Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/cran/cplm
10 October 2024, 21:21:40 UTC
  • Code
  • Branches (35)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/master
    • refs/tags/0.1-1
    • refs/tags/0.1-2
    • refs/tags/0.2-1
    • refs/tags/0.3-1
    • refs/tags/0.4-1
    • refs/tags/0.5-1
    • refs/tags/0.6-1
    • refs/tags/0.6-2
    • refs/tags/0.6-4
    • refs/tags/0.7-1
    • refs/tags/0.7-10
    • refs/tags/0.7-11
    • refs/tags/0.7-12
    • refs/tags/0.7-12.1
    • refs/tags/0.7-2
    • refs/tags/0.7-3
    • refs/tags/0.7-4
    • refs/tags/0.7-5
    • refs/tags/0.7-6
    • refs/tags/0.7-7
    • refs/tags/0.7-8
    • refs/tags/0.7-9
    • refs/tags/R-2.13.2
    • refs/tags/R-2.14.0
    • refs/tags/R-2.14.1
    • refs/tags/R-2.14.2
    • refs/tags/R-2.15.0
    • refs/tags/R-2.15.1
    • refs/tags/R-2.15.2
    • refs/tags/R-2.15.3
    • refs/tags/R-3.0.0
    • refs/tags/R-3.0.1
    • refs/tags/R-3.0.2
    • refs/tags/R-3.0.3
    No releases to show
  • 739aa1e
  • /
  • R
  • /
  • classMethods.R
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:e8e51fa0251777988ca2c2ce2c3db03236cbaa5e
origin badgedirectory badge Iframe embedding
swh:1:dir:7c7290734942e7c99d9f2e861350132d4be0670a
origin badgerevision badge
swh:1:rev:dfb8ed80bd565abfb5882d2b201bd86c86aa3e6d
origin badgesnapshot badge
swh:1:snp:cb0846c741ae3675a9b721e48106d976897b2530
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: dfb8ed80bd565abfb5882d2b201bd86c86aa3e6d authored by Wayne Zhang on 17 January 2014, 00:00:00 UTC
version 0.7-1
Tip revision: dfb8ed8
classMethods.R

################################################
# classes defined in the cplm package
################################################

# virtual classes used in other class definitions
setClassUnion("NullNum", c("NULL","numeric"))
setClassUnion("NullList", c("NULL","list"))  
setClassUnion("NullFunc", c("NULL","function"))  
setClassUnion("ListFrame", c("list","data.frame"))

# import from package coda
setOldClass(c("mcmc", "mcmc.list", "summary.mcmc"))


## -------------------- lmer-related Classes --------------------------------

setOldClass("data.frame")
setOldClass("family")
setOldClass("logLik")

setClass("mer",
         representation(## original data
           env = "environment",# evaluation env for nonlinear model
           nlmodel = "call",# nonlinear model call
           frame = "data.frame",# model frame (or empty frame)
           call = "call",   # matched call
           flist = "data.frame",  # list of grouping factors
           X = "matrix",    # fixed effects model matrix
           Xst = "dgCMatrix", # sparse fixed effects model matrix
           Zt = "dgCMatrix",# sparse form of Z'
           pWt = "numeric",# prior weights,
           offset = "numeric", # length 0 -> no offset
           y = "numeric",   # response vector
           ###FIXME: Eliminate the cnames slot.  Put the names on the elements of the ST slot.
           #                        cnames = "list", # row/column names of els of ST
           Gp = "integer",  # pointers to row groups of Zt
           dims = "integer",# dimensions and indicators
           ## slots that vary during optimization
           ST = "list", # 
           V = "matrix",    # gradient matrix
           A = "dgCMatrix", # (ZTS)'
           Cm = "dgCMatrix", # AH'G^{-1}W^{1/2} when s > 0
           Cx = "numeric",  # x slot of Cm when s == 1 (full Cm not stored)
           L = "CHMfactor", # Cholesky factor of weighted P(AA' + I)P'
           deviance = "numeric", # ML and REML deviance and components
           fixef = "numeric",# fixed effects (length p)
           ranef = "numeric",# random effects (length q)
           u = "numeric",   # orthogonal random effects (q)
           eta = "numeric", # unbounded predictor
           mu = "numeric",  # fitted values at current beta and b
           muEta = "numeric",# d mu/d eta evaluated at current eta
           var = "numeric", # conditional variances of Y
           resid = "numeric",# raw residuals at current beta and b
           sqrtXWt = "matrix",# sqrt of model matrix row weights
           sqrtrWt = "numeric",# sqrt of weights used with residuals
           RZX = "matrix", # dense sol. to L RZX = ST'ZtX = AX
           RX = "matrix",  # Cholesky factor of downdated X'X
           ghx = "numeric", # zeros of Hermite polynomial
           ghw = "numeric"))


# class defining slots common to all derived classes 
setClass("cplm", 
  representation(
    call = "call",
    formula = "formula",
    contrasts = "NullList",
    link.power = "numeric",
    model.frame = "ListFrame",
    inits = "NullList")
)

# class of "cpglm", returned by a call to "cpglm" 
setClass("cpglm", 
  representation(
    coefficients = "numeric",
    residuals = "numeric",
    fitted.values = "numeric",
    linear.predictors = "numeric",
    y = "numeric",
    offset = "NullNum",
    prior.weights = "NullNum",
    weights = "numeric",
    df.residual = "integer",
    deviance = "numeric",
    aic = "numeric",
    control = "list",
    p = "numeric",
    phi = "numeric",
    iter = "integer",
    converged = "logical",
    na.action = "NullFunc",
    vcov = "matrix"),
    contains = "cplm"
)

# class of "cpglm", returned by a call to "cpglm" 
setClass("zcpglm", 
  representation(
    coefficients = "list",
    residuals = "numeric",
    fitted.values = "numeric", 
    y = "numeric",
    offset = "list",
    prior.weights = "numeric",
    df.residual = "integer",
    llik = "numeric",
    control = "list",
    p = "numeric",
    phi ="numeric",
    converged = "logical",
    na.action = "NullFunc",
    vcov = "matrix"),
    contains = "cplm"
)

# class "cpglmm" returned from a call of cpglmm
setClass("cpglmm", 
  representation(
    p = "numeric", 
    phi = "numeric",
    bound.p = "numeric",
    vcov = "matrix",
    smooths = "list"),
    contains = c("cplm", "mer")
)

# class "summary.cpglmm" 
setClass("summary.cpglmm",                 
  representation(           
    methTitle = "character",
    logLik= "logLik",
    ngrps = "integer",
    sigma = "numeric", # scale, non-negative number
    coefs = "matrix",
    REmat = "matrix",
    AICtab= "data.frame"),
  contains = "cpglmm"
)

# class "bcplm_input"
setClass("bcplm_input", 
  representation(
    X = "matrix", 
    y = "numeric",
    Zt = "dgCMatrix",
    ygt0 = "integer",
    offset = "numeric", 
    pWt = "numeric",
    mu = "numeric",
    eta = "numeric",
    inits = "list",
    fixef = "numeric",
    u = "numeric",
    phi = "numeric",
    p = "numeric",
    link.power = "numeric",
    pbeta.mean = "numeric",
    pbeta.var = "numeric",
    bound.phi = "numeric",
    bound.p = "numeric",    
    mh.sd = "numeric",              
    dims = "integer",
    k = "integer",
    Sigma = "list",
    cllik = "numeric",
    Xb = "numeric", 
    Zu = "numeric",
    Gp = "integer",
    ncol = "integer", 
    nlev = "integer",
    accept = "numeric")
)

# class of "bcplm"
setClass("bcplm", 
  representation(
    dims = "integer",  
    sims.list = "mcmc.list",
    summary = "summary.mcmc",
    prop.sd = "list",    
    Zt = "dgCMatrix",
    flist = "list",
    Sigma = "list"),
  contains="cplm"
)

         
################################################
# methods defined for cplm 
################################################

# extraction of slots using $
setMethod("$",
  signature(x = "cplm"),
  function(x, name) slot(x,name)
)

# names to get slot names
setMethod("names",
  signature(x = "cplm"),
  function(x) slotNames(x)
)

# extraction of slots using "[["
setMethod("[[",
  signature(x = "cplm", i = "numeric", j = "missing"),
  function (x, i, j, ...) slot(x,names(x)[i])
)

setMethod("[[",
  signature(x = "cplm", i = "character", j = "missing"),
  function (x, i, j, ...) slot(x, i)
)

setMethod("[",
  signature(x = "cplm", i = "numeric",
            j = "missing", drop = "missing"),
  function (x, i, j, ..., drop) {
    output <- lapply(i, function(y) slot(x, names(x)[y]))
      names(output) <- names(x)[i]
    return(output)
  }
)

setMethod("[",
  signature(x = "cplm",i = "character",
            j = "missing", drop = "missing"),
  function (x, i, j, ..., drop) {
    output <- lapply(1:length(i), function(y) slot(x, i[y]))
    names(output) <- i
    return(output)
  }
)

setMethod("terms",
  signature(x = "cplm"),
  function (x, ...) attr(x@model.frame, "terms")
)

setMethod("model.matrix",
  signature(object = "cplm"),
  function (object,...) 
    model.matrix(attr(object@model.frame, "terms"), 
          object@model.frame, object@contrasts)
)

setMethod("formula",
  signature(x = "cplm"),
  function (x, ...) x@formula
)         

setMethod("show", 
  signature(object = "cplm"),
  function(object) summary(object)                                                    
)

setMethod("vcov", 
  signature(object = "cplm"),
  function(object, ...) object@vcov
)

################################################
# methods defined for cpglm 
################################################
         
setMethod("coef",
  signature(object = "cpglm"),
  function (object, ...) object@coefficients
)

setMethod("residuals",
  signature(object = "cpglm"),
  function (object, type = c("deviance", "pearson", "working", 
    "response", "partial"), ...) {      
    type <- match.arg(type)
    y <- object@y
    r <- object@residuals
    mu <- object@fitted.values
    wts <- object@prior.weights
    family <- tweedie(var.power = object@p,link.power = object@link.power)
    switch(type, deviance = , pearson = , response = if (is.null(y)) {
        eta <- object@linear.predictors
        y <- mu + r * family$mu.eta(eta)
    })
    res <- switch(type, 
      deviance = if (object@df.residual > 0) {
        d.res <- sqrt(pmax((family$dev.resids)(y, mu, 
            wts), 0))
        ifelse(y > mu, d.res, -d.res)
        } else rep.int(0, length(mu)), 
      pearson = (y - mu) * sqrt(wts)/sqrt(family$variance(mu)), 
      working = r, 
      response = y - mu, 
      partial = r)
    na.action <- attr(object@model.frame,"na.action")
    if (!is.null(na.action)) 
        res <- naresid(na.action, res)
    #if (type == "partial") 
    #    res <- res + predict(object, type = "terms")
    res
    }
)

setMethod("resid",
  signature(object = "cpglm"),
  function (object, type = c("deviance", "pearson", "working", 
  "response", "partial"), ...) 
    return(residuals(object, type = type))
)

# generate fitted values on the original scale
setMethod("fitted",
  signature(object = "cpglm"),
  function (object, ...) object@fitted.values
)
	
setMethod("AIC",
  signature(object = "cpglm",k = "missing" ),
  function (object, ..., k) object@aic
)

setMethod("deviance",
  signature(object = "cpglm"),
  function (object, ...) object@deviance
)

setMethod("summary", signature(object = "cpglm"),
	function(object,...){
    coef.beta <- coef(object)  
    vc <- vcov(object)
    s.err <- sqrt(diag(vc))    
    err.beta <- s.err
    test.value <- coef.beta / err.beta
    dn <- c("Estimate", "Std. Error")             
    pvalue <- 2 * pt(-abs(test.value), object@df.residual)
    
    coef.table <- cbind(coef.beta, err.beta, test.value, pvalue)  
    dn2 <- c("t value", "Pr(>|t|)")
    dimnames(coef.table) <- list(names(coef.beta), c(dn, dn2))
    keep <- match(c("call", "deviance", "aic", "contrasts", "df.residual",  
        "iter","na.action"), names(object), 0L)  
    ans <- c(object[keep], list(deviance.resid = residuals(object, 
        type = "deviance"), coefficients = coef.table, 
        dispersion = object@phi, vcov = vc, p = object@p))    
    .print.cpglm.summary(ans)    
    }
)

.print.cpglm.summary<-function(x,digits = max(3, getOption("digits") - 3),
                               signif.stars = getOption("show.signif.stars"), ...){
  
    cat("\nCall:\n", paste(deparse(x$call), sep = "\n", collapse = "\n"), 
        "\n\n", sep = "")
    cat("Deviance Residuals: \n")
    if (x$df.residual > 5) {
        x$deviance.resid <- quantile(x$deviance.resid, na.rm = TRUE)
        names(x$deviance.resid) <- c("Min", "1Q", "Median", "3Q", 
            "Max")
    }
    xx <- zapsmall(x$deviance.resid, digits + 1)
    print.default(xx, digits = digits, na.print = "", print.gap = 2)
    printCoefmat(x$coefficients, digits = digits, signif.stars = signif.stars, 
            na.print = "NA",...)
        
    cat("\nEstimated dispersion parameter:",  
        format(x$dispersion, digits = max(5, digits + 1))) 
    cat("\nEstimated index parameter:",  
        format(x$p, digits = max(5, digits + 1)),"\n\n") 
    cat("Residual deviance:", format(x$deviance, digits = max(5, digits + 1)), 
        " on", format(x$df.residual), " degrees of freedom\n") 
    if (nzchar(mess <- naprint(x$na.action))) 
        cat("  (", mess, ")\n", sep = "")
    cat("AIC: ", format(x$aic, digits = max(4, digits + 1)), "\n\n")
    cat("Number of Fisher Scoring iterations: ", x$iter, "\n") 
    cat("\n")
    invisible(x)
}

# simple prediction method for cpglm
setMethod("predict", signature(object = "cpglm"),
  function (object, newdata, type = c("response", "link"), 
                  na.action = na.pass, ...) {
    tt <- attr(object@model.frame, "terms")
    if (missing(newdata) || is.null(newdata)) {
        X <- model.matrix(object)
        offset <- object$offset
    }
    else {
        Terms <- delete.response(tt)
        xlevels <- .getXlevels(Terms, object@model.frame)
        m <- model.frame(Terms, newdata, na.action = na.action, xlev = xlevels)
        X <- model.matrix(Terms, m, contrasts.arg = object$contrasts)
        offset <- rep(0, nrow(X))
        if (!is.null(off.num <- attr(tt, "offset"))) 
            for (i in off.num) offset <- offset + eval(attr(tt, 
                "variables")[[i + 1]], newdata)
        if (!is.null(object$call$offset)) 
            offset <- offset + eval(object$call$offset, newdata)
    }
   beta <- object$coefficients
   predictor <- X%*% beta
    if (!is.null(offset)) 
        predictor <- predictor + offset
    mu <- tweedie(link.power = object@link.power)$linkinv(predictor)
    type <- match.arg(type)                                                            
    switch(type,link = predictor, response = mu)                                                            
})


        
################################################
# methods defined for cpglmm
################################################


setMethod("vcov", signature(object = "cpglmm"),
  function(object, ...){
    rr <- object$phi * chol2inv(object@RX, size = object@dims['p'])
    nms <- colnames(object@X)
    dimnames(rr) <- list(nms, nms)
    if (FALSE){  
      # compute vcov for phi and p numerically 
      cpglmm_dev <- function(x, ...){
        parm <- c(.Call("cpglmm_ST_getPars", object), 
                  object$fixef, log(x[1]), x[2])
        .Call("cpglmm_update_dev", object, parm)  
      }
      x <- c(object$phi, object$p)
      hs <- hess(x, cpglmm_dev)
      dimnames(hs) <- list(c("phi", "p"), c("phi", "p"))      
      attr(rr,"phi_p") <- solve(hs)
    }
    rr
})

setGeneric("VarCorr", function(x, ...) standardGeneric("VarCorr"))
setMethod("VarCorr", signature(x = "cpglmm"),
  function(x, ...){
    sc <- sqrt(x@phi)
    ans <- lapply(cc <- .Call("cpglmm_ST_chol", x),
             function(ch) {
                val <- crossprod(sc * ch) # variance-covariance
                stddev <- sqrt(diag(val))
                correl <- t(val / stddev)/stddev
                diag(correl) <- 1
                attr(val, "stddev") <- stddev
                attr(val, "correlation") <- correl
                val
              })
    fl <- x@flist
    names(ans) <- names(fl)[attr(fl, "assign")]
    attr(ans, "sc") <- sc
    ans
})



setMethod("logLik", signature(object="cpglmm"),
          function(object, REML = NULL, ...)
            ### Extract the log-likelihood or restricted log-likelihood
          {
            dims <- object@dims
            if (is.null(REML) || is.na(REML[1]))
              REML <- dims[["REML"]]
            val <- -object@deviance["ML"]/2
            attr(val, "nall") <- attr(val, "nobs") <- dims[["n"]]
            attr(val, "df") <-
              dims[["p"]] + dims[["np"]] + as.logical(dims[["useSc"]])
            attr(val, "REML") <-  as.logical(REML)
            class(val) <- "logLik"
            val
          })

setMethod("summary", signature(object = "cpglmm"),
  function(object, ...){
    fcoef <- fixef(object)
    vcov <- object@vcov
    dims <- object@dims
    coefs <- cbind("Estimate" = fcoef, "Std. Error" = sqrt(diag(vcov)) )
    llik <- logLik(object)
    dev <- object@deviance
    mType <- "LMM"
    mName <- "Compound Poisson linear"
    method <- paste("the", if(dims[["nAGQ"]] == 1) "Laplace" else
		  "adaptive Gaussian Hermite","approximation")
  
    AICframe <- data.frame(AIC = AIC(llik), BIC = BIC(llik),
                               logLik = as.vector(llik),
                               deviance = dev[["ML"]],
                               row.names = "")
    
    varcor <- VarCorr(object)
    REmat <- formatVC(varcor)
    if (is.na(attr(varcor, "sc")))
        REmat <- REmat[-nrow(REmat), , drop = FALSE]

    if (nrow(coefs) > 0) {
      if (!dims[["useSc"]]) {
        coefs <- coefs[, 1:2, drop = FALSE]
        stat <- coefs[,1]/coefs[,2]
        pval <- 2*pnorm(abs(stat), lower.tail = FALSE)
        coefs <- cbind(coefs, "z value" = stat, "Pr(>|z|)" = pval)
      } else {
        stat <- coefs[,1]/coefs[,2]
        ##pval <- 2*pt(abs(stat), coefs[,3], lower = FALSE)
        coefs <- cbind(coefs, "t value" = stat) #, "Pr(>|t|)" = pval)
      }
    } 
    new("summary.cpglmm", object,
            methTitle = paste(mName, "mixed model fit by", method),
            logLik = llik,
            ngrps = sapply(object@flist, function(x) length(levels(x))),
            sigma = sqrt(object@phi),
            coefs = coefs,
            REmat = REmat,
            AICtab = AICframe)
  }
)

## This is modeled a bit after  print.summary.lm :
print.cpglmm <- function(x, digits = max(3, getOption("digits") - 3),
                     correlation = FALSE, symbolic.cor = FALSE,
                     signif.stars = getOption("show.signif.stars"), ...){
  so <- summary(x)
  llik <- so@logLik
  dev <- so@deviance
  dims <- x@dims
  cat(so@methTitle, "\n")
  if (!is.null(x@call$formula))
      cat("Formula:", deparse(x@call$formula),"\n")
  if (!is.null(x@call$data))
      cat("   Data:", deparse(x@call$data), "\n")
  if (!is.null(x@call$subset))
      cat(" Subset:", deparse(x@call$subset),"\n")
  print(so@AICtab, digits = digits)

  cat("Random effects:\n")
  print(so@REmat, quote = FALSE, digits = digits, ...)

  ngrps <- so@ngrps
  cat(sprintf("Number of obs: %d, groups: ", dims[["n"]]))
  cat(paste(paste(names(ngrps), ngrps, sep = ", "), collapse = "; "))
  cat("\n")
   
  if (nrow(so@coefs) > 0) {
    cat("\nFixed effects:\n")
    printCoefmat(so@coefs, zap.ind = 3, #, tst.ind = 4
	     digits = digits, signif.stars = signif.stars)

    cat("\nEstimated dispersion parameter:", round(so@phi, digits=digits))
    cat("\n")
    cat("Estimated index parameter:", round(so@p, digits=digits))
    cat("\n")
     
    if(correlation) {
      corF <- so@vcov@factors$correlation
      if (!is.null(corF)) {
  	    p <- ncol(corF)
  	    if (p > 1) {
  	      rn <- rownames(so@coefs)
  	      rns <- abbreviate(rn, minlength=11)
  	      cat("\nCorrelation of Fixed Effects:\n")
  	      if (is.logical(symbolic.cor) && symbolic.cor) {
  		      corf <- as(corF, "matrix")
  		      dimnames(corf) <- list(rns,
  				       abbreviate(rn, minlength=1, strict=TRUE))
  		      print(symnum(corf))
  	      } else {
  		      corf <- matrix(format(round(corF@x, 3), nsmall = 3),
  			       ncol = p,dimnames = list(rns, abbreviate(rn, minlength=6)))
  		      corf[!lower.tri(corf)] <- ""
  		      print(corf[-1, -p, drop=FALSE], quote = FALSE)
  	      }
  	    }
      }
    }
  }
  invisible(x)
}

setMethod("print", "cpglmm", print.cpglmm)
setMethod("show", "cpglmm", 
  function(object) print.cpglmm(object)
)


# predict method for cpglmm
getZt <- function(formula, oldmf, newmf){
  bars <- expandSlash(findbars(formula[[3]]))
  names(bars) <- unlist(lapply(bars, function(x) deparse(x[[3]])))
  fl <- lapply(bars, function(x) {
        oldlvl <- eval(substitute(levels(as.factor(fac)[, drop = TRUE]), 
            list(fac = x[[3]])), oldmf)
        ff <- eval(substitute(factor(fac,levels = oldlvl)[, drop = TRUE], 
            list(fac = x[[3]])), newmf)
        # fill columns of 0's if some levels are missing
        im <- as(ff, "sparseMatrix")
        im2 <- Matrix(0, nrow = length(oldlvl), ncol = length(ff), sparse = TRUE)
        # this is awkward as the Matrix package seems to fail
        for (i in 1:nrow(im)){
          ind <- match(rownames(im)[i], oldlvl)
          im2[as.numeric(ind), ] <- im[as.numeric(i), ]            
        }        
        if (!isTRUE(validObject(im, test = TRUE))) 
            stop("invalid conditioning factor in random effect: ", 
                format(x[[3]]))
        mm <- model.matrix(eval(substitute(~expr, list(expr = x[[2]]))), newmf)
        mm <- mm[!is.na(ff), , drop = F]
        Zt <- do.call(rBind, lapply(seq_len(ncol(mm)), 
            function(j) {
                im2@x <- mm[, j]
                im2
            }))
        ans <- list(f = oldlvl, Zt = Zt)       
        ans
    })
  nlev <- sapply(fl, function(el) length(levels(el$f)))
  if (any(diff(nlev)) > 0) 
        fl <- fl[rev(order(nlev))]        
  Zt <- do.call(rBind, lapply(fl, "[[", "Zt"))
  Zt
}         

setMethod("predict", signature(object = "cpglmm"),
    function(object,  newdata, type = c("link","response"), 
          na.action = na.pass, ...) {
    tt <- attr(object@model.frame,"terms")
    if (missing(newdata) || is.null(newdata)) {
        mm <- X <- model.matrix(object)
        Zt <- object@Zt
        offset <- object$offset
    }
    else {
      #FIXME: should I use xlev ???
        Terms <- delete.response(tt)
        # design matrix for fixed effects
        X <- model.matrix(Terms, newdata, contrasts.arg = object@contrasts)
        # design matrix for random effects
        formula <- object@formula
        oldmf <- object@model.frame
        Zt <- getZt(formula, oldmf, newdata)        
        # get offset
        offset <- rep(0, nrow(X))
        if (!is.null(off.num <- attr(tt, "offset"))) 
            for (i in off.num) offset <- offset + eval(attr(tt, 
                "variables")[[i + 1]], newdata)
        if (!is.null(object$call$offset)) 
            offset <- offset + eval(object$call$offset, newdata)                
    }
    beta <- object@fixef
    u <- object@ranef
    predictor <- as.numeric(X %*% beta + t(Zt)%*% u)
    if (!is.null(offset)) 
        predictor <- predictor + offset
    mu <- tweedie(link.power = object@link.power)$linkinv(predictor)
    type <- match.arg(type)
    switch(type,link = predictor, response = mu)   
})

################################################
# methods defined for bcplm
################################################

# fixed effects
setMethod("fixef", signature = "bcplm",
  function(object, type = c("median", "mean"), sd = FALSE,
           quantiles = NULL, ...){
    type <- match.arg(type)
    s <- object@summary
    dm <- object@dims
    rn <- 1:unname(dm["n.beta"])
    mu.beta <- if (type == "median") as.numeric(s[[2]][rn, 3]) else 
      as.numeric(s[[1]][rn, 1])
    names(mu.beta) <- rownames(s[[1]])[rn]
    if (sd){
      sd.beta <- as.numeric(s[[1]][rn, 2])
      attr(mu.beta, "sd") <- sd.beta
    }
    if (!is.null(quantiles)){
      qt <- as.matrix(summary(object$sims.list, quantiles = quantiles)[[2]])
      attr(mu.beta, "quantiles") <- qt[rn, , drop = FALSE]
    }
    return(mu.beta)
  }
)

# variance components
setMethod("VarCorr", signature(x = "bcplm"),
  function(x, ...){
    dm <- x@dims
    if (dm["n.u"] == 0)
      stop("No random effects in 'VarCorr'!")
    
    ans <- lapply(x@Sigma, function(xx) {
      stddev <- sqrt(diag(xx))
      correl <- t(xx / stddev)/stddev
      diag(correl) <- 1
      attr(xx, "stddev") <- stddev
      attr(xx, "correlation") <- correl
      xx
    })
    fl <- x@flist
    names(ans) <- names(fl)[attr(fl, "assign")]
    attr(ans, "sc") <- sqrt(x@summary[[2]][dm["n.beta"] + 1, 3])
    ans
  }
)

setMethod("show", signature = "bcplm",  
  function(object) 
    print.bcplm(object)
)

setMethod("summary", signature = "bcplm",  
  function(object) 
    object
)

setMethod("plot", signature(x = "bcplm", y = "missing"),
  function(x, y, ...) plot(x@sims.list)
)


# print out (summarize) model results
print.bcplm <- function(x, digits = max(3, getOption("digits") - 3)){
  dims <- x@dims
  # fixed effects
  fcoef <- fixef(x, sd = TRUE, quantiles = c(0.025, 0.975))
  coefs <- cbind("Estimate" = fcoef, "Std. Error" = attr(fcoef, "sd"),
                 "Lower (2.5%)" = attr(fcoef, "quantiles")[, 1],
                 "Upper (97.5%)" = attr(fcoef, "quantiles")[, 2])
  
  # start printing
  cat("Compound Poisson linear models via MCMC\n")
  cat(dims["n.chains"], " chains, each with ", dims["n.iter"], " iterations (first ", 
      dims["n.burnin"], " discarded)", sep = "")
  if (dims["n.thin"] > 1) 
    cat(", n.thin =", dims["n.thin"])
  cat("\nn.sims =", dims["n.sims"], "iterations saved\n")
  cat("\n")
  if (!is.null(x@call$formula))
    cat("Formula:", deparse(x@call$formula),"\n")
  if (!is.null(x@call$data))
    cat("   Data:", deparse(x@call$data), "\n")
  if (!is.null(x@call$subset))
    cat(" Subset:", deparse(x@call$subset),"\n")
  
  if (dims["n.u"] > 0){
    cat("\nRandom and dynamic variance components:\n")
    varcor <- VarCorr(x)
    REmat <- formatVC(varcor)
    if (is.na(attr(varcor, "sc")))
      REmat <- REmat[-nrow(REmat), , drop = FALSE]      
    print(REmat, quote = FALSE, digits = digits)
  }
  cat(sprintf("Number of obs: %d ", x@dims["n.obs"]))
  if (dims["n.u"] > 0){
    ngrps <- sapply(x@flist, nlevels)
    cat(", groups: ")
    cat(paste(paste(names(ngrps), ngrps, sep = ", "), collapse = "; "))
  }
  cat("\n")
  
  if (nrow(coefs) > 0) {
    cat("\nFixed effects:\n")
    printCoefmat(coefs, zap.ind = 3, digits = digits)  
    cat("---")
  }
  s <- x@summary
  phi.ps <- grep("^phi$", rownames(s[[1]]))
  p.ps <- grep("^p$", rownames(s[[1]]))
  cat("\nEstimated dispersion parameter:",  
      format(s[[2]][phi.ps, 3], digits = max(5, digits + 1))) 
  cat("\nEstimated index parameter:",  
      format(s[[2]][p.ps, 3], digits = max(5, digits + 1)),"\n\n")
  out <- list(fixef = coefs, 
              VarCorr = if (dims["n.u"]) REmat else list())
  invisible(out)
}


################################################
# methods defined for zcpglm 
################################################
         
setMethod("coef",
  signature(object = "zcpglm"),
  function (object, ...) object@coefficients
)

setMethod("residuals",
  signature(object = "zcpglm"), 
  function(object, ...) object@residuals  
)

setMethod("resid",
  signature(object = "zcpglm"), 
  function(object, ...) residuals(object)
)

# generate fitted values on the original scale
setMethod("fitted",
  signature(object = "zcpglm"),
  function (object, ...)  object@fitted.values
)
	
setMethod("summary", signature(object = "zcpglm"),
	function(object, ...){ 
    nbz <- length(coef(object)$zero)
    nbt <- length(coef(object)$tweedie)
    se <- sqrt(diag(vcov(object)))
    coef <- unlist(coef(object))
    zstat <- coef / se
    pval <- 2 * pnorm(-abs(zstat))
    coef <- cbind(coef, se, zstat, pval)
    colnames(coef) <- c("Estimate", "Std. Error", "z value", "Pr(>|z|)")
    rownames(coef) <- c(names(coef(object)$zero), names(coef(object)$tweedie))
    
    coef.table <- list()
    coef.table$zero <- coef[1:nbz, , drop = FALSE]
    coef.table$tweedie <- coef[(nbz + 1):(nbz + nbt), , drop = FALSE]
    
    keep <- match(c("llik", "contrasts", "df.residual",  
        "na.action", "vcov"), names(object), 0L)
    
    out <- list(llik = object@llik, contrasts = object@contrasts, 
                df.residual = object@df.residual, vcov = object @vcov, 
                na.action = object@na.action, coefficients = coef.table,
                call = object@call, phi = object@phi, p = object@p)
    .print.zcpglm.summary(out)  
	}
)
                    
.print.zcpglm.summary<-function(x,digits = max(3, getOption("digits") - 3),
                               signif.stars = getOption("show.signif.stars"), ...){
  
    cat("\nCall:\n", paste(deparse(x$call), sep = "\n", collapse = "\n"), 
        "\n\n", sep = "")
    cat(paste("Zero-inflation model coefficients:\n"))
    printCoefmat(x$coefficients$zero, digits = digits, signif.stars = signif.stars, 
            na.print = "NA", signif.legend = FALSE)
    cat(paste("\nCompound Poisson model coefficients:\n"))
    printCoefmat(x$coefficients$tweedie, digits = digits, signif.stars = signif.stars, 
            na.print = "NA")    
    cat("\nEstimated dispersion parameter:",  
        format(x$phi, digits = max(5, digits + 1))) 
    cat("\nEstimated index parameter:",  
        format(x$p, digits = max(5, digits + 1)),"\n") 
    if (nzchar(mess <- naprint(x$na.action))) 
        cat("  (", mess, ")\n", sep = "")
    invisible(x)
}


setMethod("predict", signature(object = "zcpglm"),
  function (object, newdata, type = c("response", "zero", "tweedie"), 
                    na.action = na.pass, ...) {
  call <- object$call
  ttz <- attr(object@model.frame$zero, "terms")
  ttt <- attr(object@model.frame$tweedie, "terms")
  Termsz <- delete.response(ttz)
  Termst <- delete.response(ttt)
  xlevz <- .getXlevels(Termsz, object@model.frame$zero)
  xlevt <- .getXlevels(Termst, object@model.frame$tweedie)  
  mz <- model.frame(Termsz, newdata, na.action = na.action, xlev = xlevz)
  mt <- model.frame(Termst, newdata, na.action = na.action, xlev = xlevt)
  Xz <- model.matrix(Termsz, mz, contrasts.arg = object$contrasts)
  Xt <- model.matrix(Termst, mt, contrasts.arg = object$contrasts)
  offt <- offz <- rep(0, nrow(Xz))
  if (!is.null(off.num <- attr(ttz, "offset"))) 
    for (i in off.num) 
        offz <- offz + eval(attr(ttz, "variables")[[i + 1]], newdata)
  if (!is.null(off.num <- attr(ttt, "offset"))) 
    for (i in off.num) 
      offt <- offt + eval(attr(ttt, "variables")[[i + 1]], newdata)
  if (!is.null(object$call$offset)) {
      off <- eval(object$call$offset, newdata)
      offz <- offz + off
      offt <- offt + off 
  }
  
  link.power <- make.link.power(object$link.power)
  tw <- tweedie(link.power = link.power)                 
  logit <- binomial()
  
  betaz <- object$coefficients$zero
  betat <- object$coefficients$tweedie
  muz <- logit$linkinv(Xz %*% betaz + offz)
  mut <- tw$linkinv(Xt %*% betat + offt)
  mu <- as.numeric((1 - muz) * mut)  
  
  type <- match.arg(type)                                                            
  switch(type, response = mu, zero = muz, tweedie = mut)                                                            
})

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API