https://github.com/cran/rstpm2
Tip revision: 40c3033311c24f521975a0b6e8685b3400562362 authored by Mark Clements on 10 May 2022, 11:30:05 UTC
version 1.5.6
version 1.5.6
Tip revision: 40c3033
pluginEstimate2.cpp
#include <RcppArmadillo.h>
#include <algorithm>
#include <RcppCommon.h>
using namespace arma;
/**
Value to pass back from pluginEstimateDiscrete
*/
struct PluginEstimateDiscrete {
mat X; /**< State matrix (nState x nTimes) */
mat variance; /**< State variance matrix (nState x nTimes) */
cube covariance; /**< State covariance matrix (nState x nState x nTimes) */
bool vcov; /**< Indicator whether covariances are recorded */
int n; /**< Number of initial observations */
mat Y; /**< Matrix of weighted X */
mat varY; /**< Matrix of variances for weighted X */
};
/**
Value to pass back from pluginEstimateCts
*/
struct PluginEstimateCts {
mat X; /**< State matrix (nState x nTimes) */
mat variance; /**< State variance matrix (nState x nTimes) */
cube covariance; /**< State covariance matrix (nState x nState x nTimes) */
bool vcov; /**< Indicator whether covariances are recorded */
int n; /**< Number of initial observations */
vec time; /**< Times */
mat Y; /**< Matrix of weighted X */
mat varY; /**< Matrix of variances for weighted X */
};
namespace Rcpp {
template <>
SEXP wrap(const PluginEstimateDiscrete& x);
template <>
SEXP wrap(const PluginEstimateCts& x);
}
#include <Rcpp.h>
namespace Rcpp {
template <>
SEXP wrap(const PluginEstimateDiscrete& x) {
return Rcpp::wrap(Rcpp::List::create(Rcpp::Named("X") = Rcpp::wrap(x.X),
Rcpp::Named("variance") = Rcpp::wrap(x.variance),
Rcpp::Named("covariance") = Rcpp::wrap(x.covariance),
Rcpp::Named("vcov") = Rcpp::wrap(x.vcov),
Rcpp::Named("n") = Rcpp::wrap(x.n),
Rcpp::Named("Y") = Rcpp::wrap(x.Y),
Rcpp::Named("varY") = Rcpp::wrap(x.varY)));
};
template <>
SEXP wrap(const PluginEstimateCts& x) {
return Rcpp::wrap(Rcpp::List::create(Rcpp::Named("X") = Rcpp::wrap(x.X),
Rcpp::Named("variance") = Rcpp::wrap(x.variance),
Rcpp::Named("covariance") = Rcpp::wrap(x.covariance),
Rcpp::Named("vcov") = Rcpp::wrap(x.vcov),
Rcpp::Named("n") = Rcpp::wrap(x.n),
Rcpp::Named("time") = Rcpp::wrap(x.time),
Rcpp::Named("Y") = Rcpp::wrap(x.Y),
Rcpp::Named("varY") = Rcpp::wrap(x.varY)));
};
}
/**
Find values within an interval
*/
class FindInterval {
public:
typedef std::vector<double> stdvec;
typedef stdvec::iterator Iter; /**< Iterator used for speed cf. convenience */
/**
Constructor that reads in a vector that is assumed to be sorted
*/
FindInterval(vec inx) {
x = conv_to<stdvec>::from(inx);
}
int operator()(double xi, int previous = 0) {
int index = std::lower_bound(x.begin()+previous, x.end(), xi) - x.begin();
return (x[index]==xi) ? index+1 : index;
}
Iter find(double xi, int previous = 0) {
return std::find(x.begin()+previous, x.end(), xi);
}
bool member(double xi, int previous = 0) {
return find(xi,previous) != x.end();
}
bool member(Iter iter) {
return iter != x.end();
}
int index(Iter iter) {
return iter - x.begin();
}
int index(double xi, int previous = 0) {
return find(xi,previous) - x.begin();
}
private:
stdvec x;
};
/**
Construct block diagonal matrix
@param bag An ordered bag of matrices to be used to form the block diagonal matrix
*/
template<class Type>
Mat<Type> bdiag(field<Mat<Type> > bag) {
int nr=0, nc=0;
for (size_t i=0; i<bag.n_elem; i++) {
nr += bag(i).n_rows;
nc += bag(i).n_cols;
}
Mat<Type> out(nr,nc);
out.zeros();
nr=0; nc=0;
for (size_t i=0; i<bag.n_elem; i++) {
out(span(nr,nr+bag(i).n_rows-1), span(nc,nc+bag(i).n_cols-1)) = bag(i);
nr += bag(i).n_rows;
nc += bag(i).n_cols;
}
return out;
}
/**
Construct block diagonal matrix
@param m0 First matrix
@param m1 Second matrix
*/
template<class Type>
Mat<Type> bdiag(Mat<Type> m0, Mat<Type> m1) {
field<Mat<Type> > bag(2);
bag(0) = m0;
bag(1) = m1;
return bdiag(bag);
}
std::function<mat (vec)> Fprob(int nStates, imat indices) {
return [nStates,indices](vec X) -> mat {
mat out(nStates,indices.n_rows);
out.zeros();
for (size_t i=0; i<indices.n_rows; i++) {
int from = indices(i,0);
int to = indices(i,1);
out(to,i) = X(from);
out(from,i) = -X(from);
}
return out;
};
}
std::function<cube (vec)> Fjac(int nStates, std::function<mat(vec)> F) {
return [nStates,F](vec X) -> cube {
mat f = F(linspace(1.0,double(nStates),nStates));
cube out(f.n_rows,f.n_rows,f.n_cols);
for (size_t j=0; j<f.n_rows; j++) {
vec ej(nStates);
ej.zeros();
ej(j) = 1.0;
mat Fj = F(ej);
for (size_t i=0; i<f.n_cols; i++) {
for (size_t k=0; k<f.n_rows; k++)
out(k,j,i) = Fj(k,i);
}
}
return out;
};
}
std::function<mat (vec)> Fcombined(int nObs, int nStates, std::function<mat (vec)> F) {
return [nObs,nStates,F](vec X) -> mat {
field<mat> set(nObs);
for (int i=0; i<nObs; i++) {
set(i) = F(X(span(nStates*i,nStates*(i+1)-1)));
}
return bdiag<double>(set);
};
}
std::function<mat(vec)> addFlos(std::function<mat (vec)> F) {
return [F](vec X) -> mat {
vec X1 = X(span(0,X.n_elem/2-1));
mat F1 = F(X1);
mat F2(X.n_elem/2,1);
F2 = X1;
return bdiag(F1,F2);
};
}
mat makeW(int nStates, vec weights, int nOuter=1) {
int nObs = weights.n_elem;
mat W=eye(nStates,nStates)*weights(0);
if (nObs>1)
for (int i=1; i<nObs; i++)
W = join_cols(W,eye(nStates,nStates)*weights(i));
if (nOuter>1) {
mat Wi = W;
for (int i=1; i<nOuter; i++)
W = bdiag(W,Wi);
}
return W;
}
/**
Ryalen's plugin estimator using stochastic differential equations
Discrete form
@param n Number of observations in the initial analysis dataset
@param hazMatrix Hazards for each transition (by row) for each time-point (by column)
@param f A function that takes the state vector X and returns a matrix that is multiplied by the cum. hazard steps
at each time step to calculate the update in X
@param gradf A function that takes the state vector X and returns a cube that is multiplied by the cum. hazard steps
at each time step to calculate the change in gradient for X
@param X0 Initial values for the state vector
@param V0 Initial values for the variance-covariance matrix (usually zero(nStates,nStates))
@param W Weight matrix used to calculate summary measures
@param vcov Boolean for whether to return the full variance-covariance matrix -- default=false, as this can be large
*/
PluginEstimateDiscrete
pluginEstimateDiscrete(int n, mat hazMatrix,
std::function<mat (vec)> f, std::function<cube (vec)> gradf,
vec X0, mat V0, mat W=zeros(1,1), bool vcov=false) {
int numIncrements = hazMatrix.n_cols;
mat X = zeros(X0.n_elem, numIncrements);
cube covariance = vcov ? zeros(V0.n_rows, V0.n_cols, numIncrements) : zeros(1,1,1);
mat variance = zeros(V0.n_rows, numIncrements);
vec Xn = X0;
mat Vn = V0;
mat Y = zeros(1,1); // default if W is not specified
mat varY = zeros(1,1); // default if W is not specified
if (W.n_rows == X0.n_elem) {
Y = zeros(W.n_cols,numIncrements);
varY = zeros(W.n_cols,numIncrements);
}
cube gradf0 = gradf(X0); // for dimensions
int Xrows = X0.n_elem,
// hazRows = hazMatrix.n_rows,
numHaz = gradf0.n_slices;
X.col(0) = X0;
if (vcov)
covariance.slice(0) = V0;
variance.col(0) = V0.diag();
for (int i=1; i<numIncrements; i++) {
mat fx = f(Xn);
vec Xnew = Xn + fx * hazMatrix.col(i);
mat Vtemp = zeros(Xrows, Xrows);
cube fjac = gradf(Xn); // (a,b,c) for state-row a wrt state-var b in rate-col c
for (int j=0; j<numHaz; j++) {
Vtemp += (Vn*fjac.slice(j).t() + fjac.slice(j) * Vn) * hazMatrix(j,i);
}
vec dB = hazMatrix.col(i);
mat dW = dB * dB.t();
mat Vnew = Vn + Vtemp + n*fx*dW*fx.t();
X.col(i) = Xnew;
// if (i==1) {
// Rprintf("W.n_rows = %i\n", W.n_rows);
// Rprintf("W.n_cols = %i\n", W.n_cols);
// Rprintf("X0.n_elem = %i\n", X0.n_elem);
// }
if (W.n_rows == X0.n_elem) {
Y.col(i) = W.t() * Xnew;
varY.col(i) = mat(W.t() * Vnew * W).diag();
}
if (vcov)
covariance.slice(i) = Vnew;
variance.col(i) = Vnew.diag();
Xn = Xnew;
Vn = Vnew;
R_CheckUserInterrupt(); /* be polite -- did the user hit ctrl-C? */
}
PluginEstimateDiscrete out = {X,variance/n,covariance/n,vcov,n,Y,varY};
return out;
}
// TODO: use one function for both discrete and continuous case
/**
Ryalen's plugin estimator using stochastic differential equations
Mixed continuous/discrete form
@param n Number of observations in the initial analysis dataset
@param hazMatrix Hazards for each transition (by row) for each time-point (by column)
@param f A function that takes the state vector X and returns a matrix that is multiplied by the cum. hazard steps
at each time step to calculate the update in X
@param gradf A function that takes the state vector X and returns a cube that is multiplied by the cum. hazard steps
at each time step to calculate the change in gradient for X
@param X0 Initial values for the state vector
@param V0 Initial values for the variance-covariance matrix (usually zero(nStates,nStates))
@param times Vector of the times, including the event times and a grid of evaluation times
@param nOut Number of grid evaluation points to be output
@param W Weight matrix used to calculate summary measures
@param vcov Boolean for whether to return the full variance-covariance matrix -- default=false, as this can be large
@param nLebesgue Number of full grid evaluation points
*/
PluginEstimateCts
pluginEstimateCts(int n, mat hazMatrix, std::function<mat(vec)> f, std::function<cube(vec)> gradf,
vec X0, mat V0, vec times, int nOut=300, mat W = zeros(1,1), bool vcov=false, int nLebesgue=10001) {
double // start=min(times),
finish=max(times);
// currently assumes start=0
vec s = linspace(0,finish,nLebesgue);
uvec sIndex = linspace<uvec>(0,nLebesgue-1,nOut);
vec allTimes = unique(join_cols(s,times));
vec subTimes = unique(join_cols(s(sIndex),times));
FindInterval find_time(times); // assumes hazMatrix.n_cols == times.n_elem
FindInterval find_subtime(subTimes);
vec ds = diff(join_cols(vec({0.0}),allTimes));
int numIncrements = subTimes.n_elem;
mat X = zeros(X0.n_elem, numIncrements);
cube covariance = vcov ? zeros(V0.n_rows, V0.n_cols, numIncrements) : zeros(1,1,1);
mat variance = zeros(V0.n_rows, numIncrements);
mat Y = zeros(1,1); // default if W is not specified
mat varY = zeros(1,1); // default if W is not specified
if (W.n_rows == X0.n_elem) {
Y = zeros(W.n_cols,numIncrements);
varY = zeros(W.n_cols,numIncrements);
}
vec Xn = X0;
mat Vn = V0;
cube gradf0 = gradf(X0); // for dimensions
int Xrows = X0.n_elem,
hazRows = hazMatrix.n_rows,
numHaz = gradf0.n_slices;
// bool Lebesgue = numHaz == hazRows+1; // ASSUMED TO BE TRUE
int // k=0, // index in s
l=1; // index in output
X.col(0) = X0;
if (vcov)
covariance.slice(0) = V0;
variance.col(0) = V0.diag();
for (size_t i=1; i<allTimes.n_elem; i++) {
double time = allTimes(i);
FindInterval::Iter iter = find_time.find(time);
bool event = find_time.member(iter);
vec dsi = {ds(i)};
vec hazVec;
if (event) {
vec haz = hazMatrix.col(find_time.index(iter));
hazVec = join_cols(haz, dsi);
} else {
hazVec = join_cols(zeros(hazRows), dsi);
}
mat fx = f(Xn);
vec Xnew = Xn + fx * hazVec;
mat Vtemp = zeros(Xrows, Xrows);
cube fjac = gradf(Xn); // (a,b,c) for state-row a wrt state-var b in rate-col c
for (int j=0; j<numHaz; j++) {
Vtemp += (Vn*fjac.slice(j).t() + fjac.slice(j) * Vn) * hazVec(j);
}
vec dB = hazVec;
dB(dB.n_elem-1) = 0.0;
mat dW = dB * dB.t();
mat Vnew = Vn + Vtemp + n*fx*dW*fx.t();
if (find_subtime.member(time)) {
X.col(l) = Xnew;
if (vcov)
covariance.slice(l) = Vnew;
variance.col(l) = Vnew.diag();
if (W.n_rows == X0.n_elem) {
Y.col(l) = W.t() * Xnew;
varY.col(l) = mat(W.t() * Vnew * W).diag();
}
l++;
}
Xn = Xnew;
Vn = Vnew;
R_CheckUserInterrupt(); /* be polite -- did the user hit ctrl-C? */
}
PluginEstimateCts out = {X,variance/n,covariance/n,vcov,n,subTimes,Y,varY};
return out;
}
// PluginEstimateDiscrete
// calc_P_by(int n, int nNewdata, mat hazMatrix,
// vec X0, imat tmat, vec weights, bool vcov=false) {
RcppExport SEXP plugin_P_by(SEXP _n, SEXP _nNewdata, SEXP _hazMatrix,
SEXP _X0, SEXP _tmat, SEXP _weights, SEXP _vcov) {
int n = Rcpp::as<int>(_n);
size_t nNewdata = Rcpp::as<size_t>(_nNewdata);
mat hazMatrix = Rcpp::as<mat>(_hazMatrix);
vec X0 = Rcpp::as<vec>(_X0);
imat tmat = Rcpp::as<imat>(_tmat);
vec weights = Rcpp::as<vec>(_weights);
bool vcov = Rcpp::as<bool>(_vcov);
size_t nStates = tmat.max() - tmat.min() + 1; // assumes tmat is well formed (fragile)
if (nStates == X0.n_elem) X0 = vec(repmat(mat(X0),nNewdata,1));
std::function<mat(vec)> F = Fcombined(nNewdata,nStates,Fprob(nStates, tmat));
std::function<cube(vec)> Fgrad = Fjac(nStates*nNewdata,F);
mat V0 = zeros(nStates*nNewdata,nStates*nNewdata);
mat W = (weights.n_elem == nNewdata) ? makeW(nStates, weights) : zeros(1,1);
return Rcpp::wrap(pluginEstimateDiscrete(n, hazMatrix, F, Fgrad, X0, V0, W, vcov));
}
// PluginEstimateCts
// calc_P_L_by(int n, int nNewdata, mat hazMatrix,
// vec X0, imat tmat, vec time, vec weights, int nOut=300, bool vcov=false, int nLebesgue=10001) {
RcppExport SEXP plugin_P_L_by(SEXP _n, SEXP _nNewdata, SEXP _hazMatrix,
SEXP _X0, SEXP _tmat, SEXP _time, SEXP _weights, SEXP _nOut,
SEXP _vcov, SEXP _nLebesgue) {
int n = Rcpp::as<int>(_n);
size_t nNewdata = Rcpp::as<size_t>(_nNewdata);
mat hazMatrix = Rcpp::as<mat>(_hazMatrix);
vec X0 = Rcpp::as<vec>(_X0);
imat tmat = Rcpp::as<imat>(_tmat);
vec time = Rcpp::as<vec>(_time);
vec weights = Rcpp::as<vec>(_weights);
int nOut = Rcpp::as<int>(_nOut);
bool vcov = Rcpp::as<bool>(_vcov);
int nLebesgue = Rcpp::as<int>(_nLebesgue);
size_t nStates = tmat.max() - tmat.min() + 1; // assumes tmat is well formed (fragile)
if (nStates == X0.n_elem)
X0 = vec(repmat(mat(X0),nNewdata,1));
vec X1 = join_cols(X0,zeros(X0.n_elem));
std::function<mat(vec)> F = addFlos(Fcombined(nNewdata,nStates,Fprob(nStates, tmat)));
std::function<cube(vec)> Fgrad = Fjac(nStates*nNewdata*2,F);
mat V1 = zeros(nStates*nNewdata*2,nStates*nNewdata*2);
mat W = (weights.n_elem == nNewdata) ? makeW(nStates, weights, 2) : zeros(1,1);
return Rcpp::wrap(pluginEstimateCts(n, hazMatrix, F, Fgrad, X1, V1, time, nOut, W, vcov, nLebesgue));
}
// // [[Rcpp::depends(RcppArmadillo)]]
// // [[Rcpp::export]]
// PluginEstimateDiscrete
// plugin_P(int n, mat hazMatrix,
// vec X0, imat tmat, bool vcov=false) {
// int nStates = X0.n_elem;
// std::function<mat(vec)> F = Fprob(nStates, tmat);
// std::function<cube(vec)> Fgrad = Fjac(nStates,F);
// mat V0 = zeros(nStates,nStates);
// return pluginEstimateDiscrete(n, hazMatrix, F, Fgrad, X0, V0, zeros(1,1), vcov);
// }
// // [[Rcpp::depends(RcppArmadillo)]]
// // [[Rcpp::export]]
// PluginEstimateCts
// plugin_P_L(int n, mat hazMatrix,
// vec X0, imat tmat, vec time, int nOut=300, bool vcov=false, int nLebesgue=10001) {
// int m = X0.n_elem;
// vec X1 = join_cols(X0,zeros(m));
// std::function<mat(vec)> F = addFlos(Fprob(m, tmat));
// std::function<cube(vec)> Fgrad = Fjac(2*m,F);
// mat V1 = zeros(2*m,2*m);
// return pluginEstimateCts(n, hazMatrix, F, Fgrad, X1, V1, time, nOut, zeros(1,1), vcov, nLebesgue);
// }