Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Raw File Download

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
content badge Iframe embedding
swh:1:cnt:e8cf9c2b2c43a44e56d7a1f54ec41f25ec8aafa2

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
=============
API reference
=============

:mod:`tensorly`: Manipulating the backend with a unified interface
==================================================================

For each backend, tensorly provides the following uniform functions:

.. automodule:: tensorly
    :no-members:
    :no-inherited-members:

.. autosummary::
    :toctree: generated
    :template: function.rst

    set_backend
    get_backend
    context
    tensor
    is_tensor
    shape
    ndim
    to_numpy
    copy
    concatenate
    reshape
    transpose
    moveaxis
    arange
    ones
    zeros
    zeros_like
    eye
    where
    clip
    max
    min
    all
    mean
    sum
    prod
    sign
    abs
    sqrt
    norm
    dot
    kron
    solve
    qr
    kr
    partial_svd


:mod:`tensorly.base`: Core tensor functions
============================================

.. automodule:: tensorly.base
    :no-members:
    :no-inherited-members:

.. currentmodule:: tensorly.base

.. autosummary::
    :toctree: generated/
    :template: function.rst

    unfold
    fold
    tensor_to_vec
    vec_to_tensor
    partial_unfold
    partial_fold
    partial_tensor_to_vec
    partial_vec_to_tensor


:mod:`tensorly.cp_tensor`: Tensors in the CP format
=============================================================

.. automodule:: tensorly.cp_tensor
    :no-members:
    :no-inherited-members:

.. currentmodule:: tensorly.cp_tensor

.. autosummary::
    :toctree: generated/
    :template: function.rst

    cp_to_tensor
    cp_to_unfolded
    cp_to_vec
    cp_normalize
    cp_norm
    cp_mode_dot
    unfolding_dot_khatri_rao


:mod:`tensorly.tucker_tensor`: Tensors in Tucker format
=======================================================

.. automodule:: tensorly.tucker_tensor
    :no-members:
    :no-inherited-members:

.. currentmodule:: tensorly.tucker_tensor

.. autosummary::
    :toctree: generated/
    :template: function.rst

    tucker_to_tensor
    tucker_to_unfolded
    tucker_to_vec
    tucker_mode_dot


:mod:`tensorly.tt_tensor`: Tensors in Matrix-Product-State format
==================================================================

.. automodule:: tensorly.tt_tensor
    :no-members:
    :no-inherited-members:

.. currentmodule:: tensorly.tt_tensor

.. autosummary::
    :toctree: generated/
    :template: function.rst

    tt_to_tensor
    tt_to_unfolded
    tt_to_vec


:mod:`tensorly.tt_matrix`: Matrices in TT format
================================================

.. automodule:: tensorly.tt_matrix
    :no-members:
    :no-inherited-members:

.. currentmodule:: tensorly.tt_matrix

.. autosummary::
    :toctree: generated/
    :template: function.rst

    tt_matrix_to_tensor
    tt_matrix_to_unfolded
    tt_matrix_to_vec


:mod:`tensorly.parafac2_tensor`: Tensors in PARAFAC2 format
===========================================================

.. automodule:: tensorly.parafac2_tensor
    :no-members:
    :no-inherited-members:

.. currentmodule:: tensorly.parafac2_tensor

.. autosummary::
    :toctree: generated/
    :template: function.rst

    parafac2_to_tensor
    parafac2_to_slice
    parafac2_to_slices
    parafac2_to_unfolded
    parafac2_to_vec


:mod:`tensorly.tenalg`: Tensor algebra
======================================

.. automodule:: tensorly.tenalg
    :no-members:
    :no-inherited-members:

.. currentmodule:: tensorly.tenalg

.. autosummary::
    :toctree: generated/
    :template: function.rst

    khatri_rao
    kronecker
    mode_dot
    multi_mode_dot
    proximal.soft_thresholding
    proximal.svd_thresholding
    proximal.procrustes
    inner
    contract
    tensor_dot
    batched_tensor_dot
    higher_order_moment


:mod:`tensorly.decomposition`: Tensor Decomposition
====================================================

.. automodule:: tensorly.decomposition
    :no-members:
    :no-inherited-members:

.. currentmodule:: tensorly.decomposition

Classes
-------

Note that these are currently experimental and may change in the future.

.. autosummary::
    :toctree: generated/
    :template: class.rst

    CP
    RandomizedCP
    CPPower
    Tucker
    TensorTrain
    Parafac2
    SymmetricCP

Functions
---------

.. autosummary::
    :toctree: generated/
    :template: function.rst

    parafac
    non_negative_parafac
    sample_khatri_rao
    randomised_parafac
    tucker
    partial_tucker
    non_negative_tucker
    robust_pca
    tensor_train
    tensor_train_matrix
    parafac2
    symmetric_power_iteration
    symmetric_parafac_power_iteration


:mod:`tensorly.regression`: Tensor Regression
==============================================

.. automodule:: tensorly.regression
    :no-members:
    :no-inherited-members:

.. currentmodule:: tensorly.regression

.. autosummary::
    :toctree: generated/
    :template: class.rst

    tucker_regression.TuckerRegressor
    cp_regression.CPRegressor


:mod:`tensorly.metrics`: Performance measures
==============================================

.. automodule:: tensorly.metrics
    :no-members:
    :no-inherited-members:

.. currentmodule:: tensorly.metrics

.. autosummary::
    :toctree: generated/
    :template: function.rst

    regression.MSE
    regression.RMSE


:mod:`tensorly.random`: Sampling random tensors
===============================================

.. automodule:: tensorly.random
   :no-members:
   :no-inherited-members:

.. currentmodule:: tensorly.random

.. autosummary::
   :toctree: generated/
   :template: function.rst

   random_cp
   random_tucker
   random_tt
   random_tt_matrix
   random_parafac2
   check_random_state



:mod:`tensorly.datasets`: Creating and loading data
====================================================

.. automodule:: tensorly.datasets
    :no-members:
    :no-inherited-members:

.. currentmodule:: tensorly.datasets

.. autosummary::
    :toctree: generated/
    :template: function.rst

    synthetic.gen_image


:mod:`tensorly.contrib`: Experimental features
==============================================

.. automodule:: tensorly.contrib
    :no-members:
    :no-inherited-members:

.. currentmodule:: tensorly.contrib

.. autosummary::
    :toctree: generated/
    :template: function.rst

    decomposition.tensor_train_cross

Sparse tensor operations
------------------------

Enables tensor operations on sparse tensors.
Currently, the following decomposition methods are supported (for the NumPy backend, using Sparse):

.. automodule:: tensorly.contrib.sparse

.. currentmodule:: tensorly.contrib

.. autosummary::
    :toctree: generated/

   sparse.decomposition.tucker
   sparse.decomposition.partial_tucker
   sparse.decomposition.non_negative_tucker
   sparse.decomposition.robust_pca
   sparse.decomposition.parafac
   sparse.decomposition.non_negative_parafac
   sparse.decomposition.symmetric_parafac_power_iteration


back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API