void visitUnionField(const clang::RecordDecl *record, const clang::FieldDecl *field) { visit(Ctx.getCanonicalType(field->getType())); } bool beginStructFields(const clang::RecordDecl *record) { return true; } void visitStructField(const clang::RecordDecl *record, const clang::FieldDecl *field, bool _) { visit(Ctx.getCanonicalType(field->getType())); } void visitScalar(llvm::Type *type) { Types.push_back(type); } }; } // end anonymous namespace static bool doesClangExpansionMatchSchema(IRGenModule &IGM, clang::CanQualType type, const ExplosionSchema &schema) { assert(!schema.containsAggregate()); SmallVector expansion; ClangExpandTypeCollector(IGM, expansion).visit(type); if (expansion.size() != schema.size()) return false; for (size_t i = 0, e = schema.size(); i != e; ++i) { if (schema[i].getScalarType() != expansion[i]) return false; } return true; } /// Expand the result and parameter types to the appropriate LLVM IR /// types for C, C++ and Objective-C signatures. void SignatureExpansion::expandExternalSignatureTypes() { assert(FnType->getLanguage() == SILFunctionLanguage::C); // Convert the SIL result type to a Clang type. auto clangResultTy = IGM.getClangType(FnType->getFormalCSemanticResult(IGM.getSILModule())); // Now convert the parameters to Clang types. auto params = FnType->getParameters(); SmallVector paramTys; auto const &clangCtx = IGM.getClangASTContext(); bool formalIndirectResult = FnType->getNumResults() > 0 && FnType->getSingleResult().isFormalIndirect(); if (formalIndirectResult) { auto resultType = getSILFuncConventions().getSingleSILResultType( IGM.getMaximalTypeExpansionContext()); auto clangTy = IGM.getClangASTContext().getPointerType(IGM.getClangType(resultType)); paramTys.push_back(clangTy); } switch (FnType->getRepresentation()) { case SILFunctionTypeRepresentation::ObjCMethod: { // ObjC methods take their 'self' argument first, followed by an // implicit _cmd argument. auto &self = params.back(); auto clangTy = IGM.getClangType(self, FnType); paramTys.push_back(clangTy); paramTys.push_back(clangCtx.VoidPtrTy); params = params.drop_back(); break; } case SILFunctionTypeRepresentation::Block: // Blocks take their context argument first. paramTys.push_back(clangCtx.VoidPtrTy); break; case SILFunctionTypeRepresentation::CXXMethod: { // Cxx methods take their 'self' argument first. auto &self = params.back(); auto clangTy = IGM.getClangType(self, FnType); paramTys.push_back(clangTy); params = params.drop_back(); break; } case SILFunctionTypeRepresentation::CFunctionPointer: // No implicit arguments. break; case SILFunctionTypeRepresentation::Thin: case SILFunctionTypeRepresentation::Thick: case SILFunctionTypeRepresentation::Method: case SILFunctionTypeRepresentation::WitnessMethod: case SILFunctionTypeRepresentation::Closure: llvm_unreachable("not a C representation"); } // Given an index within the clang parameters list, what do we need // to subtract from it to get to the corresponding index within the // Swift parameters list? size_t clangToSwiftParamOffset = paramTys.size(); // Convert each parameter to a Clang type. for (auto param : params) { auto clangTy = IGM.getClangType(param, FnType); paramTys.push_back(clangTy); } // Generate function info for this signature. auto extInfo = clang::FunctionType::ExtInfo(); auto &FI = clang::CodeGen::arrangeFreeFunctionCall(IGM.ClangCodeGen->CGM(), clangResultTy, paramTys, extInfo, clang::CodeGen::RequiredArgs::All); ForeignInfo.ClangInfo = &FI; assert(FI.arg_size() == paramTys.size() && "Expected one ArgInfo for each parameter type!"); auto &returnInfo = FI.getReturnInfo(); // Does the result need an extension attribute? if (returnInfo.isExtend()) { bool signExt = clangResultTy->hasSignedIntegerRepresentation(); assert((signExt || clangResultTy->hasUnsignedIntegerRepresentation()) && "Invalid attempt to add extension attribute to argument!"); Attrs = Attrs.addRetAttribute(IGM.getLLVMContext(), attrKindForExtending(signExt)); } // If we return indirectly, that is the first parameter type. if (returnInfo.isIndirect()) { addIndirectResult(); } size_t firstParamToLowerNormally = 0; // Use a special IR type for passing block pointers. if (FnType->getRepresentation() == SILFunctionTypeRepresentation::Block) { assert(FI.arg_begin()[0].info.isDirect() && "block pointer not passed directly?"); ParamIRTypes.push_back(IGM.ObjCBlockPtrTy); firstParamToLowerNormally = 1; } for (auto i : indices(paramTys).slice(firstParamToLowerNormally)) { auto &AI = FI.arg_begin()[i].info; // Add a padding argument if required. if (auto *padType = AI.getPaddingType()) ParamIRTypes.push_back(padType); switch (AI.getKind()) { case clang::CodeGen::ABIArgInfo::Extend: { bool signExt = paramTys[i]->hasSignedIntegerRepresentation(); assert((signExt || paramTys[i]->hasUnsignedIntegerRepresentation()) && "Invalid attempt to add extension attribute to argument!"); Attrs = Attrs.addParamAttribute(IGM.getLLVMContext(), getCurParamIndex(), attrKindForExtending(signExt)); LLVM_FALLTHROUGH; } case clang::CodeGen::ABIArgInfo::Direct: { switch (FI.getExtParameterInfo(i).getABI()) { case clang::ParameterABI::Ordinary: break; case clang::ParameterABI::SwiftAsyncContext: IGM.addSwiftAsyncContextAttributes(Attrs, getCurParamIndex()); break; case clang::ParameterABI::SwiftContext: IGM.addSwiftSelfAttributes(Attrs, getCurParamIndex()); break; case clang::ParameterABI::SwiftErrorResult: IGM.addSwiftErrorAttributes(Attrs, getCurParamIndex()); break; case clang::ParameterABI::SwiftIndirectResult: { auto *coercedTy = AI.getCoerceToType(); addIndirectResultAttributes(IGM, Attrs, getCurParamIndex(), claimSRet(), coercedTy->getPointerElementType()); break; } } // If the coercion type is a struct which can be flattened, we need to // expand it. auto *coercedTy = AI.getCoerceToType(); if (AI.isDirect() && AI.getCanBeFlattened() && isa(coercedTy)) { const auto *ST = cast(coercedTy); for (unsigned EI : range(ST->getNumElements())) ParamIRTypes.push_back(ST->getElementType(EI)); } else { ParamIRTypes.push_back(coercedTy); } break; } case clang::CodeGen::ABIArgInfo::CoerceAndExpand: { auto types = AI.getCoerceAndExpandTypeSequence(); ParamIRTypes.append(types.begin(), types.end()); break; } case clang::CodeGen::ABIArgInfo::IndirectAliased: llvm_unreachable("not implemented"); case clang::CodeGen::ABIArgInfo::Indirect: { // When `i` is 0, if the clang offset is 1, that means we mapped the last // Swift parameter (self) to the first Clang parameter (this). In this // case, the corresponding Swift param is the last function parameter. assert((i >= clangToSwiftParamOffset || clangToSwiftParamOffset == 1) && "Unexpected index for indirect byval argument"); auto ¶m = i < clangToSwiftParamOffset ? FnType->getParameters().back() : params[i - clangToSwiftParamOffset]; auto paramTy = getSILFuncConventions().getSILType( param, IGM.getMaximalTypeExpansionContext()); auto ¶mTI = cast(IGM.getTypeInfo(paramTy)); if (AI.getIndirectByVal() && !paramTy.isForeignReferenceType()) { addByvalArgumentAttributes( IGM, Attrs, getCurParamIndex(), Alignment(AI.getIndirectAlign().getQuantity()), paramTI.getStorageType()); } addPointerParameter(paramTI.getStorageType()); break; } case clang::CodeGen::ABIArgInfo::Expand: ClangExpandTypeCollector(IGM, ParamIRTypes).visit(paramTys[i]); break; case clang::CodeGen::ABIArgInfo::Ignore: break; case clang::CodeGen::ABIArgInfo::InAlloca: llvm_unreachable("Need to handle InAlloca during signature expansion"); } } if (returnInfo.isIndirect() || returnInfo.isIgnore()) { ResultIRType = IGM.VoidTy; } else { ResultIRType = returnInfo.getCoerceToType(); } } static ArrayRef expandScalarOrStructTypeToArray(llvm::Type *&ty) { ArrayRef expandedTys; if (auto expansionTy = dyn_cast(ty)) { // Is there any good reason this isn't public API of llvm::StructType? expandedTys = makeArrayRef(expansionTy->element_begin(), expansionTy->getNumElements()); } else { expandedTys = ty; } return expandedTys; } void SignatureExpansion::expand(SILParameterInfo param) { auto paramSILType = getSILFuncConventions().getSILType( param, IGM.getMaximalTypeExpansionContext()); auto &ti = IGM.getTypeInfo(paramSILType); switch (auto conv = param.getConvention()) { case ParameterConvention::Indirect_In: case ParameterConvention::Indirect_In_Constant: case ParameterConvention::Indirect_In_Guaranteed: addIndirectValueParameterAttributes(IGM, Attrs, ti, ParamIRTypes.size()); addPointerParameter(IGM.getStorageType(getSILFuncConventions().getSILType( param, IGM.getMaximalTypeExpansionContext()))); return; case ParameterConvention::Indirect_Inout: case ParameterConvention::Indirect_InoutAliasable: addInoutParameterAttributes( IGM, paramSILType, Attrs, ti, ParamIRTypes.size(), conv == ParameterConvention::Indirect_InoutAliasable); addPointerParameter(IGM.getStorageType(getSILFuncConventions().getSILType( param, IGM.getMaximalTypeExpansionContext()))); return; case ParameterConvention::Direct_Owned: case ParameterConvention::Direct_Unowned: case ParameterConvention::Direct_Guaranteed: switch (FnType->getLanguage()) { case SILFunctionLanguage::C: { llvm_unreachable("Unexpected C/ObjC method in parameter expansion!"); return; } case SILFunctionLanguage::Swift: { auto &nativeSchema = ti.nativeParameterValueSchema(IGM); if (nativeSchema.requiresIndirect()) { addIndirectValueParameterAttributes(IGM, Attrs, ti, ParamIRTypes.size()); ParamIRTypes.push_back(ti.getStorageType()->getPointerTo()); return; } if (nativeSchema.empty()) { assert(ti.getSchema().empty()); return; } auto expandedTy = nativeSchema.getExpandedType(IGM); auto expandedTysArray = expandScalarOrStructTypeToArray(expandedTy); for (auto *Ty : expandedTysArray) ParamIRTypes.push_back(Ty); return; } } llvm_unreachable("bad abstract CC"); } llvm_unreachable("bad parameter convention"); } /// Does the given function type have a self parameter that should be /// given the special treatment for self parameters? /// /// It's important that this only return true for things that are /// passed as a single pointer. bool irgen::hasSelfContextParameter(CanSILFunctionType fnType) { if (!fnType->hasSelfParam()) return false; SILParameterInfo param = fnType->getSelfParameter(); // All the indirect conventions pass a single pointer. if (param.isFormalIndirect()) { return true; } // Direct conventions depend on the type. CanType type = param.getInterfaceType(); // Thick or @objc metatypes (but not existential metatypes). if (auto metatype = dyn_cast(type)) { return metatype->getRepresentation() != MetatypeRepresentation::Thin; } // Classes and class-bounded archetypes or ObjC existentials. // No need to apply this to existentials. // The direct check for SubstitutableType works because only // class-bounded generic types can be passed directly. if (type->mayHaveSuperclass() || isa(type) || type->isObjCExistentialType()) { return true; } return false; } /// Expand the abstract parameters of a SIL function type into the physical /// parameters of an LLVM function type (results have already been expanded). void SignatureExpansion::expandParameters() { assert(FnType->getRepresentation() != SILFunctionTypeRepresentation::Block && "block with non-C calling conv?!"); if (FnType->isAsync()) { assert(false && "Should not use expandParameters for async functions"); return; } // First, if this is a coroutine, add the coroutine-context parameter. switch (FnType->getCoroutineKind()) { case SILCoroutineKind::None: break; case SILCoroutineKind::YieldOnce: case SILCoroutineKind::YieldMany: addCoroutineContextParameter(); break; } // Next, the formal parameters. But 'self' is treated as the // context if it has pointer representation. auto params = FnType->getParameters(); bool hasSelfContext = false; if (hasSelfContextParameter(FnType)) { hasSelfContext = true; params = params.drop_back(); } for (auto param : params) { expand(param); } // Next, the generic signature. if (hasPolymorphicParameters(FnType) && !FnKind.shouldSuppressPolymorphicArguments()) expandPolymorphicSignature(IGM, FnType, ParamIRTypes); // Certain special functions are passed the continuation directly. if (FnKind.shouldPassContinuationDirectly()) { ParamIRTypes.push_back(IGM.Int8PtrTy); ParamIRTypes.push_back(IGM.SwiftContextPtrTy); } // Context is next. if (hasSelfContext) { auto curLength = ParamIRTypes.size(); (void) curLength; if (claimSelf()) IGM.addSwiftSelfAttributes(Attrs, curLength); expand(FnType->getSelfParameter()); assert(ParamIRTypes.size() == curLength + 1 && "adding 'self' added unexpected number of parameters"); } else { auto needsContext = [=]() -> bool { switch (FnType->getRepresentation()) { case SILFunctionType::Representation::Block: llvm_unreachable("adding block parameter in Swift CC expansion?"); // Always leave space for a context argument if we have an error result. case SILFunctionType::Representation::CFunctionPointer: case SILFunctionType::Representation::Method: case SILFunctionType::Representation::WitnessMethod: case SILFunctionType::Representation::ObjCMethod: case SILFunctionType::Representation::CXXMethod: case SILFunctionType::Representation::Thin: case SILFunctionType::Representation::Closure: return FnType->hasErrorResult(); case SILFunctionType::Representation::Thick: return true; } llvm_unreachable("bad representation kind"); }; if (needsContext()) { if (claimSelf()) IGM.addSwiftSelfAttributes(Attrs, ParamIRTypes.size()); ParamIRTypes.push_back(IGM.RefCountedPtrTy); } } // Error results are last. We always pass them as a pointer to the // formal error type; LLVM will magically turn this into a non-pointer // if we set the right attribute. if (FnType->hasErrorResult()) { if (claimError()) IGM.addSwiftErrorAttributes(Attrs, ParamIRTypes.size()); llvm::Type *errorType = IGM.getStorageType(getSILFuncConventions().getSILType( FnType->getErrorResult(), IGM.getMaximalTypeExpansionContext())); ParamIRTypes.push_back(errorType->getPointerTo()); } // Witness methods have some extra parameter types. if (FnType->getRepresentation() == SILFunctionTypeRepresentation::WitnessMethod) { expandTrailingWitnessSignature(IGM, FnType, ParamIRTypes); } } /// Expand the result and parameter types of a SIL function into the /// physical parameter types of an LLVM function and return the result /// type. void SignatureExpansion::expandFunctionType() { switch (FnType->getLanguage()) { case SILFunctionLanguage::Swift: { if (FnType->isAsync()) { expandAsyncEntryType(); return; } expandResult(); expandParameters(); return; } case SILFunctionLanguage::C: expandExternalSignatureTypes(); return; } llvm_unreachable("bad abstract calling convention"); } void SignatureExpansion::expandCoroutineContinuationType() { expandCoroutineResult(/*for continuation*/ true); expandCoroutineContinuationParameters(); } void SignatureExpansion::expandAsyncReturnType() { // Build up the signature of the return continuation function. // void (AsyncTask *, ExecutorRef, AsyncContext *, DirectResult0, ..., // DirectResultN, Error*); ResultIRType = IGM.VoidTy; addAsyncParameters(); SmallVector components; auto addErrorResult = [&]() { // Add the error pointer at the end. if (FnType->hasErrorResult()) { llvm::Type *errorType = IGM.getStorageType(getSILFuncConventions().getSILType( FnType->getErrorResult(), IGM.getMaximalTypeExpansionContext())); claimSelf(); auto selfIdx = ParamIRTypes.size(); IGM.addSwiftSelfAttributes(Attrs, selfIdx); AsyncResumeFunctionSwiftSelfIdx = selfIdx; ParamIRTypes.push_back(errorType); } }; auto resultType = getSILFuncConventions().getSILResultType( IGM.getMaximalTypeExpansionContext()); auto &ti = IGM.getTypeInfo(resultType); auto &native = ti.nativeReturnValueSchema(IGM); if (native.requiresIndirect() || native.empty()) { addErrorResult(); return; } // Add the result type components as trailing parameters. native.enumerateComponents( [&](clang::CharUnits offset, clang::CharUnits end, llvm::Type *type) { ParamIRTypes.push_back(type); }); addErrorResult(); } void SignatureExpansion::expandAsyncEntryType() { ResultIRType = IGM.VoidTy; // FIXME: Claim the SRet for now. The way we have set up the function type to // start with the three async specific arguments does not allow for use of // sret. CanUseSRet = false; // Add the indirect 'direct' result type. auto resultType = getSILFuncConventions().getSILResultType( IGM.getMaximalTypeExpansionContext()); auto &ti = IGM.getTypeInfo(resultType); auto &native = ti.nativeReturnValueSchema(IGM); if (native.requiresIndirect()) addIndirectResult(); // Add the indirect result types. expandIndirectResults(); // Add the async context parameter. addAsyncParameters(); // Add the parameters. auto params = FnType->getParameters(); auto hasSelfContext = false; if (hasSelfContextParameter(FnType)) { hasSelfContext = true; params = params.drop_back(); } for (auto param : params) { expand(param); } // Next, the generic signature. if (hasPolymorphicParameters(FnType) && !FnKind.shouldSuppressPolymorphicArguments()) expandPolymorphicSignature(IGM, FnType, ParamIRTypes); if (FnKind.shouldPassContinuationDirectly()) { // Async waiting functions add the resume function pointer. // (But skip passing the metadata.) ParamIRTypes.push_back(IGM.Int8PtrTy); ParamIRTypes.push_back(IGM.SwiftContextPtrTy); } // Context is next. if (hasSelfContext) { auto curLength = ParamIRTypes.size(); (void)curLength; expand(FnType->getSelfParameter()); assert(ParamIRTypes.size() == curLength + 1 && "adding 'self' added unexpected number of parameters"); if (claimSelf()) IGM.addSwiftSelfAttributes(Attrs, curLength); } else { auto needsContext = [=]() -> bool { switch (FnType->getRepresentation()) { case SILFunctionType::Representation::Block: llvm_unreachable("adding block parameter in Swift CC expansion?"); // Always leave space for a context argument if we have an error result. case SILFunctionType::Representation::CFunctionPointer: case SILFunctionType::Representation::Method: case SILFunctionType::Representation::WitnessMethod: case SILFunctionType::Representation::ObjCMethod: case SILFunctionType::Representation::Thin: case SILFunctionType::Representation::Closure: case SILFunctionType::Representation::CXXMethod: return false; case SILFunctionType::Representation::Thick: return true; } llvm_unreachable("bad representation kind"); }; if (needsContext()) { if (claimSelf()) IGM.addSwiftSelfAttributes(Attrs, ParamIRTypes.size()); ParamIRTypes.push_back(IGM.RefCountedPtrTy); } } // For now we continue to store the error result in the context to be able to // reuse non throwing functions. // Witness methods have some extra parameter types. if (FnType->getRepresentation() == SILFunctionTypeRepresentation::WitnessMethod) { expandTrailingWitnessSignature(IGM, FnType, ParamIRTypes); } } void SignatureExpansion::expandAsyncAwaitType() { expandAsyncEntryType(); SmallVector components; // Async context. AsyncContextIdx = 0; components.push_back(IGM.Int8PtrTy); auto addErrorResult = [&]() { if (FnType->hasErrorResult()) { llvm::Type *errorType = IGM.getStorageType(getSILFuncConventions().getSILType( FnType->getErrorResult(), IGM.getMaximalTypeExpansionContext())); auto selfIdx = components.size(); AsyncResumeFunctionSwiftSelfIdx = selfIdx; components.push_back(errorType); } }; // Direct result type as arguments. auto resultType = getSILFuncConventions().getSILResultType( IGM.getMaximalTypeExpansionContext()); auto &ti = IGM.getTypeInfo(resultType); auto &native = ti.nativeReturnValueSchema(IGM); if (native.requiresIndirect() || native.empty()) { addErrorResult(); ResultIRType = llvm::StructType::get(IGM.getLLVMContext(), components); return; } // Add the result type components as trailing parameters. native.enumerateComponents( [&](clang::CharUnits offset, clang::CharUnits end, llvm::Type *type) { components.push_back(type); }); addErrorResult(); ResultIRType = llvm::StructType::get(IGM.getLLVMContext(), components); } Signature SignatureExpansion::getSignature() { // Create the appropriate LLVM type. llvm::FunctionType *llvmType = llvm::FunctionType::get(ResultIRType, ParamIRTypes, /*variadic*/ false); assert((ForeignInfo.ClangInfo != nullptr) == (FnType->getLanguage() == SILFunctionLanguage::C) && "C function type without C function info"); auto callingConv = expandCallingConv(IGM, FnType->getRepresentation(), FnType->isAsync()); Signature result; result.Type = llvmType; result.CallingConv = callingConv; result.Attributes = Attrs; using ExtraData = Signature::ExtraData; if (FnType->getLanguage() == SILFunctionLanguage::C) { result.ExtraDataKind = ExtraData::kindForMember(); result.ExtraDataStorage.emplace(result.ExtraDataKind, ForeignInfo); } else if (FnType->isCoroutine()) { result.ExtraDataKind = ExtraData::kindForMember(); result.ExtraDataStorage.emplace(result.ExtraDataKind, CoroInfo); } else if (FnType->isAsync()) { result.ExtraDataKind = ExtraData::kindForMember(); AsyncInfo info; info.AsyncContextIdx = AsyncContextIdx; info.AsyncResumeFunctionSwiftSelfIdx = AsyncResumeFunctionSwiftSelfIdx; result.ExtraDataStorage.emplace(result.ExtraDataKind, info); } else { result.ExtraDataKind = ExtraData::kindForMember(); } return result; } Signature Signature::getUncached(IRGenModule &IGM, CanSILFunctionType formalType, FunctionPointerKind fpKind) { GenericContextScope scope(IGM, formalType->getInvocationGenericSignature()); SignatureExpansion expansion(IGM, formalType, fpKind); expansion.expandFunctionType(); return expansion.getSignature(); } Signature Signature::forCoroutineContinuation(IRGenModule &IGM, CanSILFunctionType fnType) { assert(fnType->isCoroutine()); SignatureExpansion expansion(IGM, fnType, FunctionPointerKind(fnType)); expansion.expandCoroutineContinuationType(); return expansion.getSignature(); } Signature Signature::forAsyncReturn(IRGenModule &IGM, CanSILFunctionType fnType) { assert(fnType->isAsync()); GenericContextScope scope(IGM, fnType->getInvocationGenericSignature()); SignatureExpansion expansion(IGM, fnType, FunctionPointerKind(fnType)); expansion.expandAsyncReturnType(); return expansion.getSignature(); } Signature Signature::forAsyncAwait(IRGenModule &IGM, CanSILFunctionType fnType, FunctionPointerKind fnKind) { assert(fnType->isAsync()); GenericContextScope scope(IGM, fnType->getInvocationGenericSignature()); SignatureExpansion expansion(IGM, fnType, fnKind); expansion.expandAsyncAwaitType(); return expansion.getSignature(); } Signature Signature::forAsyncEntry(IRGenModule &IGM, CanSILFunctionType fnType, FunctionPointerKind fnKind) { assert(fnType->isAsync()); GenericContextScope scope(IGM, fnType->getInvocationGenericSignature()); SignatureExpansion expansion(IGM, fnType, fnKind); expansion.expandAsyncEntryType(); return expansion.getSignature(); } void irgen::extractScalarResults(IRGenFunction &IGF, llvm::Type *bodyType, llvm::Value *call, Explosion &out) { assert(!bodyType->isVoidTy() && "Unexpected void result type!"); auto *returned = call; auto *callType = call->getType(); // If the type of the result of the call differs from the type used // elsewhere in the caller due to ABI type coercion, we need to // coerce the result back from the ABI type before extracting the // elements. if (bodyType != callType) returned = IGF.coerceValue(returned, bodyType, IGF.IGM.DataLayout); if (auto *structType = dyn_cast(bodyType)) IGF.emitAllExtractValues(returned, structType, out); else out.add(returned); } void IRGenFunction::emitAllExtractValues(llvm::Value *value, llvm::StructType *structType, Explosion &out) { assert(value->getType() == structType); for (unsigned i = 0, e = structType->getNumElements(); i != e; ++i) out.add(Builder.CreateExtractValue(value, i)); } namespace { // TODO(compnerd) analyze if this should be out-lined via a runtime call rather // than be open-coded. This needs to account for the fact that we are able to // statically optimize this often times due to CVP changing the select to a // `select i1 true, ...`. llvm::Value *emitIndirectAsyncFunctionPointer(IRGenFunction &IGF, llvm::Value *pointer) { llvm::IntegerType *IntPtrTy = IGF.IGM.IntPtrTy; llvm::Type *AsyncFunctionPointerPtrTy = IGF.IGM.AsyncFunctionPointerPtrTy; llvm::Constant *Zero = llvm::Constant::getIntegerValue(IntPtrTy, APInt(IntPtrTy->getBitWidth(), 0)); llvm::Constant *One = llvm::Constant::getIntegerValue(IntPtrTy, APInt(IntPtrTy->getBitWidth(), 1)); llvm::Constant *NegativeOne = llvm::Constant::getIntegerValue(IntPtrTy, APInt(IntPtrTy->getBitWidth(), -2)); swift::irgen::Alignment PointerAlignment = IGF.IGM.getPointerAlignment(); llvm::Value *PtrToInt = IGF.Builder.CreatePtrToInt(pointer, IntPtrTy); llvm::Value *And = IGF.Builder.CreateAnd(PtrToInt, One); llvm::Value *ICmp = IGF.Builder.CreateICmpEQ(And, Zero); llvm::Value *BitCast = IGF.Builder.CreateBitCast(pointer, AsyncFunctionPointerPtrTy); llvm::Value *UntaggedPointer = IGF.Builder.CreateAnd(PtrToInt, NegativeOne); llvm::Value *IntToPtr = IGF.Builder.CreateIntToPtr(UntaggedPointer, AsyncFunctionPointerPtrTy->getPointerTo()); llvm::Value *Load = IGF.Builder.CreateLoad(IntToPtr, PointerAlignment); // (select (icmp eq, (and (ptrtoint %AsyncFunctionPointer), 1), 0), // (%AsyncFunctionPointer), // (inttoptr (and (ptrtoint %AsyncFunctionPointer), -2))) return IGF.Builder.CreateSelect(ICmp, BitCast, Load); } } std::pair irgen::getAsyncFunctionAndSize( IRGenFunction &IGF, SILFunctionTypeRepresentation representation, FunctionPointer functionPointer, llvm::Value *thickContext, std::pair values) { assert(values.first || values.second); assert(functionPointer.getKind() != FunctionPointer::Kind::Function); bool emitFunction = values.first; bool emitSize = values.second; assert(emitFunction || emitSize); // Ensure that the AsyncFunctionPointer is not auth'd if it is not used and // that it is not auth'd more than once if it is needed. // // The AsyncFunctionPointer is not needed in the case where only the function // is being loaded and the FunctionPointer was created from a function_ref // instruction. llvm::Optional afpPtrValue = llvm::None; auto getAFPPtr = [&]() { if (!afpPtrValue) { auto *ptr = functionPointer.getRawPointer(); if (auto authInfo = functionPointer.getAuthInfo()) { ptr = emitPointerAuthAuth(IGF, ptr, authInfo); } afpPtrValue = (IGF.IGM.getOptions().IndirectAsyncFunctionPointer) ? emitIndirectAsyncFunctionPointer(IGF, ptr) : IGF.Builder.CreateBitCast(ptr, IGF.IGM.AsyncFunctionPointerPtrTy); } return *afpPtrValue; }; llvm::Value *fn = nullptr; if (emitFunction) { // If the FP is not an async FP, then we just have the direct // address of the async function. This only happens for special // async functions right now. if (!functionPointer.getKind().isAsyncFunctionPointer()) { assert(functionPointer.getStaticAsyncContextSize(IGF.IGM)); fn = functionPointer.getRawPointer(); // If we've opportunistically also emitted the direct address of the // function, always prefer that. } else if (auto *function = functionPointer.getRawAsyncFunction()) { fn = function; // Otherwise, extract the function pointer from the async FP structure. } else { llvm::Value *addrPtr = IGF.Builder.CreateStructGEP( getAFPPtr()->getType()->getScalarType()->getPointerElementType(), getAFPPtr(), 0); fn = IGF.emitLoadOfCompactFunctionPointer( Address(addrPtr, IGF.IGM.getPointerAlignment()), /*isFar*/ false, /*expectedType*/ functionPointer.getFunctionType()->getPointerTo()); } if (auto authInfo = functionPointer.getAuthInfo().getCorrespondingCodeAuthInfo()) { fn = emitPointerAuthSign(IGF, fn, authInfo); } } llvm::Value *size = nullptr; if (emitSize) { if (auto staticSize = functionPointer.getStaticAsyncContextSize(IGF.IGM)) { size = llvm::ConstantInt::get(IGF.IGM.Int32Ty, staticSize->getValue()); } else { auto *sizePtr = IGF.Builder.CreateStructGEP( getAFPPtr()->getType()->getScalarType()->getPointerElementType(), getAFPPtr(), 1); size = IGF.Builder.CreateLoad(sizePtr, IGF.IGM.getPointerAlignment()); } } return {fn, size}; } static void externalizeArguments(IRGenFunction &IGF, const Callee &callee, Explosion &in, Explosion &out, TemporarySet &temporaries, bool isOutlined); namespace { class SyncCallEmission final : public CallEmission { using super = CallEmission; public: SyncCallEmission(IRGenFunction &IGF, llvm::Value *selfValue, Callee &&callee) : CallEmission(IGF, selfValue, std::move(callee)) { setFromCallee(); } FunctionPointer getCalleeFunctionPointer() override { return getCallee().getFunctionPointer().getAsFunction(IGF); } SILType getParameterType(unsigned index) override { SILFunctionConventions origConv(getCallee().getOrigFunctionType(), IGF.getSILModule()); return origConv.getSILArgumentType( index, IGF.IGM.getMaximalTypeExpansionContext()); } llvm::CallInst *createCall(const FunctionPointer &fn, ArrayRef args) override { return IGF.Builder.CreateCall(fn, Args); } void begin() override { super::begin(); } void end() override { super::end(); } void setFromCallee() override { super::setFromCallee(); auto fnType = CurCallee.getOrigFunctionType(); if (fnType->getRepresentation() == SILFunctionTypeRepresentation::WitnessMethod) { unsigned n = getTrailingWitnessSignatureLength(IGF.IGM, fnType); while (n--) { Args[--LastArgWritten] = nullptr; } } llvm::Value *contextPtr = CurCallee.getSwiftContext(); // Add the error result if we have one. if (fnType->hasErrorResult()) { // The invariant is that this is always zero-initialized, so we // don't need to do anything extra here. SILFunctionConventions fnConv(fnType, IGF.getSILModule()); Address errorResultSlot = IGF.getCalleeErrorResultSlot( fnConv.getSILErrorType(IGF.IGM.getMaximalTypeExpansionContext())); assert(LastArgWritten > 0); Args[--LastArgWritten] = errorResultSlot.getAddress(); addParamAttribute(LastArgWritten, llvm::Attribute::NoCapture); IGF.IGM.addSwiftErrorAttributes(CurCallee.getMutableAttributes(), LastArgWritten); // Fill in the context pointer if necessary. if (!contextPtr) { assert(!CurCallee.getOrigFunctionType()->getExtInfo().hasContext() && "Missing context?"); contextPtr = llvm::UndefValue::get(IGF.IGM.RefCountedPtrTy); } } // Add the data pointer if we have one. // (Note that we're emitting backwards, so this correctly goes // *before* the error pointer.) if (contextPtr) { assert(LastArgWritten > 0); Args[--LastArgWritten] = contextPtr; IGF.IGM.addSwiftSelfAttributes(CurCallee.getMutableAttributes(), LastArgWritten); } } void setArgs(Explosion &original, bool isOutlined, WitnessMetadata *witnessMetadata) override { // Convert arguments to a representation appropriate to the calling // convention. Explosion adjusted; auto origCalleeType = CurCallee.getOrigFunctionType(); SILFunctionConventions fnConv(origCalleeType, IGF.getSILModule()); // Pass along the indirect result pointers. original.transferInto(adjusted, fnConv.getNumIndirectSILResults()); // Pass along the coroutine buffer. switch (origCalleeType->getCoroutineKind()) { case SILCoroutineKind::YieldMany: case SILCoroutineKind::YieldOnce: original.transferInto(adjusted, 1); break; case SILCoroutineKind::None: break; } // Translate the formal arguments and handle any special arguments. switch (getCallee().getRepresentation()) { case SILFunctionTypeRepresentation::ObjCMethod: adjusted.add(getCallee().getObjCMethodReceiver()); adjusted.add(getCallee().getObjCMethodSelector()); externalizeArguments(IGF, getCallee(), original, adjusted, Temporaries, isOutlined); break; case SILFunctionTypeRepresentation::Block: case SILFunctionTypeRepresentation::CXXMethod: if (getCallee().getRepresentation() == SILFunctionTypeRepresentation::Block) { adjusted.add(getCallee().getBlockObject()); } else { auto selfParam = origCalleeType->getSelfParameter(); auto *arg = getCallee().getCXXMethodSelf(); // We might need to fix the level of indirection for foreign reference types. if (selfParam.getInterfaceType().isForeignReferenceType() && isIndirectFormalParameter(selfParam.getConvention())) arg = IGF.Builder.CreateLoad(arg, IGF.IGM.getPointerAlignment()); adjusted.add(arg); } LLVM_FALLTHROUGH; case SILFunctionTypeRepresentation::CFunctionPointer: externalizeArguments(IGF, getCallee(), original, adjusted, Temporaries, isOutlined); break; case SILFunctionTypeRepresentation::WitnessMethod: assert(witnessMetadata); assert(witnessMetadata->SelfMetadata->getType() == IGF.IGM.TypeMetadataPtrTy); assert(witnessMetadata->SelfWitnessTable->getType() == IGF.IGM.WitnessTablePtrTy); Args.rbegin()[1] = witnessMetadata->SelfMetadata; Args.rbegin()[0] = witnessMetadata->SelfWitnessTable; LLVM_FALLTHROUGH; case SILFunctionTypeRepresentation::Closure: case SILFunctionTypeRepresentation::Method: case SILFunctionTypeRepresentation::Thin: case SILFunctionTypeRepresentation::Thick: { // Check for value arguments that need to be passed indirectly. // But don't expect to see 'self' if it's been moved to the context // position. auto params = origCalleeType->getParameters(); if (hasSelfContextParameter(origCalleeType)) { params = params.drop_back(); } for (auto param : params) { addNativeArgument(IGF, original, origCalleeType, param, adjusted, isOutlined); } // Anything else, just pass along. This will include things like // generic arguments. adjusted.add(original.claimAll()); break; } } super::setArgs(adjusted, isOutlined, witnessMetadata); } void emitCallToUnmappedExplosion(llvm::CallInst *call, Explosion &out) override { // Bail out immediately on a void result. llvm::Value *result = call; if (result->getType()->isVoidTy()) return; SILFunctionConventions fnConv(getCallee().getOrigFunctionType(), IGF.getSILModule()); // If the result was returned autoreleased, implicitly insert the reclaim. // This is only allowed on a single direct result. if (fnConv.getNumDirectSILResults() == 1 && (fnConv.getDirectSILResults().begin()->getConvention() == ResultConvention::Autoreleased)) { result = emitObjCRetainAutoreleasedReturnValue(IGF, result); } auto origFnType = getCallee().getOrigFunctionType(); // Specially handle noreturn c function which would return a 'Never' SIL result // type. if (origFnType->getLanguage() == SILFunctionLanguage::C && origFnType->isNoReturnFunction( IGF.getSILModule(), IGF.IGM.getMaximalTypeExpansionContext())) { auto clangResultTy = result->getType(); extractScalarResults(IGF, clangResultTy, result, out); return; } // Get the natural IR type in the body of the function that makes // the call. This may be different than the IR type returned by the // call itself due to ABI type coercion. auto resultType = fnConv.getSILResultType(IGF.IGM.getMaximalTypeExpansionContext()); auto &nativeSchema = IGF.IGM.getTypeInfo(resultType).nativeReturnValueSchema(IGF.IGM); // For ABI reasons the result type of the call might not actually match the // expected result type. // // This can happen when calling C functions, or class method dispatch thunks // for methods that have covariant ABI-compatible overrides. auto expectedNativeResultType = nativeSchema.getExpandedType(IGF.IGM); // If the expected result type is void, bail. if (expectedNativeResultType->isVoidTy()) return; if (result->getType() != expectedNativeResultType) { result = IGF.coerceValue(result, expectedNativeResultType, IGF.IGM.DataLayout); } // Gather the values. Explosion nativeExplosion; extractScalarResults(IGF, result->getType(), result, nativeExplosion); out = nativeSchema.mapFromNative(IGF.IGM, IGF, nativeExplosion, resultType); } Address getCalleeErrorSlot(SILType errorType, bool isCalleeAsync) override { return IGF.getCalleeErrorResultSlot(errorType); }; llvm::Value *getResumeFunctionPointer() override { llvm_unreachable("Should not call getResumeFunctionPointer on a sync call"); } llvm::Value *getAsyncContext() override { llvm_unreachable("Should not call getAsyncContext on a sync call"); } }; class AsyncCallEmission final : public CallEmission { using super = CallEmission; Address contextBuffer; Address context; llvm::Value *calleeFunction = nullptr; llvm::Value *currentResumeFn = nullptr; llvm::Value *thickContext = nullptr; Size staticContextSize = Size(0); Optional asyncContextLayout; AsyncContextLayout getAsyncContextLayout() { if (!asyncContextLayout) { asyncContextLayout.emplace(::getAsyncContextLayout( IGF.IGM, getCallee().getOrigFunctionType(), getCallee().getSubstFunctionType(), getCallee().getSubstitutions())); } return *asyncContextLayout; } void saveValue(ElementLayout layout, llvm::Value *value, bool isOutlined) { Address addr = layout.project(IGF, context, /*offsets*/ llvm::None); auto &ti = cast(layout.getType()); Explosion explosion; explosion.add(value); ti.initialize(IGF, explosion, addr, isOutlined); } void loadValue(ElementLayout layout, Explosion &explosion) { Address addr = layout.project(IGF, context, /*offsets*/ llvm::None); auto &ti = cast(layout.getType()); ti.loadAsTake(IGF, addr, explosion); } public: AsyncCallEmission(IRGenFunction &IGF, llvm::Value *selfValue, Callee &&callee) : CallEmission(IGF, selfValue, std::move(callee)) { setFromCallee(); } void begin() override { super::begin(); assert(!contextBuffer.isValid()); assert(!context.isValid()); auto layout = getAsyncContextLayout(); // Allocate space for the async context. llvm::Value *dynamicContextSize32; std::tie(calleeFunction, dynamicContextSize32) = getAsyncFunctionAndSize( IGF, CurCallee.getOrigFunctionType()->getRepresentation(), CurCallee.getFunctionPointer(), thickContext); auto *dynamicContextSize = IGF.Builder.CreateZExt(dynamicContextSize32, IGF.IGM.SizeTy); if (auto staticSize = dyn_cast(dynamicContextSize)) { staticContextSize = Size(staticSize->getZExtValue()); assert(!staticContextSize.isZero()); contextBuffer = emitStaticAllocAsyncContext(IGF, staticContextSize); } else { contextBuffer = emitAllocAsyncContext(IGF, dynamicContextSize); } context = layout.emitCastTo(IGF, contextBuffer.getAddress()); } void end() override { assert(contextBuffer.isValid()); assert(context.isValid()); if (getCallee().getStaticAsyncContextSize(IGF.IGM)) { assert(!staticContextSize.isZero()); emitStaticDeallocAsyncContext(IGF, contextBuffer, staticContextSize); } else { emitDeallocAsyncContext(IGF, contextBuffer); } super::end(); } void setFromCallee() override { thickContext = nullptr; // TODO: this should go super::setFromCallee(); auto fnType = CurCallee.getOrigFunctionType(); if (fnType->getRepresentation() == SILFunctionTypeRepresentation::WitnessMethod) { unsigned n = getTrailingWitnessSignatureLength(IGF.IGM, fnType); while (n--) { Args[--LastArgWritten] = nullptr; } } llvm::Value *contextPtr = CurCallee.getSwiftContext(); // Add the data pointer if we have one. if (contextPtr) { assert(LastArgWritten > 0); Args[--LastArgWritten] = contextPtr; IGF.IGM.addSwiftSelfAttributes(CurCallee.getMutableAttributes(), LastArgWritten); } } FunctionPointer getCalleeFunctionPointer() override { PointerAuthInfo codeAuthInfo = CurCallee.getFunctionPointer() .getAuthInfo() .getCorrespondingCodeAuthInfo(); return FunctionPointer( FunctionPointer::Kind::Function, calleeFunction, codeAuthInfo, Signature::forAsyncAwait(IGF.IGM, getCallee().getOrigFunctionType(), getCallee().getFunctionPointer().getKind())); } SILType getParameterType(unsigned index) override { SILFunctionConventions origConv(getCallee().getOrigFunctionType(), IGF.getSILModule()); return origConv.getSILArgumentType( index, IGF.IGM.getMaximalTypeExpansionContext()); } void setArgs(Explosion &original, bool isOutlined, WitnessMetadata *witnessMetadata) override { Explosion asyncExplosion; // Convert arguments to a representation appropriate to the calling // convention. auto origCalleeType = CurCallee.getOrigFunctionType(); SILFunctionConventions fnConv(origCalleeType, IGF.getSILModule()); // Pass along the indirect result pointers. original.transferInto(asyncExplosion, fnConv.getNumIndirectSILResults()); // Pass the async context. For special direct-continuation functions, // we pass our own async context; otherwise we pass the context // we created. if (getCallee().shouldPassContinuationDirectly()) { asyncExplosion.add(IGF.getAsyncContext()); } else asyncExplosion.add(contextBuffer.getAddress()); // Pass along the coroutine buffer. switch (origCalleeType->getCoroutineKind()) { case SILCoroutineKind::YieldMany: case SILCoroutineKind::YieldOnce: assert(false && "Should not reach this"); break; case SILCoroutineKind::None: break; } // Translate the formal arguments and handle any special arguments. switch (getCallee().getRepresentation()) { case SILFunctionTypeRepresentation::ObjCMethod: case SILFunctionTypeRepresentation::Block: case SILFunctionTypeRepresentation::CFunctionPointer: case SILFunctionTypeRepresentation::CXXMethod: assert(false && "Should not reach this"); break; case SILFunctionTypeRepresentation::WitnessMethod: assert(witnessMetadata); assert(witnessMetadata->SelfMetadata->getType() == IGF.IGM.TypeMetadataPtrTy); assert(witnessMetadata->SelfWitnessTable->getType() == IGF.IGM.WitnessTablePtrTy); Args.rbegin()[1] = witnessMetadata->SelfMetadata; Args.rbegin()[0] = witnessMetadata->SelfWitnessTable; LLVM_FALLTHROUGH; case SILFunctionTypeRepresentation::Closure: case SILFunctionTypeRepresentation::Method: case SILFunctionTypeRepresentation::Thin: case SILFunctionTypeRepresentation::Thick: { // Check for value arguments that need to be passed indirectly. // But don't expect to see 'self' if it's been moved to the context // position. auto params = origCalleeType->getParameters(); if (hasSelfContextParameter(origCalleeType)) { params = params.drop_back(); } for (auto param : params) { addNativeArgument(IGF, original, origCalleeType, param, asyncExplosion, isOutlined); } // Anything else, just pass along. This will include things like // generic arguments. asyncExplosion.add(original.claimAll()); break; } } super::setArgs(asyncExplosion, false, witnessMetadata); auto layout = getAsyncContextLayout(); // Initialize the async context for returning if we're not using // the special convention which suppresses that. if (!getCallee().shouldPassContinuationDirectly()) { // Set the caller context to the current context. Explosion explosion; auto parentContextField = layout.getParentLayout(); auto *context = IGF.getAsyncContext(); if (auto schema = IGF.IGM.getOptions().PointerAuth.AsyncContextParent) { Address fieldAddr = parentContextField.project(IGF, this->context, /*offsets*/ llvm::None); auto authInfo = PointerAuthInfo::emit( IGF, schema, fieldAddr.getAddress(), PointerAuthEntity()); context = emitPointerAuthSign(IGF, context, authInfo); } saveValue(parentContextField, context, isOutlined); // Set the caller resumption function to the resumption function // for this suspension. assert(currentResumeFn == nullptr); auto resumeParentField = layout.getResumeParentLayout(); currentResumeFn = IGF.Builder.CreateIntrinsicCall( llvm::Intrinsic::coro_async_resume, {}); auto fnVal = currentResumeFn; // Sign the pointer. if (auto schema = IGF.IGM.getOptions().PointerAuth.AsyncContextResume) { Address fieldAddr = resumeParentField.project(IGF, this->context, /*offsets*/ llvm::None); auto authInfo = PointerAuthInfo::emit( IGF, schema, fieldAddr.getAddress(), PointerAuthEntity()); fnVal = emitPointerAuthSign(IGF, fnVal, authInfo); } fnVal = IGF.Builder.CreateBitCast(fnVal, IGF.IGM.TaskContinuationFunctionPtrTy); saveValue(resumeParentField, fnVal, isOutlined); } } void emitCallToUnmappedExplosion(llvm::CallInst *call, Explosion &out) override { // Bail out on a void result type. auto &IGM = IGF.IGM; llvm::Value *result = call; auto *suspendResultTy = cast(result->getType()); auto numAsyncContextParams = Signature::forAsyncReturn(IGM, getCallee().getSubstFunctionType()) .getAsyncContextIndex() + 1; if (suspendResultTy->getNumElements() == numAsyncContextParams) return; auto &Builder = IGF.Builder; auto resultTys = makeArrayRef(suspendResultTy->element_begin() + numAsyncContextParams, suspendResultTy->element_end()); auto substCalleeType = getCallee().getSubstFunctionType(); SILFunctionConventions substConv(substCalleeType, IGF.getSILModule()); auto hasError = substCalleeType->hasErrorResult(); SILType errorType; if (hasError) errorType = substConv.getSILErrorType(IGM.getMaximalTypeExpansionContext()); if (resultTys.size() == 1) { result = Builder.CreateExtractValue(result, numAsyncContextParams); if (hasError) { Address errorAddr = IGF.getCalleeErrorResultSlot(errorType); Builder.CreateStore(result, errorAddr); return; } } else if (resultTys.size() == 2 && hasError) { auto tmp = result; result = Builder.CreateExtractValue(result, numAsyncContextParams); auto errorResult = Builder.CreateExtractValue(tmp, numAsyncContextParams + 1); Address errorAddr = IGF.getCalleeErrorResultSlot(errorType); Builder.CreateStore(errorResult, errorAddr); } else { auto directResultTys = hasError ? resultTys.drop_back() : resultTys; auto resultTy = llvm::StructType::get(IGM.getLLVMContext(), directResultTys); llvm::Value *resultAgg = llvm::UndefValue::get(resultTy); for (unsigned i = 0, e = directResultTys.size(); i != e; ++i) { llvm::Value *elt = Builder.CreateExtractValue(result, numAsyncContextParams + i); resultAgg = Builder.CreateInsertValue(resultAgg, elt, i); } if (hasError) { auto errorResult = Builder.CreateExtractValue( result, numAsyncContextParams + directResultTys.size()); Address errorAddr = IGF.getCalleeErrorResultSlot(errorType); Builder.CreateStore(errorResult, errorAddr); } result = resultAgg; } SILFunctionConventions fnConv(getCallee().getOrigFunctionType(), IGF.getSILModule()); // Get the natural IR type in the body of the function that makes // the call. This may be different than the IR type returned by the // call itself due to ABI type coercion. auto resultType = fnConv.getSILResultType(IGF.IGM.getMaximalTypeExpansionContext()); auto &nativeSchema = IGF.IGM.getTypeInfo(resultType).nativeReturnValueSchema(IGF.IGM); // For ABI reasons the result type of the call might not actually match the // expected result type. // // This can happen when calling C functions, or class method dispatch thunks // for methods that have covariant ABI-compatible overrides. auto expectedNativeResultType = nativeSchema.getExpandedType(IGF.IGM); // If the expected result type is void, bail. if (expectedNativeResultType->isVoidTy()) return; if (result->getType() != expectedNativeResultType) { result = IGF.coerceValue(result, expectedNativeResultType, IGF.IGM.DataLayout); } // Gather the values. Explosion nativeExplosion; extractScalarResults(IGF, result->getType(), result, nativeExplosion); out = nativeSchema.mapFromNative(IGF.IGM, IGF, nativeExplosion, resultType); } Address getCalleeErrorSlot(SILType errorType, bool isCalleeAsync) override { return IGF.getCalleeErrorResultSlot(errorType); } llvm::CallInst *createCall(const FunctionPointer &fn, ArrayRef args) override { auto &IGM = IGF.IGM; auto &Builder = IGF.Builder; // Setup the suspend point. SmallVector arguments; auto signature = fn.getSignature(); auto asyncContextIndex = signature.getAsyncContextIndex(); auto paramAttributeFlags = asyncContextIndex | (signature.getAsyncResumeFunctionSwiftSelfIndex() << 8); // Index of swiftasync context | ((index of swiftself) << 8). arguments.push_back( IGM.getInt32(paramAttributeFlags)); arguments.push_back(currentResumeFn); // The special direct-continuation convention will pass our context // when it resumes. The standard convention passes the callee's // context, so we'll need to pop that off to get ours. auto resumeProjFn = getCallee().shouldPassContinuationDirectly() ? IGF.getOrCreateResumeFromSuspensionFn() : IGF.getOrCreateResumePrjFn(); arguments.push_back( Builder.CreateBitOrPointerCast(resumeProjFn, IGM.Int8PtrTy)); auto dispatchFn = IGF.createAsyncDispatchFn( getFunctionPointerForDispatchCall(IGM, fn), args); arguments.push_back( Builder.CreateBitOrPointerCast(dispatchFn, IGM.Int8PtrTy)); arguments.push_back( Builder.CreateBitOrPointerCast(fn.getRawPointer(), IGM.Int8PtrTy)); if (auto authInfo = fn.getAuthInfo()) { arguments.push_back(fn.getAuthInfo().getDiscriminator()); } for (auto arg: args) arguments.push_back(arg); auto resultTy = cast(signature.getType()->getReturnType()); return IGF.emitSuspendAsyncCall(asyncContextIndex, resultTy, arguments); } llvm::Value *getResumeFunctionPointer() override { assert(getCallee().shouldPassContinuationDirectly()); assert(currentResumeFn == nullptr); currentResumeFn = IGF.Builder.CreateIntrinsicCall(llvm::Intrinsic::coro_async_resume, {}); auto signedResumeFn = currentResumeFn; // Sign the task resume function with the C function pointer schema. if (auto schema = IGF.IGM.getOptions().PointerAuth.FunctionPointers) { // TODO: use the Clang type for TaskContinuationFunction* // to make this work with type diversity. auto authInfo = PointerAuthInfo::emit(IGF, schema, nullptr, PointerAuthEntity()); signedResumeFn = emitPointerAuthSign(IGF, signedResumeFn, authInfo); } return signedResumeFn; } llvm::Value *getAsyncContext() override { return contextBuffer.getAddress(); } }; } // end anonymous namespace std::unique_ptr irgen::getCallEmission(IRGenFunction &IGF, llvm::Value *selfValue, Callee &&callee) { if (callee.getOrigFunctionType()->isAsync()) { return std::make_unique(IGF, selfValue, std::move(callee)); } else { return std::make_unique(IGF, selfValue, std::move(callee)); } } /// Emit the unsubstituted result of this call into the given explosion. /// The unsubstituted result must be naturally returned directly. void CallEmission::emitToUnmappedExplosion(Explosion &out) { assert(state == State::Emitting); assert(LastArgWritten == 0 && "emitting unnaturally to explosion"); auto call = emitCallSite(); emitCallToUnmappedExplosion(call, out); } /// Emit the unsubstituted result of this call to the given address. /// The unsubstituted result must be naturally returned indirectly. void CallEmission::emitToUnmappedMemory(Address result) { assert(state == State::Emitting); assert(LastArgWritten == 1 && "emitting unnaturally to indirect result"); Args[0] = result.getAddress(); SILFunctionConventions FnConv(CurCallee.getSubstFunctionType(), IGF.getSILModule()); llvm::Type *storageTy = Args[0]->getType()->getPointerElementType();; if (FnConv.getNumIndirectSILResults() == 1) { for (auto indirectResultType : FnConv.getIndirectSILResultTypes( IGF.IGM.getMaximalTypeExpansionContext())) { bool isFixedSize = isa(IGF.IGM.getTypeInfo(indirectResultType)); storageTy = isFixedSize ? IGF.IGM.getStorageType(indirectResultType) : IGF.IGM.OpaqueTy; } } addIndirectResultAttributes(IGF.IGM, CurCallee.getMutableAttributes(), 0, FnConv.getNumIndirectSILResults() <= 1, storageTy); #ifndef NDEBUG LastArgWritten = 0; // appease an assert #endif auto call = emitCallSite(); // Async calls need to store the error result that is passed as a parameter. if (CurCallee.getSubstFunctionType()->isAsync()) { auto &IGM = IGF.IGM; auto &Builder = IGF.Builder; auto numAsyncContextParams = Signature::forAsyncReturn(IGM, CurCallee.getSubstFunctionType()) .getAsyncContextIndex() + 1; auto substCalleeType = CurCallee.getSubstFunctionType(); SILFunctionConventions substConv(substCalleeType, IGF.getSILModule()); auto hasError = substCalleeType->hasErrorResult(); SILType errorType; if (hasError) { errorType = substConv.getSILErrorType(IGM.getMaximalTypeExpansionContext()); auto result = Builder.CreateExtractValue(call, numAsyncContextParams); Address errorAddr = IGF.getCalleeErrorResultSlot(errorType); Builder.CreateStore(result, errorAddr); } } } /// The private routine to ultimately emit a call or invoke instruction. llvm::CallInst *CallEmission::emitCallSite() { assert(state == State::Emitting); assert(LastArgWritten == 0); assert(!EmittedCall); EmittedCall = true; // Make the call and clear the arguments array. FunctionPointer fn = getCalleeFunctionPointer(); assert(fn.getKind() == FunctionPointer::Kind::Function); auto fnTy = fn.getFunctionType(); // Coerce argument types for those cases where the IR type required // by the ABI differs from the type used within the function body. assert(fnTy->getNumParams() == Args.size()); for (int i = 0, e = fnTy->getNumParams(); i != e; ++i) { auto *paramTy = fnTy->getParamType(i); auto *argTy = Args[i]->getType(); if (paramTy != argTy) Args[i] = IGF.coerceValue(Args[i], paramTy, IGF.IGM.DataLayout); } // TODO: exceptions! auto call = createCall(fn, Args); // Make coroutines calls opaque to LLVM analysis. if (IsCoroutine) { // Go back and insert some instructions right before the call. // It's easier to do this than to mess around with copying and // modifying the FunctionPointer above. IGF.Builder.SetInsertPoint(call); // Insert a call to @llvm.coro.prepare.retcon, then bitcast to the right // function type. auto origCallee = call->getCalledOperand(); llvm::Value *opaqueCallee = origCallee; opaqueCallee = IGF.Builder.CreateBitCast(opaqueCallee, IGF.IGM.Int8PtrTy); opaqueCallee = IGF.Builder.CreateIntrinsicCall( llvm::Intrinsic::coro_prepare_retcon, {opaqueCallee}); opaqueCallee = IGF.Builder.CreateBitCast(opaqueCallee, origCallee->getType()); call->setCalledFunction(fn.getFunctionType(), opaqueCallee); // Reset the insert point to after the call. IGF.Builder.SetInsertPoint(call->getParent()); } Args.clear(); // Destroy any temporaries we needed. // We don't do this for coroutines because we need to wait until the // coroutine is complete. if (!IsCoroutine) { Temporaries.destroyAll(IGF); // Clear the temporary set so that we can assert that there are no // temporaries later. Temporaries.clear(); } // Return. return call; } static llvm::AttributeList fixUpTypesInByValAndStructRetAttributes(llvm::FunctionType *fnType, llvm::AttributeList attrList) { auto &context = fnType->getContext(); for (unsigned i = 0; i < fnType->getNumParams(); ++i) { auto paramTy = fnType->getParamType(i); auto attrListIndex = llvm::AttributeList::FirstArgIndex + i; if (attrList.hasParamAttr(i, llvm::Attribute::StructRet) && paramTy->getPointerElementType() != attrList.getParamStructRetType(i)) attrList = attrList.replaceAttributeTypeAtIndex( context, attrListIndex, llvm::Attribute::StructRet, paramTy->getPointerElementType()); if (attrList.hasParamAttr(i, llvm::Attribute::ByVal) && paramTy->getPointerElementType() != attrList.getParamByValType(i)) attrList = attrList.replaceAttributeTypeAtIndex( context, attrListIndex, llvm::Attribute::ByVal, paramTy->getPointerElementType()); } return attrList; } llvm::CallInst *IRBuilder::CreateCall(const FunctionPointer &fn, ArrayRef args) { assert(fn.getKind() == FunctionPointer::Kind::Function); SmallVector bundles; // Add a pointer-auth bundle if necessary. if (const auto &authInfo = fn.getAuthInfo()) { auto key = getInt32(authInfo.getKey()); auto discriminator = authInfo.getDiscriminator(); llvm::Value *bundleArgs[] = { key, discriminator }; bundles.emplace_back("ptrauth", bundleArgs); } assert(!isTrapIntrinsic(fn.getRawPointer()) && "Use CreateNonMergeableTrap"); auto fnTy = cast( fn.getRawPointer()->getType()->getPointerElementType()); llvm::CallInst *call = IRBuilderBase::CreateCall(fnTy, fn.getRawPointer(), args, bundles); call->setAttributes( fixUpTypesInByValAndStructRetAttributes(fnTy, fn.getAttributes())); call->setCallingConv(fn.getCallingConv()); return call; } /// Emit the result of this call to memory. void CallEmission::emitToMemory(Address addr, const LoadableTypeInfo &indirectedResultTI, bool isOutlined) { assert(state == State::Emitting); assert(LastArgWritten <= 1); // If the call is naturally to an explosion, emit it that way and // then initialize the temporary. if (LastArgWritten == 0) { Explosion result; emitToExplosion(result, isOutlined); indirectedResultTI.initialize(IGF, result, addr, isOutlined); return; } // Okay, we're naturally emitting to memory. Address origAddr = addr; auto origFnType = CurCallee.getOrigFunctionType(); auto substFnType = CurCallee.getSubstFunctionType(); // We're never being asked to do anything with *formal* // indirect results here, just the possibility of a direct-in-SIL // result that's actually being passed indirectly. // // TODO: SIL address lowering should be able to handle such cases earlier. auto origResultType = origFnType ->getDirectFormalResultsType(IGF.IGM.getSILModule(), IGF.IGM.getMaximalTypeExpansionContext()) .getASTType(); auto substResultType = substFnType ->getDirectFormalResultsType(IGF.IGM.getSILModule(), IGF.IGM.getMaximalTypeExpansionContext()) .getASTType(); if (origResultType->hasTypeParameter()) origResultType = IGF.IGM.getGenericEnvironment() ->mapTypeIntoContext(origResultType) ->getCanonicalType(); if (origResultType != substResultType) { auto origTy = IGF.IGM.getStoragePointerTypeForLowered(origResultType); origAddr = IGF.Builder.CreateBitCast(origAddr, origTy); } emitToUnmappedMemory(origAddr); } static void emitCastToSubstSchema(IRGenFunction &IGF, Explosion &in, const ExplosionSchema &schema, Explosion &out) { assert(in.size() == schema.size()); for (unsigned i = 0, e = schema.size(); i != e; ++i) { llvm::Type *expectedType = schema.begin()[i].getScalarType(); llvm::Value *value = in.claimNext(); if (value->getType() != expectedType) value = IGF.Builder.CreateBitCast(value, expectedType, value->getName() + ".asSubstituted"); out.add(value); } } void CallEmission::emitYieldsToExplosion(Explosion &out) { assert(state == State::Emitting); // Emit the call site. auto call = emitCallSite(); // Pull the raw return values out. Explosion rawReturnValues; extractScalarResults(IGF, call->getType(), call, rawReturnValues); auto coroInfo = getCallee().getSignature().getCoroutineInfo(); // Go ahead and forward the continuation pointer as an opaque pointer. auto continuation = rawReturnValues.claimNext(); out.add(continuation); // Collect the raw value components. Explosion rawYieldComponents; // Add all the direct yield components. rawYieldComponents.add( rawReturnValues.claim(coroInfo.NumDirectYieldComponents)); // Add all the indirect yield components. assert(rawReturnValues.size() <= 1); if (!rawReturnValues.empty()) { // Extract the indirect yield buffer. auto indirectPointer = rawReturnValues.claimNext(); auto indirectStructTy = cast( indirectPointer->getType()->getPointerElementType()); auto layout = IGF.IGM.DataLayout.getStructLayout(indirectStructTy); Address indirectBuffer(indirectPointer, Alignment(layout->getAlignment().value())); for (auto i : indices(indirectStructTy->elements())) { // Skip padding. if (indirectStructTy->getElementType(i)->isArrayTy()) continue; auto eltAddr = IGF.Builder.CreateStructGEP(indirectBuffer, i, layout); rawYieldComponents.add(IGF.Builder.CreateLoad(eltAddr)); } } auto substCoroType = getCallee().getSubstFunctionType(); SILFunctionConventions fnConv(substCoroType, IGF.getSILModule()); for (auto yield : fnConv.getYields()) { YieldSchema schema(IGF.IGM, fnConv, yield); // If the schema says it's indirect, then we expect a pointer. if (schema.isIndirect()) { auto pointer = IGF.Builder.CreateBitCast(rawYieldComponents.claimNext(), schema.getIndirectPointerType()); // If it's formally indirect, then we should just add that pointer // to the output. if (schema.isFormalIndirect()) { out.add(pointer); continue; } // Otherwise, we need to load. auto &yieldTI = cast(schema.getTypeInfo()); yieldTI.loadAsTake(IGF, yieldTI.getAddressForPointer(pointer), out); continue; } // Otherwise, it's direct. Remap. const auto &directSchema = schema.getDirectSchema(); Explosion eltValues; rawYieldComponents.transferInto(eltValues, directSchema.size()); auto temp = directSchema.mapFromNative(IGF.IGM, IGF, eltValues, schema.getSILType()); auto &yieldTI = cast(schema.getTypeInfo()); emitCastToSubstSchema(IGF, temp, yieldTI.getSchema(), out); } } /// Emit the result of this call to an explosion. void CallEmission::emitToExplosion(Explosion &out, bool isOutlined) { assert(state == State::Emitting); assert(LastArgWritten <= 1); // For coroutine calls, we need to collect the yields, not the results; // this looks very different. if (IsCoroutine) { assert(LastArgWritten == 0 && "coroutine with indirect result?"); emitYieldsToExplosion(out); return; } SILFunctionConventions fnConv(getCallee().getSubstFunctionType(), IGF.getSILModule()); SILType substResultType = fnConv.getSILResultType(IGF.IGM.getMaximalTypeExpansionContext()); auto &substResultTI = cast(IGF.getTypeInfo(substResultType)); auto origFnType = getCallee().getOrigFunctionType(); auto isNoReturnCFunction = origFnType->getLanguage() == SILFunctionLanguage::C && origFnType->isNoReturnFunction(IGF.getSILModule(), IGF.IGM.getMaximalTypeExpansionContext()); // If the call is naturally to memory, emit it that way and then // explode that temporary. if (LastArgWritten == 1) { if (isNoReturnCFunction) { auto fnType = getCallee().getFunctionPointer().getFunctionType(); assert(fnType->getNumParams() > 0); auto resultTy = fnType->getParamType(0)->getPointerElementType(); auto temp = IGF.createAlloca(resultTy, Alignment(), "indirect.result"); emitToMemory(temp, substResultTI, isOutlined); return; } StackAddress ctemp = substResultTI.allocateStack(IGF, substResultType, "call.aggresult"); Address temp = ctemp.getAddress(); emitToMemory(temp, substResultTI, isOutlined); // We can use a take. substResultTI.loadAsTake(IGF, temp, out); substResultTI.deallocateStack(IGF, ctemp, substResultType); return; } // Okay, we're naturally emitting to an explosion. Explosion temp; emitToUnmappedExplosion(temp); // Specially handle noreturn c function which would return a 'Never' SIL result // type: there is no need to cast the result. if (isNoReturnCFunction) { temp.transferInto(out, temp.size()); return; } // We might need to bitcast the results. emitCastToSubstSchema(IGF, temp, substResultTI.getSchema(), out); } CallEmission::CallEmission(CallEmission &&other) : IGF(other.IGF), Args(std::move(other.Args)), CurCallee(std::move(other.CurCallee)), LastArgWritten(other.LastArgWritten), EmittedCall(other.EmittedCall) { // Prevent other's destructor from asserting. LastArgWritten = 0; EmittedCall = true; state = State::Finished; } CallEmission::~CallEmission() { assert(LastArgWritten == 0); assert(EmittedCall); assert(Temporaries.hasBeenCleared()); assert(state == State::Finished); } void CallEmission::begin() {} void CallEmission::end() { assert(state == State::Emitting); state = State::Finished; } Callee::Callee(CalleeInfo &&info, const FunctionPointer &fn, llvm::Value *firstData, llvm::Value *secondData) : Info(std::move(info)), Fn(fn), FirstData(firstData), SecondData(secondData) { #ifndef NDEBUG // We should have foreign info if it's a foreign call. assert((Fn.getForeignInfo().ClangInfo != nullptr) == (Info.OrigFnType->getLanguage() == SILFunctionLanguage::C)); // We should have the right data values for the representation. switch (Info.OrigFnType->getRepresentation()) { case SILFunctionTypeRepresentation::ObjCMethod: assert(FirstData && SecondData); break; case SILFunctionTypeRepresentation::Method: case SILFunctionTypeRepresentation::WitnessMethod: assert((FirstData != nullptr) == hasSelfContextParameter(Info.OrigFnType)); assert(!SecondData); break; case SILFunctionTypeRepresentation::Thick: case SILFunctionTypeRepresentation::Block: assert(FirstData && !SecondData); break; case SILFunctionTypeRepresentation::Thin: case SILFunctionTypeRepresentation::Closure: case SILFunctionTypeRepresentation::CFunctionPointer: assert(!FirstData && !SecondData); break; case SILFunctionTypeRepresentation::CXXMethod: assert(FirstData && !SecondData); break; } #endif } llvm::Value *Callee::getSwiftContext() const { switch (Info.OrigFnType->getRepresentation()) { case SILFunctionTypeRepresentation::Block: case SILFunctionTypeRepresentation::ObjCMethod: case SILFunctionTypeRepresentation::CFunctionPointer: case SILFunctionTypeRepresentation::Thin: case SILFunctionTypeRepresentation::Closure: case SILFunctionTypeRepresentation::CXXMethod: return nullptr; case SILFunctionTypeRepresentation::WitnessMethod: case SILFunctionTypeRepresentation::Method: // This may or may not be null. return FirstData; case SILFunctionTypeRepresentation::Thick: assert(FirstData && "no context value set on callee"); return FirstData; } llvm_unreachable("bad representation"); } llvm::Value *Callee::getBlockObject() const { assert(Info.OrigFnType->getRepresentation() == SILFunctionTypeRepresentation::Block && "not a block"); assert(FirstData && "no block object set on callee"); return FirstData; } llvm::Value *Callee::getCXXMethodSelf() const { assert(Info.OrigFnType->getRepresentation() == SILFunctionTypeRepresentation::CXXMethod && "not a C++ method"); assert(FirstData && "no self object set on callee"); return FirstData; } llvm::Value *Callee::getObjCMethodReceiver() const { assert(Info.OrigFnType->getRepresentation() == SILFunctionTypeRepresentation::ObjCMethod && "not a method"); assert(FirstData && "no receiver set on callee"); return FirstData; } llvm::Value *Callee::getObjCMethodSelector() const { assert(Info.OrigFnType->getRepresentation() == SILFunctionTypeRepresentation::ObjCMethod && "not a method"); assert(SecondData && "no selector set on callee"); return SecondData; } /// Set up this emitter afresh from the current callee specs. void CallEmission::setFromCallee() { assert(state == State::Emitting); IsCoroutine = CurCallee.getSubstFunctionType()->isCoroutine(); EmittedCall = false; unsigned numArgs = CurCallee.getLLVMFunctionType()->getNumParams(); // Set up the args array. assert(Args.empty()); Args.resize_for_overwrite(numArgs); LastArgWritten = numArgs; } bool irgen::canCoerceToSchema(IRGenModule &IGM, ArrayRef expandedTys, const ExplosionSchema &schema) { // If the schemas don't even match in number, we have to go // through memory. if (expandedTys.size() != schema.size()) return false; // If there's just one element, we can always coerce as a scalar. if (expandedTys.size() == 1) return true; // If there are multiple elements, the pairs of types need to // match in size for the coercion to work. for (size_t i = 0, e = expandedTys.size(); i != e; ++i) { llvm::Type *inputTy = schema[i].getScalarType(); llvm::Type *outputTy = expandedTys[i]; if (inputTy != outputTy && IGM.DataLayout.getTypeSizeInBits(inputTy) != IGM.DataLayout.getTypeSizeInBits(outputTy)) return false; } // Okay, everything is fine. return true; } static llvm::Type *getOutputType(TranslationDirection direction, unsigned index, const ExplosionSchema &nativeSchema, ArrayRef expandedForeignTys) { assert(nativeSchema.size() == expandedForeignTys.size()); return (direction == TranslationDirection::ToForeign ? expandedForeignTys[index] : nativeSchema[index].getScalarType()); } static void emitCoerceAndExpand(IRGenFunction &IGF, Explosion &in, Explosion &out, SILType paramTy, const LoadableTypeInfo ¶mTI, llvm::StructType *coercionTy, ArrayRef expandedTys, TranslationDirection direction, bool isOutlined) { // If we can directly coerce the scalar values, avoid going through memory. auto schema = paramTI.getSchema(); if (canCoerceToSchema(IGF.IGM, expandedTys, schema)) { for (auto index : indices(expandedTys)) { llvm::Value *arg = in.claimNext(); assert(arg->getType() == getOutputType(reverse(direction), index, schema, expandedTys)); auto outputTy = getOutputType(direction, index, schema, expandedTys); if (arg->getType() != outputTy) arg = IGF.coerceValue(arg, outputTy, IGF.IGM.DataLayout); out.add(arg); } return; } // Otherwise, materialize to a temporary. auto temporaryAlloc = paramTI.allocateStack(IGF, paramTy, "coerce-and-expand.temp"); Address temporary = temporaryAlloc.getAddress(); auto coercionTyLayout = IGF.IGM.DataLayout.getStructLayout(coercionTy); // Make the alloca at least as aligned as the coercion struct, just // so that the element accesses we make don't end up under-aligned. Alignment coercionTyAlignment = Alignment(coercionTyLayout->getAlignment().value()); auto alloca = cast(temporary.getAddress()); if (alloca->getAlignment() < coercionTyAlignment.getValue()) { alloca->setAlignment( llvm::MaybeAlign(coercionTyAlignment.getValue()).valueOrOne()); temporary = Address(temporary.getAddress(), coercionTyAlignment); } // If we're translating *to* the foreign expansion, do an ordinary // initialization from the input explosion. if (direction == TranslationDirection::ToForeign) { paramTI.initialize(IGF, in, temporary, isOutlined); } Address coercedTemporary = IGF.Builder.CreateElementBitCast(temporary, coercionTy); #ifndef NDEBUG size_t expandedTyIndex = 0; #endif for (auto eltIndex : indices(coercionTy->elements())) { auto eltTy = coercionTy->getElementType(eltIndex); // Skip padding fields. if (eltTy->isArrayTy()) continue; assert(expandedTys[expandedTyIndex++] == eltTy); // Project down to the field. Address eltAddr = IGF.Builder.CreateStructGEP(coercedTemporary, eltIndex, coercionTyLayout); // If we're translating *to* the foreign expansion, pull the value out // of the field and add it to the output. if (direction == TranslationDirection::ToForeign) { llvm::Value *value = IGF.Builder.CreateLoad(eltAddr); out.add(value); // Otherwise, claim the next value from the input and store that // in the field. } else { llvm::Value *value = in.claimNext(); IGF.Builder.CreateStore(value, eltAddr); } } assert(expandedTyIndex == expandedTys.size()); // If we're translating *from* the foreign expansion, do an ordinary // load into the output explosion. if (direction == TranslationDirection::ToNative) { paramTI.loadAsTake(IGF, temporary, out); } paramTI.deallocateStack(IGF, temporaryAlloc, paramTy); } static void emitDirectExternalArgument(IRGenFunction &IGF, SILType argType, const clang::CodeGen::ABIArgInfo &AI, Explosion &in, Explosion &out, bool isOutlined) { bool IsDirectFlattened = AI.isDirect() && AI.getCanBeFlattened(); bool IsIndirect = !AI.isDirect(); // If we're supposed to pass directly as a struct type, that // really means expanding out as multiple arguments. llvm::Type *coercedTy = AI.getCoerceToType(); ArrayRef expandedTys = expandScalarOrStructTypeToArray(coercedTy); auto &argTI = cast(IGF.getTypeInfo(argType)); auto inputSchema = argTI.getSchema(); // Check to see if we can pairwise coerce Swift's exploded scalars // to Clang's expanded elements. if ((IsDirectFlattened || IsIndirect) && canCoerceToSchema(IGF.IGM, expandedTys, inputSchema)) { for (auto outputTy : expandedTys) { llvm::Value *arg = in.claimNext(); if (arg->getType() != outputTy) arg = IGF.coerceValue(arg, outputTy, IGF.IGM.DataLayout); out.add(arg); } return; } // Otherwise, we need to coerce through memory. Address temporary; Size tempSize; std::tie(temporary, tempSize) = allocateForCoercion(IGF, argTI.getStorageType(), coercedTy, "coerced-arg"); IGF.Builder.CreateLifetimeStart(temporary, tempSize); // Store to a temporary. Address tempOfArgTy = IGF.Builder.CreateBitCast( temporary, argTI.getStorageType()->getPointerTo()); argTI.initializeFromParams(IGF, in, tempOfArgTy, argType, isOutlined); // Bitcast the temporary to the expected type. Address coercedAddr = IGF.Builder.CreateBitCast(temporary, coercedTy->getPointerTo()); if (IsDirectFlattened && isa(coercedTy)) { // Project out individual elements if necessary. auto *ST = cast(coercedTy); const auto *layout = IGF.IGM.DataLayout.getStructLayout(ST); for (unsigned EI : range(ST->getNumElements())) { auto offset = Size(layout->getElementOffset(EI)); auto address = IGF.Builder.CreateStructGEP(coercedAddr, EI, offset); out.add(IGF.Builder.CreateLoad(address)); } } else { // Otherwise, collect the single scalar. out.add(IGF.Builder.CreateLoad(coercedAddr)); } IGF.Builder.CreateLifetimeEnd(temporary, tempSize); } namespace { /// Load a clang argument expansion from a buffer. struct ClangExpandLoadEmitter : ClangExpandProjection { Explosion &Out; ClangExpandLoadEmitter(IRGenFunction &IGF, Explosion &out) : ClangExpandProjection(IGF), Out(out) {} void visitScalar(llvm::Type *scalarTy, Address addr) { addr = IGF.Builder.CreateBitCast(addr, scalarTy->getPointerTo()); auto value = IGF.Builder.CreateLoad(addr); Out.add(value); } }; /// Store a clang argument expansion into a buffer. struct ClangExpandStoreEmitter : ClangExpandProjection { Explosion &In; ClangExpandStoreEmitter(IRGenFunction &IGF, Explosion &in) : ClangExpandProjection(IGF), In(in) {} void visitScalar(llvm::Type *scalarTy, Address addr) { auto value = In.claimNext(); addr = IGF.Builder.CreateBitCast(addr, scalarTy->getPointerTo()); IGF.Builder.CreateStore(value, addr); } }; } // end anonymous namespace /// Given a Swift value explosion in 'in', produce a Clang expansion /// (according to ABIArgInfo::Expand) in 'out'. static void emitClangExpandedArgument(IRGenFunction &IGF, Explosion &in, Explosion &out, clang::CanQualType clangType, SILType swiftType, const LoadableTypeInfo &swiftTI, bool isOutlined) { // If Clang's expansion schema matches Swift's, great. auto swiftSchema = swiftTI.getSchema(); if (doesClangExpansionMatchSchema(IGF.IGM, clangType, swiftSchema)) { return in.transferInto(out, swiftSchema.size()); } // Otherwise, materialize to a temporary. auto ctemp = swiftTI.allocateStack(IGF, swiftType, "clang-expand-arg.temp"); Address temp = ctemp.getAddress(); swiftTI.initialize(IGF, in, temp, isOutlined); Address castTemp = IGF.Builder.CreateBitCast(temp, IGF.IGM.Int8PtrTy); ClangExpandLoadEmitter(IGF, out).visit(clangType, castTemp); swiftTI.deallocateStack(IGF, ctemp, swiftType); } /// Given a Clang-expanded (according to ABIArgInfo::Expand) parameter /// in 'in', produce a Swift value explosion in 'out'. void irgen::emitClangExpandedParameter(IRGenFunction &IGF, Explosion &in, Explosion &out, clang::CanQualType clangType, SILType swiftType, const LoadableTypeInfo &swiftTI) { // If Clang's expansion schema matches Swift's, great. auto swiftSchema = swiftTI.getSchema(); if (doesClangExpansionMatchSchema(IGF.IGM, clangType, swiftSchema)) { return in.transferInto(out, swiftSchema.size()); } // Otherwise, materialize to a temporary. auto tempAlloc = swiftTI.allocateStack(IGF, swiftType, "clang-expand-param.temp"); Address temp = tempAlloc.getAddress(); Address castTemp = IGF.Builder.CreateBitCast(temp, IGF.IGM.Int8PtrTy); ClangExpandStoreEmitter(IGF, in).visit(clangType, castTemp); // Then load out. swiftTI.loadAsTake(IGF, temp, out); swiftTI.deallocateStack(IGF, tempAlloc, swiftType); } static void externalizeArguments(IRGenFunction &IGF, const Callee &callee, Explosion &in, Explosion &out, TemporarySet &temporaries, bool isOutlined) { auto fnType = callee.getOrigFunctionType(); auto silConv = SILFunctionConventions(fnType, IGF.IGM.silConv); auto params = fnType->getParameters(); assert(callee.getForeignInfo().ClangInfo); auto &FI = *callee.getForeignInfo().ClangInfo; // The index of the first "physical" parameter from paramTys/FI that // corresponds to a logical parameter from params. unsigned firstParam = 0; unsigned paramEnd = FI.arg_size(); // Handle the ObjC prefix. if (callee.getRepresentation() == SILFunctionTypeRepresentation::ObjCMethod) { // Ignore both the logical and the physical parameters associated // with self and _cmd. firstParam += 2; params = params.drop_back(); // Or the block prefix. } else if (fnType->getRepresentation() == SILFunctionTypeRepresentation::Block) { // Ignore the physical block-object parameter. firstParam += 1; } else if (callee.getRepresentation() == SILFunctionTypeRepresentation::CXXMethod) { // Skip the "self" param. firstParam += 1; params = params.drop_back(); } if (fnType->getNumResults() > 0 && fnType->getSingleResult().isFormalIndirect()) { // Ignore the indirect result parameter. firstParam += 1; } for (unsigned i = firstParam; i != paramEnd; ++i) { auto clangParamTy = FI.arg_begin()[i].type; auto &AI = FI.arg_begin()[i].info; // We don't need to do anything to handle the Swift parameter-ABI // attributes here because we shouldn't be trying to round-trip // swiftcall function pointers through SIL as C functions anyway. assert(FI.getExtParameterInfo(i).getABI() == clang::ParameterABI::Ordinary); // Add a padding argument if required. if (auto *padType = AI.getPaddingType()) out.add(llvm::UndefValue::get(padType)); SILType paramType = silConv.getSILType( params[i - firstParam], IGF.IGM.getMaximalTypeExpansionContext()); // In Swift, values that are foreign references types will always be // pointers. Additionally, we only import functions which use foreign // reference types indirectly (as pointers), so we know in every case, if // the argument type is a foreign reference type, the types will match up // and we can simply use the input directly. if (paramType.isForeignReferenceType()) { auto *arg = in.claimNext(); if (isIndirectFormalParameter(params[i - firstParam].getConvention())) arg = IGF.Builder.CreateLoad(arg, IGF.IGM.getPointerAlignment()); out.add(arg); continue; } switch (AI.getKind()) { case clang::CodeGen::ABIArgInfo::Extend: { bool signExt = clangParamTy->hasSignedIntegerRepresentation(); assert((signExt || clangParamTy->hasUnsignedIntegerRepresentation()) && "Invalid attempt to add extension attribute to argument!"); (void) signExt; LLVM_FALLTHROUGH; } case clang::CodeGen::ABIArgInfo::Direct: { auto toTy = AI.getCoerceToType(); // Indirect parameters are bridged as Clang pointer types. if (silConv.isSILIndirect(params[i - firstParam])) { assert(paramType.isAddress() && "SIL type is not an address?"); auto addr = in.claimNext(); if (addr->getType() != toTy) addr = IGF.coerceValue(addr, toTy, IGF.IGM.DataLayout); out.add(addr); break; } emitDirectExternalArgument(IGF, paramType, AI, in, out, isOutlined); break; } case clang::CodeGen::ABIArgInfo::IndirectAliased: llvm_unreachable("not implemented"); case clang::CodeGen::ABIArgInfo::Indirect: { auto &ti = cast(IGF.getTypeInfo(paramType)); auto temp = ti.allocateStack(IGF, paramType, "indirect-temporary"); temporaries.add({temp, paramType}); Address addr = temp.getAddress(); // Set at least the alignment the ABI expects. if (AI.getIndirectByVal()) { auto ABIAlign = AI.getIndirectAlign(); if (ABIAlign > addr.getAlignment()) { auto *AS = cast(addr.getAddress()); AS->setAlignment( llvm::MaybeAlign(ABIAlign.getQuantity()).valueOrOne()); addr = Address(addr.getAddress(), Alignment(ABIAlign.getQuantity())); } } ti.initialize(IGF, in, addr, isOutlined); out.add(addr.getAddress()); break; } case clang::CodeGen::ABIArgInfo::CoerceAndExpand: { auto ¶mTI = cast(IGF.getTypeInfo(paramType)); emitCoerceAndExpand(IGF, in, out, paramType, paramTI, AI.getCoerceAndExpandType(), AI.getCoerceAndExpandTypeSequence(), TranslationDirection::ToForeign, isOutlined); break; } case clang::CodeGen::ABIArgInfo::Expand: emitClangExpandedArgument( IGF, in, out, clangParamTy, paramType, cast(IGF.getTypeInfo(paramType)), isOutlined); break; case clang::CodeGen::ABIArgInfo::Ignore: break; case clang::CodeGen::ABIArgInfo::InAlloca: llvm_unreachable("Need to handle InAlloca when externalizing arguments"); break; } } } /// Returns whether allocas are needed. bool irgen::addNativeArgument(IRGenFunction &IGF, Explosion &in, CanSILFunctionType fnTy, SILParameterInfo origParamInfo, Explosion &out, bool isOutlined) { // Addresses consist of a single pointer argument. if (IGF.IGM.silConv.isSILIndirect(origParamInfo)) { out.add(in.claimNext()); return false; } auto paramType = IGF.IGM.silConv.getSILType( origParamInfo, fnTy, IGF.IGM.getMaximalTypeExpansionContext()); auto &ti = cast(IGF.getTypeInfo(paramType)); auto schema = ti.getSchema(); auto &nativeSchema = ti.nativeParameterValueSchema(IGF.IGM); if (nativeSchema.requiresIndirect()) { // Pass the argument indirectly. auto buf = IGF.createAlloca(ti.getStorageType(), ti.getFixedAlignment(), ""); ti.initialize(IGF, in, buf, isOutlined); out.add(buf.getAddress()); return true; } else { if (schema.empty()) { assert(nativeSchema.empty()); return false; } assert(!nativeSchema.empty()); // Pass the argument explosion directly, mapping into the native swift // calling convention. Explosion nonNativeParam; ti.reexplode(IGF, in, nonNativeParam); Explosion nativeParam = nativeSchema.mapIntoNative( IGF.IGM, IGF, nonNativeParam, paramType, isOutlined); nativeParam.transferInto(out, nativeParam.size()); return false; } } /// Emit a direct parameter that was passed under a C-based CC. static void emitDirectForeignParameter(IRGenFunction &IGF, Explosion &in, const clang::CodeGen::ABIArgInfo &AI, Explosion &out, SILType paramType, const LoadableTypeInfo ¶mTI) { // The ABI IR types for the entrypoint might differ from the // Swift IR types for the body of the function. llvm::Type *coercionTy = AI.getCoerceToType(); ArrayRef expandedTys; if (AI.isDirect() && AI.getCanBeFlattened() && isa(coercionTy)) { const auto *ST = cast(coercionTy); expandedTys = makeArrayRef(ST->element_begin(), ST->getNumElements()); } else if (coercionTy == paramTI.getStorageType()) { // Fast-path a really common case. This check assumes that either // the storage type of a type is an llvm::StructType or it has a // single-element explosion. out.add(in.claimNext()); return; } else { expandedTys = coercionTy; } auto outputSchema = paramTI.getSchema(); // Check to see if we can pairwise-coerce Swift's exploded scalars // to Clang's expanded elements. if (canCoerceToSchema(IGF.IGM, expandedTys, outputSchema)) { for (auto &outputElt : outputSchema) { llvm::Value *param = in.claimNext(); llvm::Type *outputTy = outputElt.getScalarType(); if (param->getType() != outputTy) param = IGF.coerceValue(param, outputTy, IGF.IGM.DataLayout); out.add(param); } return; } // Otherwise, we need to traffic through memory. // Create a temporary. Address temporary; Size tempSize; std::tie(temporary, tempSize) = allocateForCoercion(IGF, coercionTy, paramTI.getStorageType(), ""); IGF.Builder.CreateLifetimeStart(temporary, tempSize); // Write the input parameters into the temporary: Address coercedAddr = IGF.Builder.CreateBitCast(temporary, coercionTy->getPointerTo()); // Break down a struct expansion if necessary. if (auto expansionTy = dyn_cast(coercionTy)) { auto layout = IGF.IGM.DataLayout.getStructLayout(expansionTy); for (unsigned i = 0, e = expansionTy->getNumElements(); i != e; ++i) { auto fieldOffset = Size(layout->getElementOffset(i)); auto fieldAddr = IGF.Builder.CreateStructGEP(coercedAddr, i, fieldOffset); IGF.Builder.CreateStore(in.claimNext(), fieldAddr); } // Otherwise, store the single scalar. } else { IGF.Builder.CreateStore(in.claimNext(), coercedAddr); } // Pull out the elements. temporary = IGF.Builder.CreateBitCast(temporary, paramTI.getStorageType()->getPointerTo()); paramTI.loadAsTake(IGF, temporary, out); // Deallocate the temporary. // `deallocateStack` emits the lifetime.end marker for us. paramTI.deallocateStack(IGF, StackAddress(temporary), paramType); } void irgen::emitForeignParameter(IRGenFunction &IGF, Explosion ¶ms, ForeignFunctionInfo foreignInfo, unsigned foreignParamIndex, SILType paramTy, const LoadableTypeInfo ¶mTI, Explosion ¶mExplosion, bool isOutlined) { assert(foreignInfo.ClangInfo); auto &FI = *foreignInfo.ClangInfo; auto clangArgTy = FI.arg_begin()[foreignParamIndex].type; auto AI = FI.arg_begin()[foreignParamIndex].info; // We don't need to do anything to handle the Swift parameter-ABI // attributes here because we shouldn't be trying to round-trip // swiftcall function pointers through SIL as C functions anyway. assert(FI.getExtParameterInfo(foreignParamIndex).getABI() == clang::ParameterABI::Ordinary); // Drop padding arguments. if (AI.getPaddingType()) params.claimNext(); switch (AI.getKind()) { case clang::CodeGen::ABIArgInfo::Extend: case clang::CodeGen::ABIArgInfo::Direct: emitDirectForeignParameter(IGF, params, AI, paramExplosion, paramTy, paramTI); return; case clang::CodeGen::ABIArgInfo::IndirectAliased: llvm_unreachable("not implemented"); case clang::CodeGen::ABIArgInfo::Indirect: { Address address = paramTI.getAddressForPointer(params.claimNext()); paramTI.loadAsTake(IGF, address, paramExplosion); return; } case clang::CodeGen::ABIArgInfo::Expand: { emitClangExpandedParameter(IGF, params, paramExplosion, clangArgTy, paramTy, paramTI); return; } case clang::CodeGen::ABIArgInfo::CoerceAndExpand: { auto ¶mTI = cast(IGF.getTypeInfo(paramTy)); emitCoerceAndExpand(IGF, params, paramExplosion, paramTy, paramTI, AI.getCoerceAndExpandType(), AI.getCoerceAndExpandTypeSequence(), TranslationDirection::ToNative, isOutlined); break; } case clang::CodeGen::ABIArgInfo::Ignore: return; case clang::CodeGen::ABIArgInfo::InAlloca: llvm_unreachable("Need to handle InAlloca during signature expansion"); } } std::pair irgen::getCoroutineResumeFunctionPointerAuth(IRGenModule &IGM, CanSILFunctionType fnType) { switch (fnType->getCoroutineKind()) { case SILCoroutineKind::None: llvm_unreachable("not a coroutine"); case SILCoroutineKind::YieldMany: return { IGM.getOptions().PointerAuth.YieldManyResumeFunctions, PointerAuthEntity::forYieldTypes(fnType) }; case SILCoroutineKind::YieldOnce: return { IGM.getOptions().PointerAuth.YieldOnceResumeFunctions, PointerAuthEntity::forYieldTypes(fnType) }; } llvm_unreachable("bad coroutine kind"); } static void emitRetconCoroutineEntry(IRGenFunction &IGF, CanSILFunctionType fnType, NativeCCEntryPointArgumentEmission &emission, llvm::Intrinsic::ID idIntrinsic, Size bufferSize, Alignment bufferAlignment) { auto prototype = IGF.IGM.getOpaquePtr(IGF.IGM.getAddrOfContinuationPrototype(fnType)); // Use malloc and free as our allocator. auto allocFn = IGF.IGM.getOpaquePtr(IGF.IGM.getMallocFn()); auto deallocFn = IGF.IGM.getOpaquePtr(IGF.IGM.getFreeFn()); // Call the right 'llvm.coro.id.retcon' variant. llvm::Value *buffer = emission.getCoroutineBuffer(); llvm::Value *id = IGF.Builder.CreateIntrinsicCall(idIntrinsic, { llvm::ConstantInt::get(IGF.IGM.Int32Ty, bufferSize.getValue()), llvm::ConstantInt::get(IGF.IGM.Int32Ty, bufferAlignment.getValue()), buffer, prototype, allocFn, deallocFn }); // Call 'llvm.coro.begin', just for consistency with the normal pattern. // This serves as a handle that we can pass around to other intrinsics. auto hdl = IGF.Builder.CreateIntrinsicCall( llvm::Intrinsic::coro_begin, {id, llvm::ConstantPointerNull::get(IGF.IGM.Int8PtrTy)}); // Set the coroutine handle; this also flags that is a coroutine so that // e.g. dynamic allocas use the right code generation. IGF.setCoroutineHandle(hdl); auto *pt = IGF.Builder.IRBuilderBase::CreateAlloca(IGF.IGM.Int1Ty, /*array size*/ nullptr, "earliest insert point"); IGF.setEarliestInsertionPoint(pt); } void IRGenModule::addAsyncCoroIDMapping(llvm::GlobalVariable *asyncFunctionPointer, llvm::CallInst *coro_id_builtin) { AsyncCoroIDsForPadding[asyncFunctionPointer] = coro_id_builtin; } llvm::CallInst * IRGenModule::getAsyncCoroIDMapping(llvm::GlobalVariable *asyncFunctionPointer) { auto found = AsyncCoroIDsForPadding.find(asyncFunctionPointer); if (found == AsyncCoroIDsForPadding.end()) return nullptr; return found->second; } void IRGenModule::markAsyncFunctionPointerForPadding( llvm::GlobalVariable *asyncFunctionPointer) { AsyncCoroIDsForPadding[asyncFunctionPointer] = nullptr; } bool IRGenModule::isAsyncFunctionPointerMarkedForPadding( llvm::GlobalVariable *asyncFunctionPointer) { auto found = AsyncCoroIDsForPadding.find(asyncFunctionPointer); if (found == AsyncCoroIDsForPadding.end()) return false; return found->second == nullptr; } void irgen::emitAsyncFunctionEntry(IRGenFunction &IGF, const AsyncContextLayout &layout, LinkEntity asyncFunction, unsigned asyncContextIndex) { auto &IGM = IGF.IGM; auto size = layout.getSize(); auto asyncFuncPointerVar = cast(IGM.getAddrOfAsyncFunctionPointer(asyncFunction)); bool isPadded = IGM .isAsyncFunctionPointerMarkedForPadding(asyncFuncPointerVar); auto asyncFuncPointer = IGF.Builder.CreateBitOrPointerCast( asyncFuncPointerVar, IGM.Int8PtrTy); if (isPadded) { size = std::max(layout.getSize(), NumWords_AsyncLet * IGM.getPointerSize()); } auto *id = IGF.Builder.CreateIntrinsicCall( llvm::Intrinsic::coro_id_async, {llvm::ConstantInt::get(IGM.Int32Ty, size.getValue()), llvm::ConstantInt::get(IGM.Int32Ty, 16), llvm::ConstantInt::get(IGM.Int32Ty, asyncContextIndex), asyncFuncPointer}); IGM.addAsyncCoroIDMapping(asyncFuncPointerVar, id); // Call 'llvm.coro.begin', just for consistency with the normal pattern. // This serves as a handle that we can pass around to other intrinsics. auto hdl = IGF.Builder.CreateIntrinsicCall( llvm::Intrinsic::coro_begin, {id, llvm::ConstantPointerNull::get(IGM.Int8PtrTy)}); // Set the coroutine handle; this also flags that is a coroutine so that // e.g. dynamic allocas use the right code generation. IGF.setCoroutineHandle(hdl); auto *pt = IGF.Builder.IRBuilderBase::CreateAlloca(IGF.IGM.Int1Ty, /*array size*/ nullptr, "earliest insert point"); IGF.setEarliestInsertionPoint(pt); IGF.setupAsync(asyncContextIndex); } void irgen::emitYieldOnceCoroutineEntry( IRGenFunction &IGF, CanSILFunctionType fnType, NativeCCEntryPointArgumentEmission &emission) { emitRetconCoroutineEntry(IGF, fnType, emission, llvm::Intrinsic::coro_id_retcon_once, getYieldOnceCoroutineBufferSize(IGF.IGM), getYieldOnceCoroutineBufferAlignment(IGF.IGM)); } void irgen::emitYieldManyCoroutineEntry( IRGenFunction &IGF, CanSILFunctionType fnType, NativeCCEntryPointArgumentEmission &emission) { emitRetconCoroutineEntry(IGF, fnType, emission, llvm::Intrinsic::coro_id_retcon, getYieldManyCoroutineBufferSize(IGF.IGM), getYieldManyCoroutineBufferAlignment(IGF.IGM)); } static Address createOpaqueBufferAlloca(IRGenFunction &IGF, Size size, Alignment align) { auto ty = llvm::ArrayType::get(IGF.IGM.Int8Ty, size.getValue()); auto addr = IGF.createAlloca(ty, align); addr = IGF.Builder.CreateStructGEP(addr, 0, Size(0)); IGF.Builder.CreateLifetimeStart(addr, size); return addr; } Address irgen::emitAllocYieldOnceCoroutineBuffer(IRGenFunction &IGF) { return createOpaqueBufferAlloca(IGF, getYieldOnceCoroutineBufferSize(IGF.IGM), getYieldOnceCoroutineBufferAlignment(IGF.IGM)); } Address irgen::emitAllocYieldManyCoroutineBuffer(IRGenFunction &IGF) { return createOpaqueBufferAlloca(IGF, getYieldManyCoroutineBufferSize(IGF.IGM), getYieldManyCoroutineBufferAlignment(IGF.IGM)); } void irgen::emitDeallocYieldOnceCoroutineBuffer(IRGenFunction &IGF, Address buffer) { auto bufferSize = getYieldOnceCoroutineBufferSize(IGF.IGM); IGF.Builder.CreateLifetimeEnd(buffer, bufferSize); } void irgen::emitDeallocYieldManyCoroutineBuffer(IRGenFunction &IGF, Address buffer) { auto bufferSize = getYieldManyCoroutineBufferSize(IGF.IGM); IGF.Builder.CreateLifetimeEnd(buffer, bufferSize); } void irgen::emitTaskCancel(IRGenFunction &IGF, llvm::Value *task) { if (task->getType() != IGF.IGM.SwiftTaskPtrTy) { task = IGF.Builder.CreateBitCast(task, IGF.IGM.SwiftTaskPtrTy); } auto *call = IGF.Builder.CreateCall(IGF.IGM.getTaskCancelFn(), {task}); call->setDoesNotThrow(); call->setCallingConv(IGF.IGM.SwiftCC); } llvm::Value *irgen::emitTaskCreate( IRGenFunction &IGF, llvm::Value *flags, llvm::Value *taskGroup, llvm::Value *futureResultType, llvm::Value *taskFunction, llvm::Value *localContextInfo, SubstitutionMap subs) { // If there is a task group, emit a task group option structure to contain // it. llvm::Value *taskOptions = llvm::ConstantInt::get( IGF.IGM.SwiftTaskOptionRecordPtrTy, 0); if (taskGroup) { TaskOptionRecordFlags optionsFlags(TaskOptionRecordKind::TaskGroup); llvm::Value *optionsFlagsVal = llvm::ConstantInt::get( IGF.IGM.SizeTy, optionsFlags.getOpaqueValue()); auto optionsRecord = IGF.createAlloca( IGF.IGM.SwiftTaskGroupTaskOptionRecordTy, Alignment(), "task_group_options"); auto optionsBaseRecord = IGF.Builder.CreateStructGEP( optionsRecord, 0, Size()); IGF.Builder.CreateStore( optionsFlagsVal, IGF.Builder.CreateStructGEP(optionsBaseRecord, 0, Size())); IGF.Builder.CreateStore( taskOptions, IGF.Builder.CreateStructGEP(optionsBaseRecord, 1, Size())); IGF.Builder.CreateStore( taskGroup, IGF.Builder.CreateStructGEP(optionsRecord, 1, Size())); taskOptions = IGF.Builder.CreateBitOrPointerCast( optionsRecord.getAddress(), IGF.IGM.SwiftTaskOptionRecordPtrTy); } assert(futureResultType && "no future?!"); llvm::CallInst *result = IGF.Builder.CreateCall( IGF.IGM.getTaskCreateFn(), {flags, taskOptions, futureResultType, taskFunction, localContextInfo}); result->setDoesNotThrow(); result->setCallingConv(IGF.IGM.SwiftCC); return result; } Address irgen::emitAllocAsyncContext(IRGenFunction &IGF, llvm::Value *sizeValue) { auto alignment = IGF.IGM.getAsyncContextAlignment(); auto address = IGF.emitTaskAlloc(sizeValue, alignment); IGF.Builder.CreateLifetimeStart(address, Size(-1) /*dynamic size*/); return address; } void irgen::emitDeallocAsyncContext(IRGenFunction &IGF, Address context) { IGF.emitTaskDealloc(context); IGF.Builder.CreateLifetimeEnd(context, Size(-1) /*dynamic size*/); } Address irgen::emitStaticAllocAsyncContext(IRGenFunction &IGF, Size size) { auto alignment = IGF.IGM.getAsyncContextAlignment(); auto &IGM = IGF.IGM; auto address = IGF.createAlloca(IGM.Int8Ty, IGM.getSize(size), alignment); IGF.Builder.CreateLifetimeStart(address, size); return address; } void irgen::emitStaticDeallocAsyncContext(IRGenFunction &IGF, Address context, Size size) { IGF.Builder.CreateLifetimeEnd(context, size); } llvm::Value *irgen::emitYield(IRGenFunction &IGF, CanSILFunctionType coroutineType, Explosion &substValues) { // TODO: Handle async! auto coroSignature = IGF.IGM.getSignature(coroutineType); auto coroInfo = coroSignature.getCoroutineInfo(); // Translate the arguments to an unsubstituted form. Explosion allComponents; for (auto yield : coroutineType->getYields()) addNativeArgument(IGF, substValues, coroutineType, yield, allComponents, false); // Figure out which arguments need to be yielded directly. SmallVector yieldArgs; // Add the direct yield components. auto directComponents = allComponents.claim(coroInfo.NumDirectYieldComponents); yieldArgs.append(directComponents.begin(), directComponents.end()); // The rest need to go into an indirect buffer. auto indirectComponents = allComponents.claimAll(); auto resultStructTy = dyn_cast(coroSignature.getType()->getReturnType()); assert((!resultStructTy && directComponents.empty() && indirectComponents.empty()) || (resultStructTy && resultStructTy->getNumElements() == (1 + directComponents.size() + unsigned(!indirectComponents.empty())))); // Fill in the indirect buffer if necessary. Optional
indirectBuffer; Size indirectBufferSize; if (!indirectComponents.empty()) { auto bufferStructTy = cast( resultStructTy->getElementType(resultStructTy->getNumElements() - 1) ->getPointerElementType()); auto layout = IGF.IGM.DataLayout.getStructLayout(bufferStructTy); indirectBuffer = IGF.createAlloca( bufferStructTy, Alignment(layout->getAlignment().value())); indirectBufferSize = Size(layout->getSizeInBytes()); IGF.Builder.CreateLifetimeStart(*indirectBuffer, indirectBufferSize); for (size_t i : indices(bufferStructTy->elements())) { // Skip padding elements. if (bufferStructTy->getElementType(i)->isArrayTy()) continue; assert(!indirectComponents.empty() && "insufficient number of indirect yield components"); auto addr = IGF.Builder.CreateStructGEP(*indirectBuffer, i, layout); IGF.Builder.CreateStore(indirectComponents.front(), addr); indirectComponents = indirectComponents.drop_front(); } assert(indirectComponents.empty() && "too many indirect yield components"); // Remember to yield the indirect buffer. yieldArgs.push_back(indirectBuffer->getAddress()); } // Perform the yield. auto isUnwind = IGF.Builder.CreateIntrinsicCall( llvm::Intrinsic::coro_suspend_retcon, {IGF.IGM.Int1Ty}, yieldArgs); // We're done with the indirect buffer. if (indirectBuffer) { IGF.Builder.CreateLifetimeEnd(*indirectBuffer, indirectBufferSize); } return isUnwind; } /// Add a new set of arguments to the function. void CallEmission::setArgs(Explosion &adjusted, bool isOutlined, WitnessMetadata *witnessMetadata) { assert(state == State::Emitting); // Add the given number of arguments. assert(LastArgWritten >= adjusted.size()); size_t targetIndex = LastArgWritten - adjusted.size(); assert(targetIndex <= 1); LastArgWritten = targetIndex; auto argIterator = Args.begin() + targetIndex; for (auto value : adjusted.claimAll()) { *argIterator++ = value; } } void CallEmission::addFnAttribute(llvm::Attribute::AttrKind attr) { assert(state == State::Emitting); auto &attrs = CurCallee.getMutableAttributes(); attrs = attrs.addFnAttribute(IGF.IGM.getLLVMContext(), attr); } void CallEmission::addParamAttribute(unsigned paramIndex, llvm::Attribute::AttrKind attr) { assert(state == State::Emitting); auto &attrs = CurCallee.getMutableAttributes(); attrs = attrs.addParamAttribute(IGF.IGM.getLLVMContext(), paramIndex, attr); } /// Initialize an Explosion with the parameters of the current /// function. All of the objects will be added unmanaged. This is /// really only useful when writing prologue code. Explosion IRGenFunction::collectParameters() { Explosion params; for (auto i = CurFn->arg_begin(), e = CurFn->arg_end(); i != e; ++i) params.add(&*i); return params; } Address IRGenFunction::createErrorResultSlot(SILType errorType, bool isAsync) { auto &errorTI = cast(getTypeInfo(errorType)); IRBuilder builder(IGM.getLLVMContext(), IGM.DebugInfo != nullptr); builder.SetInsertPoint(AllocaIP->getParent(), AllocaIP->getIterator()); // Create the alloca. We don't use allocateStack because we're // not allocating this in stack order. auto addr = createAlloca(errorTI.getStorageType(), errorTI.getFixedAlignment(), "swifterror"); if (!isAsync) { builder.SetInsertPoint(getEarliestInsertionPoint()->getParent(), getEarliestInsertionPoint()->getIterator()); } // Only add the swifterror attribute on ABIs that pass it in a register. // We create a shadow stack location of the swifterror parameter for the // debugger on platforms that pass swifterror by reference and so we can't // mark the parameter with a swifterror attribute for these. // The slot for async callees cannot be annotated swifterror because those // errors are never passed in registers but rather are always passed // indirectly in the async context. if (IGM.ShouldUseSwiftError && !isAsync) cast(addr.getAddress())->setSwiftError(true); // Initialize at the alloca point. auto nullError = llvm::ConstantPointerNull::get( cast(errorTI.getStorageType())); builder.CreateStore(nullError, addr); return addr; } /// Fetch the error result slot. Address IRGenFunction::getCalleeErrorResultSlot(SILType errorType) { if (!CalleeErrorResultSlot) { CalleeErrorResultSlot = createErrorResultSlot(errorType, /*isAsync=*/false).getAddress(); } return Address(CalleeErrorResultSlot, IGM.getPointerAlignment()); } /// Fetch the error result slot. Address IRGenFunction::getAsyncCalleeErrorResultSlot(SILType errorType) { assert(isAsync() && "throwing async functions must be called from async functions"); if (!AsyncCalleeErrorResultSlot) { AsyncCalleeErrorResultSlot = createErrorResultSlot(errorType, /*isAsync=*/true).getAddress(); } return Address(AsyncCalleeErrorResultSlot, IGM.getPointerAlignment()); } /// Fetch the error result slot received from the caller. Address IRGenFunction::getCallerErrorResultSlot() { assert(CallerErrorResultSlot && "no error result slot!"); assert(isa(CallerErrorResultSlot) && !isAsync() || isa(CallerErrorResultSlot) && isAsync() && "error result slot is local!"); return Address(CallerErrorResultSlot, IGM.getPointerAlignment()); } // Set the error result slot. This should only be done in the prologue. void IRGenFunction::setCallerErrorResultSlot(llvm::Value *address) { assert(!CallerErrorResultSlot && "already have a caller error result slot!"); assert(isa(address->getType())); CallerErrorResultSlot = address; if (!isAsync()) { CalleeErrorResultSlot = address; } } /// Emit the basic block that 'return' should branch to and insert it into /// the current function. This creates a second /// insertion point that most blocks should be inserted before. void IRGenFunction::emitBBForReturn() { ReturnBB = createBasicBlock("return"); CurFn->getBasicBlockList().push_back(ReturnBB); } /// Emit the prologue for the function. void IRGenFunction::emitPrologue() { // Set up the IRBuilder. llvm::BasicBlock *EntryBB = createBasicBlock("entry"); assert(CurFn->getBasicBlockList().empty() && "prologue already emitted?"); CurFn->getBasicBlockList().push_back(EntryBB); Builder.SetInsertPoint(EntryBB); // Set up the alloca insertion point. AllocaIP = Builder.IRBuilderBase::CreateAlloca(IGM.Int1Ty, /*array size*/ nullptr, "alloca point"); EarliestIP = AllocaIP; } /// Emit a branch to the return block and set the insert point there. /// Returns true if the return block is reachable, false otherwise. bool IRGenFunction::emitBranchToReturnBB() { // If there are no edges to the return block, we never want to emit it. if (ReturnBB->use_empty()) { ReturnBB->eraseFromParent(); // Normally this means that we'll just insert the epilogue in the // current block, but if the current IP is unreachable then so is // the entire epilogue. if (!Builder.hasValidIP()) return false; // Otherwise, branch to it if the current IP is reachable. } else if (Builder.hasValidIP()) { Builder.CreateBr(ReturnBB); Builder.SetInsertPoint(ReturnBB); // Otherwise, if there is exactly one use of the return block, merge // it into its predecessor. } else if (ReturnBB->hasOneUse()) { // return statements are never emitted as conditional branches. llvm::BranchInst *Br = cast(*ReturnBB->use_begin()); assert(Br->isUnconditional()); Builder.SetInsertPoint(Br->getParent()); Br->eraseFromParent(); ReturnBB->eraseFromParent(); // Otherwise, just move the IP to the return block. } else { Builder.SetInsertPoint(ReturnBB); } return true; } /// Emit the epilogue for the function. void IRGenFunction::emitEpilogue() { if (EarliestIP != AllocaIP) EarliestIP->eraseFromParent(); // Destroy the alloca insertion point. AllocaIP->eraseFromParent(); } std::pair irgen::allocateForCoercion(IRGenFunction &IGF, llvm::Type *fromTy, llvm::Type *toTy, const llvm::Twine &basename) { auto &DL = IGF.IGM.DataLayout; auto fromSize = DL.getTypeSizeInBits(fromTy); auto toSize = DL.getTypeSizeInBits(toTy); auto bufferTy = fromSize >= toSize ? fromTy : toTy; auto alignment = std::max(DL.getABITypeAlignment(fromTy), DL.getABITypeAlignment(toTy)); auto buffer = IGF.createAlloca(bufferTy, Alignment(alignment), basename + ".coerced"); Size size(std::max(fromSize, toSize)); return {buffer, size}; } llvm::Value* IRGenFunction::coerceValue(llvm::Value *value, llvm::Type *toTy, const llvm::DataLayout &DL) { llvm::Type *fromTy = value->getType(); assert(fromTy != toTy && "Unexpected same types in type coercion!"); assert(!fromTy->isVoidTy() && "Unexpected void source type in type coercion!"); assert(!toTy->isVoidTy() && "Unexpected void destination type in type coercion!"); // Use the pointer/pointer and pointer/int casts if we can. if (toTy->isPointerTy()) { if (fromTy->isPointerTy()) return Builder.CreateBitCast(value, toTy); if (fromTy == IGM.IntPtrTy) return Builder.CreateIntToPtr(value, toTy); } else if (fromTy->isPointerTy()) { if (toTy == IGM.IntPtrTy) { return Builder.CreatePtrToInt(value, toTy); } } // Otherwise we need to store, bitcast, and load. Address address; Size size; std::tie(address, size) = allocateForCoercion(*this, fromTy, toTy, value->getName() + ".coercion"); Builder.CreateLifetimeStart(address, size); auto orig = Builder.CreateBitCast(address, fromTy->getPointerTo()); Builder.CreateStore(value, orig); auto coerced = Builder.CreateBitCast(address, toTy->getPointerTo()); auto loaded = Builder.CreateLoad(coerced); Builder.CreateLifetimeEnd(address, size); return loaded; } void IRGenFunction::emitScalarReturn(llvm::Type *resultType, Explosion &result) { if (result.empty()) { Builder.CreateRetVoid(); return; } auto *ABIType = CurFn->getReturnType(); if (result.size() == 1) { auto *returned = result.claimNext(); if (ABIType != returned->getType()) returned = coerceValue(returned, ABIType, IGM.DataLayout); Builder.CreateRet(returned); return; } // Multiple return values are returned as a struct. assert(cast(resultType)->getNumElements() == result.size()); llvm::Value *resultAgg = llvm::UndefValue::get(resultType); for (unsigned i = 0, e = result.size(); i != e; ++i) { llvm::Value *elt = result.claimNext(); resultAgg = Builder.CreateInsertValue(resultAgg, elt, i); } if (ABIType != resultType) resultAgg = coerceValue(resultAgg, ABIType, IGM.DataLayout); Builder.CreateRet(resultAgg); } /// Adjust the alignment of the alloca pointed to by \p allocaAddr to the /// required alignment of the struct \p type. static void adjustAllocaAlignment(const llvm::DataLayout &DL, Address allocaAddr, llvm::StructType *type) { auto layout = DL.getStructLayout(type); Alignment layoutAlignment = Alignment(layout->getAlignment().value()); auto alloca = cast(allocaAddr.getAddress()); if (alloca->getAlignment() < layoutAlignment.getValue()) { alloca->setAlignment( llvm::MaybeAlign(layoutAlignment.getValue()).valueOrOne()); allocaAddr = Address(allocaAddr.getAddress(), layoutAlignment); } } unsigned NativeConventionSchema::size() const { if (empty()) return 0; unsigned size = 0; Lowering.enumerateComponents([&](clang::CharUnits offset, clang::CharUnits end, llvm::Type *type) { ++size; }); return size; } static bool canMatchByTruncation(IRGenModule &IGM, ArrayRef expandedTys, const ExplosionSchema &schema) { // If the schemas don't even match in number, we have to go // through memory. if (expandedTys.size() != schema.size() || expandedTys.empty()) return false; if (expandedTys.size() == 1) return false; // If there are multiple elements, the pairs of types need to // match in size upto the penultimate for the truncation to work. size_t e = expandedTys.size(); for (size_t i = 0; i != e - 1; ++i) { // Check that we can truncate the last element. llvm::Type *outputTy = schema[i].getScalarType(); llvm::Type *inputTy = expandedTys[i]; if (inputTy != outputTy && IGM.DataLayout.getTypeSizeInBits(inputTy) != IGM.DataLayout.getTypeSizeInBits(outputTy)) return false; } llvm::Type *outputTy = schema[e-1].getScalarType(); llvm::Type *inputTy = expandedTys[e-1]; return inputTy == outputTy || (IGM.DataLayout.getTypeSizeInBits(inputTy) == IGM.DataLayout.getTypeSizeInBits(outputTy)) || (IGM.DataLayout.getTypeSizeInBits(inputTy) > IGM.DataLayout.getTypeSizeInBits(outputTy) && isa(inputTy) && isa(outputTy)); } Explosion NativeConventionSchema::mapFromNative(IRGenModule &IGM, IRGenFunction &IGF, Explosion &native, SILType type) const { if (native.empty()) { assert(empty() && "Empty explosion must match the native convention"); return Explosion(); } assert(!empty()); auto *nativeTy = getExpandedType(IGM); auto expandedTys = expandScalarOrStructTypeToArray(nativeTy); auto &TI = IGM.getTypeInfo(type); auto schema = TI.getSchema(); // The expected explosion type. auto *explosionTy = schema.getScalarResultType(IGM); // Check whether we can coerce the explosion to the expected type convention. auto &DataLayout = IGM.DataLayout; Explosion nonNativeExplosion; if (canCoerceToSchema(IGM, expandedTys, schema)) { if (native.size() == 1) { auto *elt = native.claimNext(); if (explosionTy != elt->getType()) { if (isa(explosionTy) && isa(elt->getType())) { // [HACK: Atomic-Bool-IRGen] In the case of _Atomic(_Bool), Clang // treats it as i8 whereas Swift works with i1, so we need to zext // in that case. elt = IGF.Builder.CreateZExtOrTrunc(elt, explosionTy); } else { elt = IGF.coerceValue(elt, explosionTy, DataLayout); } } nonNativeExplosion.add(elt); return nonNativeExplosion; } else if (nativeTy == explosionTy) { native.transferInto(nonNativeExplosion, native.size()); return nonNativeExplosion; } // Otherwise, we have to go through memory if we can match by truncation. } else if (canMatchByTruncation(IGM, expandedTys, schema)) { assert(expandedTys.size() == schema.size()); for (size_t i = 0, e = expandedTys.size(); i != e; ++i) { auto *elt = native.claimNext(); auto *schemaTy = schema[i].getScalarType(); auto *nativeTy = elt->getType(); assert(nativeTy == expandedTys[i]); if (schemaTy == nativeTy) { // elt = elt } else if (DataLayout.getTypeSizeInBits(schemaTy) == DataLayout.getTypeSizeInBits(nativeTy)) elt = IGF.coerceValue(elt, schemaTy, DataLayout); else { assert(DataLayout.getTypeSizeInBits(schemaTy) < DataLayout.getTypeSizeInBits(nativeTy)); elt = IGF.Builder.CreateTrunc(elt, schemaTy); } nonNativeExplosion.add(elt); } return nonNativeExplosion; } // If not, go through memory. auto &loadableTI = cast(TI); // We can get two layouts if there are overlapping ranges in the legal type // sequence. llvm::StructType *coercionTy, *overlappedCoercionTy; SmallVector expandedTyIndicesMap; std::tie(coercionTy, overlappedCoercionTy) = getCoercionTypes(IGM, expandedTyIndicesMap); // Get the larger layout out of those two. auto coercionSize = DataLayout.getTypeSizeInBits(coercionTy); auto overlappedCoercionSize = DataLayout.getTypeSizeInBits(overlappedCoercionTy); llvm::StructType *largerCoercion = coercionSize >= overlappedCoercionSize ? coercionTy : overlappedCoercionTy; // Allocate a temporary for the coercion. Address temporary; Size tempSize; std::tie(temporary, tempSize) = allocateForCoercion( IGF, largerCoercion, loadableTI.getStorageType(), "temp-coercion"); // Make sure we have sufficiently large alignment. adjustAllocaAlignment(DataLayout, temporary, coercionTy); adjustAllocaAlignment(DataLayout, temporary, overlappedCoercionTy); auto &Builder = IGF.Builder; Builder.CreateLifetimeStart(temporary, tempSize); // Store the expanded type elements. auto coercionAddr = Builder.CreateElementBitCast(temporary, coercionTy); unsigned expandedMapIdx = 0; auto eltsArray = native.claimAll(); SmallVector nativeElts(eltsArray.begin(), eltsArray.end()); auto storeToFn = [&](llvm::StructType *ty, Address structAddr) { for (auto eltIndex : indices(ty->elements())) { auto layout = DataLayout.getStructLayout(ty); auto eltTy = ty->getElementType(eltIndex); // Skip padding fields. if (eltTy->isArrayTy()) continue; Address eltAddr = Builder.CreateStructGEP(structAddr, eltIndex, layout); auto index = expandedTyIndicesMap[expandedMapIdx]; assert(index < nativeElts.size() && nativeElts[index] != nullptr); auto nativeElt = nativeElts[index]; Builder.CreateStore(nativeElt, eltAddr); nativeElts[index] = nullptr; ++expandedMapIdx; } }; storeToFn(coercionTy, coercionAddr); if (!overlappedCoercionTy->isEmptyTy()) { auto overlappedCoercionAddr = Builder.CreateElementBitCast(temporary, overlappedCoercionTy); storeToFn(overlappedCoercionTy, overlappedCoercionAddr); } // Reload according to the types schema. Address storageAddr = Builder.CreateBitCast( temporary, loadableTI.getStorageType()->getPointerTo()); loadableTI.loadAsTake(IGF, storageAddr, nonNativeExplosion); Builder.CreateLifetimeEnd(temporary, tempSize); return nonNativeExplosion; } Explosion NativeConventionSchema::mapIntoNative(IRGenModule &IGM, IRGenFunction &IGF, Explosion &fromNonNative, SILType type, bool isOutlined) const { if (fromNonNative.empty()) { assert(empty() && "Empty explosion must match the native convention"); return Explosion(); } assert(!requiresIndirect() && "Expected direct convention"); assert(!empty()); auto *nativeTy = getExpandedType(IGM); auto expandedTys = expandScalarOrStructTypeToArray(nativeTy); auto &TI = IGM.getTypeInfo(type); auto schema = TI.getSchema(); auto *explosionTy = schema.getScalarResultType(IGM); // Check whether we can coerce the explosion to the expected type convention. auto &DataLayout = IGM.DataLayout; Explosion nativeExplosion; if (canCoerceToSchema(IGM, expandedTys, schema)) { if (fromNonNative.size() == 1) { auto *elt = fromNonNative.claimNext(); if (nativeTy != elt->getType()) { if (isa(nativeTy) && isa(elt->getType())) { // [HACK: Atomic-Bool-IRGen] In the case of _Atomic(_Bool), Clang // treats it as i8 whereas Swift works with i1, so we need to trunc // in that case. elt = IGF.Builder.CreateZExtOrTrunc(elt, nativeTy); } else { elt = IGF.coerceValue(elt, nativeTy, DataLayout); } } nativeExplosion.add(elt); return nativeExplosion; } else if (nativeTy == explosionTy) { fromNonNative.transferInto(nativeExplosion, fromNonNative.size()); return nativeExplosion; } // Otherwise, we have to go through memory if we can't match by truncation. } else if (canMatchByTruncation(IGM, expandedTys, schema)) { assert(expandedTys.size() == schema.size()); for (size_t i = 0, e = expandedTys.size(); i != e; ++i) { auto *elt = fromNonNative.claimNext(); auto *schemaTy = elt->getType(); auto *nativeTy = expandedTys[i]; assert(schema[i].getScalarType() == schemaTy); if (schemaTy == nativeTy) { // elt = elt } else if (DataLayout.getTypeSizeInBits(schemaTy) == DataLayout.getTypeSizeInBits(nativeTy)) elt = IGF.coerceValue(elt, nativeTy, DataLayout); else { assert(DataLayout.getTypeSizeInBits(schemaTy) < DataLayout.getTypeSizeInBits(nativeTy)); elt = IGF.Builder.CreateZExt(elt, nativeTy); } nativeExplosion.add(elt); } return nativeExplosion; } // If not, go through memory. auto &loadableTI = cast(TI); // We can get two layouts if there are overlapping ranges in the legal type // sequence. llvm::StructType *coercionTy, *overlappedCoercionTy; SmallVector expandedTyIndicesMap; std::tie(coercionTy, overlappedCoercionTy) = getCoercionTypes(IGM, expandedTyIndicesMap); // Get the larger layout out of those two. auto coercionSize = DataLayout.getTypeSizeInBits(coercionTy); auto overlappedCoercionSize = DataLayout.getTypeSizeInBits(overlappedCoercionTy); llvm::StructType *largerCoercion = coercionSize >= overlappedCoercionSize ? coercionTy : overlappedCoercionTy; // Allocate a temporary for the coercion. Address temporary; Size tempSize; std::tie(temporary, tempSize) = allocateForCoercion( IGF, largerCoercion, loadableTI.getStorageType(), "temp-coercion"); // Make sure we have sufficiently large alignment. adjustAllocaAlignment(DataLayout, temporary, coercionTy); adjustAllocaAlignment(DataLayout, temporary, overlappedCoercionTy); auto &Builder = IGF.Builder; Builder.CreateLifetimeStart(temporary, tempSize); // Initialize the memory of the temporary. Address storageAddr = Builder.CreateBitCast( temporary, loadableTI.getStorageType()->getPointerTo()); loadableTI.initialize(IGF, fromNonNative, storageAddr, isOutlined); // Load the expanded type elements from memory. auto coercionAddr = Builder.CreateElementBitCast(temporary, coercionTy); unsigned expandedMapIdx = 0; SmallVector expandedElts(expandedTys.size(), nullptr); auto loadFromFn = [&](llvm::StructType *ty, Address structAddr) { for (auto eltIndex : indices(ty->elements())) { auto layout = DataLayout.getStructLayout(ty); auto eltTy = ty->getElementType(eltIndex); // Skip padding fields. if (eltTy->isArrayTy()) continue; Address eltAddr = Builder.CreateStructGEP(structAddr, eltIndex, layout); llvm::Value *elt = Builder.CreateLoad(eltAddr); auto index = expandedTyIndicesMap[expandedMapIdx]; assert(expandedElts[index] == nullptr); expandedElts[index] = elt; ++expandedMapIdx; } }; loadFromFn(coercionTy, coercionAddr); if (!overlappedCoercionTy->isEmptyTy()) { auto overlappedCoercionAddr = Builder.CreateElementBitCast(temporary, overlappedCoercionTy); loadFromFn(overlappedCoercionTy, overlappedCoercionAddr); } Builder.CreateLifetimeEnd(temporary, tempSize); // Add the values to the explosion. for (auto *val : expandedElts) nativeExplosion.add(val); assert(expandedTys.size() == nativeExplosion.size()); return nativeExplosion; } Explosion IRGenFunction::coerceValueTo(SILType fromTy, Explosion &from, SILType toTy) { if (fromTy == toTy) return std::move(from); auto &fromTI = cast(IGM.getTypeInfo(fromTy)); auto &toTI = cast(IGM.getTypeInfo(toTy)); Explosion result; if (fromTI.getStorageType()->isPointerTy() && toTI.getStorageType()->isPointerTy()) { auto ptr = from.claimNext(); ptr = Builder.CreateBitCast(ptr, toTI.getStorageType()); result.add(ptr); return result; } auto temporary = toTI.allocateStack(*this, toTy, "coerce.temp"); auto addr = Address(Builder.CreateBitCast(temporary.getAddressPointer(), fromTI.getStorageType()->getPointerTo()), temporary.getAlignment()); fromTI.initialize(*this, from, addr, false); toTI.loadAsTake(*this, temporary.getAddress(), result); toTI.deallocateStack(*this, temporary, toTy); return result; } void IRGenFunction::emitScalarReturn(SILType returnResultType, SILType funcResultType, Explosion &result, bool isSwiftCCReturn, bool isOutlined) { if (result.empty()) { assert(IGM.getTypeInfo(returnResultType) .nativeReturnValueSchema(IGM) .empty() && "Empty explosion must match the native calling convention"); Builder.CreateRetVoid(); return; } // In the native case no coercion is needed. if (isSwiftCCReturn) { result = coerceValueTo(returnResultType, result, funcResultType); auto &nativeSchema = IGM.getTypeInfo(funcResultType).nativeReturnValueSchema(IGM); assert(!nativeSchema.requiresIndirect()); Explosion native = nativeSchema.mapIntoNative(IGM, *this, result, funcResultType, isOutlined); if (native.size() == 1) { Builder.CreateRet(native.claimNext()); return; } llvm::Value *nativeAgg = llvm::UndefValue::get(nativeSchema.getExpandedType(IGM)); for (unsigned i = 0, e = native.size(); i != e; ++i) { llvm::Value *elt = native.claimNext(); nativeAgg = Builder.CreateInsertValue(nativeAgg, elt, i); } Builder.CreateRet(nativeAgg); return; } // Otherwise we potentially need to coerce the type. We don't need to go // through the mapping to the native calling convention. auto *ABIType = CurFn->getReturnType(); if (result.size() == 1) { auto *returned = result.claimNext(); if (ABIType != returned->getType()) returned = coerceValue(returned, ABIType, IGM.DataLayout); Builder.CreateRet(returned); return; } auto &resultTI = IGM.getTypeInfo(returnResultType); auto schema = resultTI.getSchema(); auto *bodyType = schema.getScalarResultType(IGM); // Multiple return values are returned as a struct. assert(cast(bodyType)->getNumElements() == result.size()); llvm::Value *resultAgg = llvm::UndefValue::get(bodyType); for (unsigned i = 0, e = result.size(); i != e; ++i) { llvm::Value *elt = result.claimNext(); resultAgg = Builder.CreateInsertValue(resultAgg, elt, i); } if (ABIType != bodyType) resultAgg = coerceValue(resultAgg, ABIType, IGM.DataLayout); Builder.CreateRet(resultAgg); } /// Modify the given variable to hold a pointer whose type is the /// LLVM lowering of the given function type, and return the signature /// for the type. Signature irgen::emitCastOfFunctionPointer(IRGenFunction &IGF, llvm::Value *&fnPtr, CanSILFunctionType fnType, bool forAsyncReturn) { // Figure out the function type. // FIXME: Cache async signature. auto sig = forAsyncReturn ? Signature::forAsyncReturn(IGF.IGM, fnType) : IGF.IGM.getSignature(fnType); // Emit the cast. fnPtr = IGF.Builder.CreateBitCast(fnPtr, sig.getType()->getPointerTo()); // Return the information. return sig; } Callee irgen::getBlockPointerCallee(IRGenFunction &IGF, llvm::Value *blockPtr, CalleeInfo &&info) { // Grab the block pointer and make it the first physical argument. llvm::PointerType *blockPtrTy = IGF.IGM.ObjCBlockPtrTy; auto castBlockPtr = IGF.Builder.CreateBitCast(blockPtr, blockPtrTy); // Extract the invocation pointer for blocks. auto blockStructTy = blockPtrTy->getElementType(); llvm::Value *invokeFnPtrPtr = IGF.Builder.CreateStructGEP(blockStructTy, castBlockPtr, 3); Address invokeFnPtrAddr(invokeFnPtrPtr, IGF.IGM.getPointerAlignment()); llvm::Value *invokeFnPtr = IGF.Builder.CreateLoad(invokeFnPtrAddr); auto sig = emitCastOfFunctionPointer(IGF, invokeFnPtr, info.OrigFnType); auto &schema = IGF.getOptions().PointerAuth.BlockInvocationFunctionPointers; auto authInfo = PointerAuthInfo::emit(IGF, schema, invokeFnPtrAddr.getAddress(), info.OrigFnType); FunctionPointer fn(FunctionPointer::Kind::Function, invokeFnPtr, authInfo, sig); return Callee(std::move(info), fn, blockPtr); } Callee irgen::getSwiftFunctionPointerCallee( IRGenFunction &IGF, llvm::Value *fnPtr, llvm::Value *dataPtr, CalleeInfo &&calleeInfo, bool castOpaqueToRefcountedContext) { auto sig = emitCastOfFunctionPointer(IGF, fnPtr, calleeInfo.OrigFnType); auto authInfo = PointerAuthInfo::forFunctionPointer(IGF.IGM, calleeInfo.OrigFnType); FunctionPointer fn(calleeInfo.OrigFnType, fnPtr, authInfo, sig); if (castOpaqueToRefcountedContext) { assert(dataPtr && dataPtr->getType() == IGF.IGM.OpaquePtrTy && "Expecting trivial closure context"); dataPtr = IGF.Builder.CreateBitCast(dataPtr, IGF.IGM.RefCountedPtrTy); } return Callee(std::move(calleeInfo), fn, dataPtr); } Callee irgen::getCFunctionPointerCallee(IRGenFunction &IGF, llvm::Value *fnPtr, CalleeInfo &&calleeInfo) { auto sig = emitCastOfFunctionPointer(IGF, fnPtr, calleeInfo.OrigFnType); auto authInfo = PointerAuthInfo::forFunctionPointer(IGF.IGM, calleeInfo.OrigFnType); FunctionPointer fn(FunctionPointer::Kind::Function, fnPtr, authInfo, sig); return Callee(std::move(calleeInfo), fn); } FunctionPointer FunctionPointer::forDirect(IRGenModule &IGM, llvm::Constant *fnPtr, llvm::Constant *secondaryValue, CanSILFunctionType fnType) { return forDirect(fnType, fnPtr, secondaryValue, IGM.getSignature(fnType)); } StringRef FunctionPointer::getName(IRGenModule &IGM) const { assert(isConstant()); switch (getBasicKind()) { case BasicKind::Function: return getRawPointer()->getName(); case BasicKind::AsyncFunctionPointer: return IGM .getSILFunctionForAsyncFunctionPointer( cast(getDirectPointer()->getOperand(0))) ->getName(); } llvm_unreachable("unhandled case"); } llvm::Value *FunctionPointer::getPointer(IRGenFunction &IGF) const { switch (getBasicKind()) { case BasicKind::Function: return Value; case BasicKind::AsyncFunctionPointer: { if (auto *rawFunction = getRawAsyncFunction()) { // If the pointer to the underlying function is available, it means that // this FunctionPointer instance was created via // FunctionPointer::forDirect and as such has no AuthInfo. assert(!AuthInfo && "have PointerAuthInfo for an async FunctionPointer " "for which the raw function is known"); return rawFunction; } auto *fnPtr = Value; if (auto authInfo = AuthInfo) { fnPtr = emitPointerAuthAuth(IGF, fnPtr, authInfo); if (IGF.IGM.getOptions().IndirectAsyncFunctionPointer) fnPtr = emitIndirectAsyncFunctionPointer(IGF, fnPtr); } auto *descriptorPtr = IGF.Builder.CreateBitCast(fnPtr, IGF.IGM.AsyncFunctionPointerPtrTy); auto *addrPtr = IGF.Builder.CreateStructGEP( descriptorPtr->getType()->getScalarType()->getPointerElementType(), descriptorPtr, 0); auto *result = IGF.emitLoadOfCompactFunctionPointer( Address(addrPtr, IGF.IGM.getPointerAlignment()), /*isFar*/ false, /*expectedType*/ getFunctionType()->getPointerTo()); if (auto codeAuthInfo = AuthInfo.getCorrespondingCodeAuthInfo()) { result = emitPointerAuthSign(IGF, result, codeAuthInfo); } return result; } } llvm_unreachable("unhandled case"); } FunctionPointer FunctionPointer::forExplosionValue(IRGenFunction &IGF, llvm::Value *fnPtr, CanSILFunctionType fnType) { // Bitcast out of an opaque pointer type. assert(fnPtr->getType() == IGF.IGM.Int8PtrTy); auto sig = emitCastOfFunctionPointer(IGF, fnPtr, fnType); auto authInfo = PointerAuthInfo::forFunctionPointer(IGF.IGM, fnType); return FunctionPointer(fnType, fnPtr, authInfo, sig); } llvm::Value * FunctionPointer::getExplosionValue(IRGenFunction &IGF, CanSILFunctionType fnType) const { llvm::Value *fnPtr = getRawPointer(); // Re-sign to the appropriate schema for this function pointer type. auto resultAuthInfo = PointerAuthInfo::forFunctionPointer(IGF.IGM, fnType); if (getAuthInfo() != resultAuthInfo) { fnPtr = emitPointerAuthResign(IGF, fnPtr, getAuthInfo(), resultAuthInfo); } // Bitcast to an opaque pointer type. fnPtr = IGF.Builder.CreateBitCast(fnPtr, IGF.IGM.Int8PtrTy); return fnPtr; } FunctionPointer FunctionPointer::getAsFunction(IRGenFunction &IGF) const { switch (getBasicKind()) { case FunctionPointer::BasicKind::Function: return *this; case FunctionPointer::BasicKind::AsyncFunctionPointer: { auto authInfo = AuthInfo.getCorrespondingCodeAuthInfo(); return FunctionPointer(Kind::Function, getPointer(IGF), authInfo, Sig); } } llvm_unreachable("unhandled case"); } void irgen::emitAsyncReturn( IRGenFunction &IGF, AsyncContextLayout &asyncLayout, CanSILFunctionType fnType, Optional> nativeResultArgs) { auto contextAddr = asyncLayout.emitCastTo(IGF, IGF.getAsyncContext()); auto returnToCallerLayout = asyncLayout.getResumeParentLayout(); auto returnToCallerAddr = returnToCallerLayout.project(IGF, contextAddr, llvm::None); Explosion fn; cast(returnToCallerLayout.getType()) .loadAsCopy(IGF, returnToCallerAddr, fn); llvm::Value *fnVal = fn.claimNext(); if (auto schema = IGF.IGM.getOptions().PointerAuth.AsyncContextResume) { Address fieldAddr = returnToCallerLayout.project(IGF, contextAddr, /*offsets*/ llvm::None); auto authInfo = PointerAuthInfo::emit(IGF, schema, fieldAddr.getAddress(), PointerAuthEntity()); fnVal = emitPointerAuthAuth(IGF, fnVal, authInfo); } auto sig = emitCastOfFunctionPointer(IGF, fnVal, fnType, true); FunctionPointer fnPtr(FunctionPointer::Kind::Function, fnVal, PointerAuthInfo(), sig); SmallVector Args; // Get the current async context. Args.push_back(IGF.getAsyncContext()); if (nativeResultArgs) { for (auto nativeResultArg : *nativeResultArgs) Args.push_back(nativeResultArg); } // Setup the coro.end.async intrinsic call. auto &Builder = IGF.Builder; auto mustTailCallFn = IGF.createAsyncDispatchFn(fnPtr,Args); auto handle = IGF.getCoroutineHandle(); auto rawFnPtr = Builder.CreateBitOrPointerCast(fnPtr.getRawPointer(), IGF.IGM.Int8PtrTy); SmallVector arguments; arguments.push_back(handle); arguments.push_back(/*is unwind*/Builder.getFalse()); arguments.push_back(mustTailCallFn); arguments.push_back(rawFnPtr); for (auto *arg: Args) arguments.push_back(arg); Builder.CreateIntrinsicCall(llvm::Intrinsic::coro_end_async, arguments); if (IGF.IGM.AsyncTailCallKind == llvm::CallInst::TCK_MustTail) { Builder.CreateUnreachable(); } else { // If target doesn't support musttail (e.g. WebAssembly), the function // passed to coro.end.async can return control back to the caller. // So use ret void instead of unreachable to allow it. Builder.CreateRetVoid(); } } void irgen::emitAsyncReturn(IRGenFunction &IGF, AsyncContextLayout &asyncLayout, SILType funcResultTypeInContext, CanSILFunctionType fnType, Explosion &result, Explosion &error) { assert((fnType->hasErrorResult() && !error.empty()) || (!fnType->hasErrorResult() && error.empty())); auto &IGM = IGF.IGM; // Map the explosion to the native result type. Optional> nativeResults = llvm::None; SmallVector nativeResultsStorage; SILFunctionConventions conv(fnType, IGF.getSILModule()); auto &nativeSchema = IGM.getTypeInfo(funcResultTypeInContext).nativeReturnValueSchema(IGM); if (result.empty() && !nativeSchema.empty()) { if (!nativeSchema.requiresIndirect()) // When we throw, we set the return values to undef. nativeSchema.enumerateComponents([&](clang::CharUnits begin, clang::CharUnits end, llvm::Type *componentTy) { nativeResultsStorage.push_back(llvm::UndefValue::get(componentTy)); }); if (!error.empty()) nativeResultsStorage.push_back(error.claimNext()); nativeResults = nativeResultsStorage; } else if (!result.empty()) { assert(!nativeSchema.empty()); assert(!nativeSchema.requiresIndirect()); Explosion native = nativeSchema.mapIntoNative( IGM, IGF, result, funcResultTypeInContext, false /*isOutlined*/); while (!native.empty()) { nativeResultsStorage.push_back(native.claimNext()); } if (!error.empty()) nativeResultsStorage.push_back(error.claimNext()); nativeResults = nativeResultsStorage; } else if (!error.empty()) { nativeResultsStorage.push_back(error.claimNext()); nativeResults = nativeResultsStorage; } emitAsyncReturn(IGF, asyncLayout, fnType, nativeResults); } FunctionPointer IRGenFunction::getFunctionPointerForResumeIntrinsic(llvm::Value *resume) { auto *fnTy = llvm::FunctionType::get( IGM.VoidTy, {IGM.Int8PtrTy}, false /*vaargs*/); auto attrs = IGM.constructInitialAttributes(); attrs = attrs.addParamAttribute(IGM.getLLVMContext(), 0, llvm::Attribute::SwiftAsync); auto signature = Signature(fnTy, attrs, IGM.SwiftAsyncCC); auto fnPtr = FunctionPointer( FunctionPointer::Kind::Function, Builder.CreateBitOrPointerCast(resume, fnTy->getPointerTo()), PointerAuthInfo(), signature); return fnPtr; } Address irgen::emitAutoDiffCreateLinearMapContext( IRGenFunction &IGF, llvm::Value *topLevelSubcontextSize) { auto *call = IGF.Builder.CreateCall( IGF.IGM.getAutoDiffCreateLinearMapContextFn(), {topLevelSubcontextSize}); call->setDoesNotThrow(); call->setCallingConv(IGF.IGM.SwiftCC); return Address(call, IGF.IGM.getPointerAlignment()); } Address irgen::emitAutoDiffProjectTopLevelSubcontext( IRGenFunction &IGF, Address context) { auto *call = IGF.Builder.CreateCall( IGF.IGM.getAutoDiffProjectTopLevelSubcontextFn(), {context.getAddress()}); call->setDoesNotThrow(); call->setCallingConv(IGF.IGM.SwiftCC); return Address(call, IGF.IGM.getPointerAlignment()); } Address irgen::emitAutoDiffAllocateSubcontext( IRGenFunction &IGF, Address context, llvm::Value *size) { auto *call = IGF.Builder.CreateCall( IGF.IGM.getAutoDiffAllocateSubcontextFn(), {context.getAddress(), size}); call->setDoesNotThrow(); call->setCallingConv(IGF.IGM.SwiftCC); return Address(call, IGF.IGM.getPointerAlignment()); } FunctionPointer irgen::getFunctionPointerForDispatchCall(IRGenModule &IGM, const FunctionPointer &fn) { // Strip off the return type. The original function pointer signature // captured both the entry point type and the resume function type. auto *fnTy = llvm::FunctionType::get( IGM.VoidTy, fn.getSignature().getType()->params(), false /*vaargs*/); auto signature = Signature(fnTy, fn.getSignature().getAttributes(), IGM.SwiftAsyncCC); auto fnPtr = FunctionPointer(FunctionPointer::Kind::Function, fn.getRawPointer(), fn.getAuthInfo(), signature); return fnPtr; } void irgen::forwardAsyncCallResult(IRGenFunction &IGF, CanSILFunctionType fnType, AsyncContextLayout &layout, llvm::CallInst *call) { auto &IGM = IGF.IGM; auto numAsyncContextParams = Signature::forAsyncReturn(IGM, fnType).getAsyncContextIndex() + 1; llvm::Value *result = call; auto *suspendResultTy = cast(result->getType()); Explosion resultExplosion; Explosion errorExplosion; auto hasError = fnType->hasErrorResult(); Optional> nativeResults = llvm::None; SmallVector nativeResultsStorage; if (suspendResultTy->getNumElements() == numAsyncContextParams) { // no result to forward. assert(!hasError); } else { auto &Builder = IGF.Builder; auto resultTys = makeArrayRef(suspendResultTy->element_begin() + numAsyncContextParams, suspendResultTy->element_end()); for (unsigned i = 0, e = resultTys.size(); i != e; ++i) { llvm::Value *elt = Builder.CreateExtractValue(result, numAsyncContextParams + i); nativeResultsStorage.push_back(elt); } nativeResults = nativeResultsStorage; } emitAsyncReturn(IGF, layout, fnType, nativeResults); }