Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

swh:1:snp:a568cc5cff39965992895669038ed8c43a59eedd
  • Code
  • Branches (1)
  • Releases (0)
    • Branches
    • Releases
    • HEAD
    • refs/heads/main
    No releases to show
  • bbb89f8
  • /
  • Figure 6 -- Tokens Task Data Analysis
  • /
  • tok_sim_norm.m
Raw File Download

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
content badge Iframe embedding
swh:1:cnt:e591d05927ab9af964e16cf27df22e07339fca67
directory badge Iframe embedding
swh:1:dir:d615f04e1fe23058870cce8c51d6ba6cdac3dbd8
revision badge
swh:1:rev:2878a3d9f5a3b9b89a0084a897bef3414e9de4a2
snapshot badge
swh:1:snp:a568cc5cff39965992895669038ed8c43a59eedd

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: 2878a3d9f5a3b9b89a0084a897bef3414e9de4a2 authored by nwbarendregt on 03 May 2022, 15:08:29 UTC
Add files via upload
Tip revision: 2878a3d
tok_sim_norm.m
% tok_sim_norm.m
% Generates response times for tokens task using the NB or Const model
% with added belief noise from Barendregt et al., 2022.

function T = tok_sim_norm(Nt,thresh_g,sigma,varargin)

% Use specified token movement stimulus if specified. Otherwise, generate
% random token movement stimulus:
if isempty(varargin)
    xi = [NaN 2*binornd(1,0.5,1,Nt)-1];
else
    xi = [NaN varargin{1}];
end

% Pre-allocate noise-free response time:
T = NaN;

% Convert threshold from likelihood space to LLR space:
thresh = log(thresh_g./(1-thresh_g));

% Instantly respond with random choice if threshold is trivally-collapsed:
if thresh(1) == 0
    T = 0;
else

    % Instantly respond with choice if belief is very noisy:
    g = randn*sigma;
    if g >= thresh(1)
        T = 0;
    else

        % Determine threshold crossing time and associated choice:
        k = 1;
        while isnan(T)
            k = k+1;
            g = prob_choice(sum(xi(1:k)==1),sum(xi(1:k)==-1),Nt); g = log(g./(1-g))+randn*sigma;
            if g>=thresh(k)
                T = k-1;
            elseif g<=-thresh(k)
                T = k-1;
            end
        end
    end
end

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API