Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • a8258a1
  • /
  • R
  • /
  • mlGraphicalVAR.R
Raw File Download

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:e44cf8022f305366079d23239d1ce859a43b8013
directory badge Iframe embedding
swh:1:dir:997cf99a8415128e17bb85621ea3837dfc9c7297

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
mlGraphicalVAR.R
# Multi-level like graphical VAR:
  
mlGraphicalVAR <- function(
  data,
  vars,
  beepvar,
  dayvar,
  idvar,
  scale = TRUE,
  centerWithin = TRUE,
  gamma = 0.5, # Gamma used in glasso in qgraph
  verbose = TRUE,
  subjectNetworks = TRUE, # Or a vector of which subjects to use!
  lambda_min_kappa_fixed = 0.001,
  lambda_min_beta_fixed = 0.001,
  lambda_min_kappa = 0.05,
  lambda_min_beta = lambda_min_kappa,
  lambda_min_glasso = 0.01,
  ... # Args sent to graphicalVAR
){
  if (missing(idvar)) stop("'idvar' must be assigned")
  
  # Prep data:
  dataPrepped <- tsData(data,vars=vars,beepvar=beepvar,dayvar=dayvar,idvar=idvar,scale=scale,centerWithin=centerWithin)
  
  if (verbose){
    message("Estimating fixed networks")
  }
  
  # Fixed effects:
  ResFixed <- graphicalVAR(dataPrepped, lambda_min_kappa = lambda_min_kappa_fixed, lambda_min_beta = lambda_min_beta_fixed, gamma=gamma,...)
  
  # Between-subjects:
  if (verbose){
    message("Estimating between-subjects network")
  }
  meansData <- dataPrepped$data_means
  meansData <- meansData[,names(meansData) != idvar]
  meansData <- meansData[rowMeans(is.na(meansData))!=1,]
  ResBetween <- qgraph::EBICglasso(cov(meansData),nrow(meansData),gamma,returnAllResults = TRUE,lambda.min.ratio=lambda_min_glasso)
  
  # Computing model per person:
 
  
  IDs <- unique(dataPrepped$data[[idvar]])
  idResults <- list()
  if (!identical(subjectNetworks,FALSE)){
    if (isTRUE(subjectNetworks)){
      subjectNetworks <- IDs
    }
    
    if (verbose){
      message("Estimating subject-specific networks")
      pb <- txtProgressBar(max=length(subjectNetworks),style=3)
    }
    for (i in seq_along(subjectNetworks)){
      capture.output({idResults[[i]] <- try(suppressWarnings(graphicalVAR(dataPrepped$data[dataPrepped$data[[idvar]] == subjectNetworks[i],],
                                                          vars=dataPrepped$vars,
                                                          beepvar=dataPrepped$beepvar,
                                                          dayvar=dataPrepped$dayvar,
                                                          idvar=dataPrepped$idvar,
                                                          scale = scale,
                                                          lambda_min_kappa=lambda_min_kappa,
                                                          lambda_min_beta=lambda_min_beta,
                                                          gamma=gamma,
                                                          centerWithin = centerWithin,...,verbose = FALSE)))})
      if (verbose){
        setTxtProgressBar(pb,i)
      }
      if (is(idResults[[i]], "try-error")){
        idResults[[i]] <- list()
      }
    }   
    if (verbose){
      close(pb)
    }
  } else {
    idResults <- lapply(seq_along(IDs),function(x)list())
  }
  

  
  # Aggregate results:
  Results <- list(fixedPCC = ResFixed$PCC, 
                  fixedPDC = ResFixed$PDC,
                  fixedResults = ResFixed,
                  betweenNet = ResBetween$optnet,
                  betweenResults = ResBetween,
                  ids = IDs,
                  subjectPCC = lapply(idResults, '[[', 'PCC'),
                  subjectPDC = lapply(idResults, '[[', 'PDC'),
                  subjecResults = idResults)
  class(Results) <- "mlGraphicalVAR"
  return(Results)
}

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API