https://github.com/ctlab/phantasus
Tip revision: 1ddbe2f99ea983d4d491c331e960885eeee8a2ec authored by Alexey Sergushichev on 17 December 2018, 21:32:23 UTC
slack notification
slack notification
Tip revision: 1ddbe2f
performKmeans.R
#' K-means clusterisation.
#'
#' \code{performKmeans} returns a vector of corresponding clusters for
#' each gene from a given ExpressionSet.
#'
#' @param es ExpressionSet object.
#'
#' @param k Expected number of clusters.
#'
#' @param replacena Method for replacing NA values
#' in series matrix (mean by default)
#'
#' @return Vector of corresponding clusters, serialized to JSON.
#'
#' @import Biobase
#'
#' @examples
#' \dontrun{
#' data(es)
#' performKmeans(es, k = 2)
#' }
performKmeans <- function(es, k,replacena = "mean") {
assertthat::assert_that(k > 0)
scaledExprs <- unname(exprs(es))
naInd <- which(is.na(scaledExprs), arr.ind = TRUE)
if (nrow(naInd) > 0) {
replaceValues <- apply(scaledExprs, 1, replacena, na.rm=TRUE)
scaledExprs[naInd] <- replaceValues[naInd[,1]]
}
scaledExprs <- t(scale(t(scaledExprs)))
rowsToCluster <- which(!apply(is.na(scaledExprs), 1, any))
km <- stats::kmeans(scaledExprs[rowsToCluster, ], k, iter.max = 100L)
res <- character(nrow(scaledExprs))
res[rowsToCluster] <- as.character(km$cluster)
fData(es)$clusters = res
assign("es", es, envir = parent.frame())
return(jsonlite::toJSON(res))
}