\name{predict.ssanova} \alias{predict.ssanova} \alias{predict.ssanova0} \title{Predicting from Smoothing Spline ANOVA Fits} \description{ Evaluate terms in a smoothing spline ANOVA fit at arbitrary points. Standard errors of the terms can be requested for use in constructing Bayesian confidence intervals. } \usage{ predict.ssanova(object, newdata, se.fit=FALSE, include=object$terms$labels, ...) predict.ssanova0(object, newdata, se.fit=FALSE, include=object$terms$labels, ...) } \arguments{ \item{object}{Object of class inheriting from \code{"ssanova"}.} \item{newdata}{Data frame or model frame in which to predict.} \item{se.fit}{Flag indicating if standard errors are required.} \item{include}{List of model terms to be included in the prediction. The \code{partial} and \code{offset} terms, if present, are to be specified by \code{"partial"} and \code{"offset"}, respectively.} \item{...}{Ignored.} } \value{ For \code{se.fit=FALSE}, \code{predict.ssanova} returns a vector of the evaluated fit. For \code{se.fit=TRUE}, \code{predict.ssanova} returns a list consisting of the following components. \item{fit}{Vector of evaluated fit.} \item{se.fit}{Vector of standard errors.} } \note{ To supply the partial terms for partial spline models, add a component \code{partial=I(...)} in \code{newdata}; the "as is" function \code{I(...)} is necessary when \code{partial} has more than one column. For mixed-effect models through \code{\link{ssanova}} or \code{\link{gssanova}}, the Z matrix is set to 0 if not supplied. To supply the Z matrix, add a component \code{random=I(...)} in \code{newdata}. } \seealso{ Fitting functions \code{\link{ssanova}}, \code{\link{ssanova0}}, \code{\link{gssanova}}, \code{\link{gssanova0}} and methods \code{\link{summary.ssanova}}, \code{\link{summary.gssanova}}, \code{\link{summary.gssanova0}}, \code{\link{project.ssanova}}, \code{\link{fitted.ssanova}}. } \author{Chong Gu, \email{chong@stat.purdue.edu}} \references{ Gu, C. (1992), Penalized likelihood regression: a Bayesian analysis. \emph{Statistica Sinica}, \bold{2}, 255--264. Gu, C. and Wahba, G. (1993), Smoothing spline ANOVA with component-wise Bayesian "confidence intervals." \emph{Journal of Computational and Graphical Statistics}, \bold{2}, 97--117. Kim, Y.-J. and Gu, C. (2004), Smoothing spline Gaussian regression: more scalable computation via efficient approximation. \emph{Journal of the Royal Statistical Society, Ser. B}, \bold{66}, 337--356. } \examples{ ## THE FOLLOWING EXAMPLE IS TIME-CONSUMING \dontrun{ ## Fit a model with cubic and thin-plate marginals, where geog is 2-D data(LakeAcidity) fit <- ssanova(ph~log(cal)*geog,,LakeAcidity) ## Obtain estimates and standard errors on a grid new <- data.frame(cal=1,geog=I(matrix(0,1,2))) new <- model.frame(~log(cal)+geog,new) predict(fit,new,se=TRUE) ## Evaluate the geog main effect predict(fit,new,se=TRUE,inc="geog") ## Evaluate the sum of the geog main effect and the interaction predict(fit,new,se=TRUE,inc=c("geog","log(cal):geog")) ## Evaluate the geog main effect on a grid grid <- seq(-.04,.04,len=21) new <- model.frame(~geog,list(geog=cbind(rep(grid,21),rep(grid,rep(21,21))))) est <- predict(fit,new,se=TRUE,inc="geog") ## Plot the fit and standard error par(pty="s") contour(grid,grid,matrix(est$fit,21,21),col=1) contour(grid,grid,matrix(est$se,21,21),add=TRUE,col=2) ## Clean up rm(LakeAcidity,fit,new,grid,est) dev.off() } } \keyword{models} \keyword{regression} \keyword{smooth}