// This file is a part of Julia. License is MIT: https://julialang.org/license #include "llvm-version.h" #include "platform.h" #if defined(_OS_WINDOWS_) // use ELF because RuntimeDyld COFF i686 support didn't exist // use ELF because RuntimeDyld COFF X86_64 doesn't seem to work (fails to generate function pointers)? #define FORCE_ELF #endif #if defined(_CPU_X86_) #define JL_NEED_FLOATTEMP_VAR 1 #endif #if defined(_OS_WINDOWS_) || defined(_OS_FREEBSD_) #define JL_DISABLE_FPO #endif #ifndef __STDC_LIMIT_MACROS #define __STDC_LIMIT_MACROS #define __STDC_CONSTANT_MACROS #endif #include #include #include #include #include #include #include #include // target machine computation #include #include #include #include #include #include #include // IR building #include #include #include #include #include #include "llvm/IR/DebugInfoMetadata.h" #include #include #include #include #include // support #include #include #include #include #include #include // for llvmcall #include // for llvmcall inlining #include #include // for llvmcall validation #include #include // C API #include // for configuration options #include #include #if JL_LLVM_VERSION >= 120000 #include #endif #include #if defined(_CPU_ARM_) || defined(_CPU_AARCH64_) # include #endif #if defined(USE_POLLY) #include #include #endif #include using namespace llvm; typedef Instruction TerminatorInst; #if defined(_OS_WINDOWS_) && !defined(NOMINMAX) #define NOMINMAX #endif #include "julia.h" #include "julia_internal.h" #include "jitlayers.h" #include "codegen_shared.h" #include "processor.h" #include "julia_assert.h" JL_STREAM *dump_emitted_mi_name_stream = NULL; extern "C" JL_DLLEXPORT void jl_dump_emitted_mi_name(void *s) { dump_emitted_mi_name_stream = (JL_STREAM*)s; } extern "C" { #include "builtin_proto.h" #ifdef HAVE_SSP extern uintptr_t __stack_chk_guard; extern void __stack_chk_fail(); #else JL_DLLEXPORT uintptr_t __stack_chk_guard = (uintptr_t)0xBAD57ACCBAD67ACC; // 0xBADSTACKBADSTACK JL_DLLEXPORT void __stack_chk_fail() { /* put your panic function or similar in here */ fprintf(stderr, "fatal error: stack corruption detected\n"); gc_debug_critical_error(); abort(); // end with abort, since the compiler destroyed the stack upon entry to this function, there's no going back now } #endif #ifdef _OS_WINDOWS_ #if defined(_CPU_X86_64_) #if defined(_COMPILER_GCC_) extern void ___chkstk_ms(void); #else extern void __chkstk(void); #endif #else #if defined(_COMPILER_GCC_) #undef _alloca extern void _alloca(void); #else extern void _chkstk(void); #endif #endif //void *force_chkstk(void) { // return alloca(40960); //} #endif } #if defined(_COMPILER_MICROSOFT_) && !defined(__alignof__) #define __alignof__ __alignof #endif // llvm state extern JITEventListener *CreateJuliaJITEventListener(); // for image reloading bool imaging_mode = false; // shared llvm state JL_DLLEXPORT LLVMContext &jl_LLVMContext = *(new LLVMContext()); TargetMachine *jl_TargetMachine; static DataLayout &jl_data_layout = *(new DataLayout("")); #define jl_Module ctx.f->getParent() #define jl_builderModule(builder) (builder).GetInsertBlock()->getParent()->getParent() #define prepare_call(Callee) prepare_call_in(jl_Module, (Callee)) // types static Type *T_jlvalue; static Type *T_pjlvalue; static Type *T_prjlvalue; static Type *T_ppjlvalue; static Type *T_pprjlvalue; static Type *jl_array_llvmt; static Type *jl_parray_llvmt; static FunctionType *jl_func_sig; static FunctionType *jl_func_sig_sparams; static Type *T_pvoidfunc; static IntegerType *T_int1; static IntegerType *T_int8; static IntegerType *T_int16; static IntegerType *T_int32; static IntegerType *T_int64; static IntegerType *T_uint8; static IntegerType *T_uint16; static IntegerType *T_uint32; static IntegerType *T_uint64; static IntegerType *T_char; static IntegerType *T_size; static IntegerType *T_sigatomic; static Type *T_float16; static Type *T_float32; static Type *T_float64; static Type *T_float128; static Type *T_pint8; static Type *T_pint16; static Type *T_pint32; static Type *T_pint64; static Type *T_psize; static Type *T_pfloat32; static Type *T_pfloat64; static Type *T_ppint8; static Type *T_pppint8; static Type *T_void; // type-based alias analysis nodes. Indentation of comments indicates hierarchy. static MDNode *tbaa_root; // Everything static MDNode *tbaa_gcframe; // GC frame // LLVM should have enough info for alias analysis of non-gcframe stack slot // this is mainly a place holder for `jl_cgval_t::tbaa` static MDNode *tbaa_stack; // stack slot static MDNode *tbaa_unionselbyte; // a selector byte in isbits Union struct fields static MDNode *tbaa_data; // Any user data that `pointerset/ref` are allowed to alias static MDNode *tbaa_binding; // jl_binding_t::value static MDNode *tbaa_value; // jl_value_t, that is not jl_array_t static MDNode *tbaa_mutab; // mutable type static MDNode *tbaa_datatype; // datatype static MDNode *tbaa_immut; // immutable type static MDNode *tbaa_ptrarraybuf; // Data in an array of boxed values static MDNode *tbaa_arraybuf; // Data in an array of POD static MDNode *tbaa_array; // jl_array_t static MDNode *tbaa_arrayptr; // The pointer inside a jl_array_t static MDNode *tbaa_arraysize; // A size in a jl_array_t static MDNode *tbaa_arraylen; // The len in a jl_array_t static MDNode *tbaa_arrayflags; // The flags in a jl_array_t static MDNode *tbaa_arrayoffset; // The offset in a jl_array_t static MDNode *tbaa_arrayselbyte; // a selector byte in a isbits Union jl_array_t static MDNode *tbaa_const; // Memory that is immutable by the time LLVM can see it static Attribute Thunk; // Basic DITypes static DICompositeType *jl_value_dillvmt; static DIDerivedType *jl_pvalue_dillvmt; static DIDerivedType *jl_ppvalue_dillvmt; static DISubroutineType *jl_di_func_sig; static DISubroutineType *jl_di_func_null_sig; // constants static Constant *V_null; static Constant *V_rnull; static Constant *V_size0; static bool type_is_ghost(Type *ty) { return (ty == T_void || ty->isEmptyTy()); } // should agree with `Core.Compiler.hasuniquerep` static bool type_has_unique_rep(jl_value_t *t) { if (t == (jl_value_t*)jl_typeofbottom_type) return false; if (t == jl_bottom_type) return true; if (jl_is_typevar(t)) return false; if (!jl_is_kind(jl_typeof(t))) return true; if (jl_is_concrete_type(t)) return true; if (jl_is_datatype(t)) { jl_datatype_t *dt = (jl_datatype_t*)t; if (dt->name != jl_tuple_typename) { for (size_t i = 0; i < jl_nparams(dt); i++) if (!type_has_unique_rep(jl_tparam(dt, i))) return false; return true; } } return false; } static bool is_uniquerep_Type(jl_value_t *t) { return jl_is_type_type(t) && type_has_unique_rep(jl_tparam0(t)); } class jl_codectx_t; struct JuliaVariable { public: StringLiteral name; bool isconst; Type *(*_type)(LLVMContext &C); JuliaVariable(const JuliaVariable&) = delete; JuliaVariable(const JuliaVariable&&) = delete; GlobalVariable *realize(Module *m) { if (GlobalValue *V = m->getNamedValue(name)) return cast(V); return new GlobalVariable(*m, _type(m->getContext()), isconst, GlobalVariable::ExternalLinkage, NULL, name); } GlobalVariable *realize(jl_codectx_t &ctx); }; static inline void add_named_global(JuliaVariable *name, void *addr) { add_named_global(name->name, addr); } struct JuliaFunction { public: StringLiteral name; FunctionType *(*_type)(LLVMContext &C); AttributeList (*_attrs)(LLVMContext &C); JuliaFunction(const JuliaFunction&) = delete; JuliaFunction(const JuliaFunction&&) = delete; Function *realize(Module *m) { if (GlobalValue *V = m->getNamedValue(name)) return cast(V); Function *F = Function::Create(_type(m->getContext()), Function::ExternalLinkage, name, m); if (_attrs) F->setAttributes(_attrs(m->getContext())); return F; } Function *realize(jl_codectx_t &ctx); }; template static inline void add_named_global(JuliaFunction *name, T *addr) { // cast through integer to avoid c++ pedantic warning about casting between // data and code pointers add_named_global(name->name, (void*)(uintptr_t)addr); } template static inline void add_named_global(StringRef name, T *addr) { // cast through integer to avoid c++ pedantic warning about casting between // data and code pointers add_named_global(name, (void*)(uintptr_t)addr); } AttributeSet Attributes(LLVMContext &C, std::initializer_list attrkinds) { SmallVector attrs(attrkinds.size()); for (size_t i = 0; i < attrkinds.size(); i++) attrs[i] = Attribute::get(C, attrkinds.begin()[i]); return AttributeSet::get(C, makeArrayRef(attrs)); } static Type *get_pjlvalue(LLVMContext &C) { return T_pjlvalue; } static FunctionType *get_func_sig(LLVMContext &C) { return jl_func_sig; } static AttributeList get_func_attrs(LLVMContext &C) { return AttributeList::get(C, AttributeSet::get(C, makeArrayRef({Thunk})), Attributes(C, {Attribute::NonNull}), None); } static AttributeList get_attrs_noreturn(LLVMContext &C) { return AttributeList::get(C, Attributes(C, {Attribute::NoReturn}), AttributeSet(), None); } static AttributeList get_attrs_sext(LLVMContext &C) { return AttributeList::get(C, AttributeSet(), Attributes(C, {Attribute::NonNull}), {Attributes(C, {Attribute::SExt})}); } static AttributeList get_attrs_zext(LLVMContext &C) { return AttributeList::get(C, AttributeSet(), Attributes(C, {Attribute::NonNull}), {Attributes(C, {Attribute::ZExt})}); } // global vars static const auto jlRTLD_DEFAULT_var = new JuliaVariable{ "jl_RTLD_DEFAULT_handle", true, [](LLVMContext &C) { return T_pint8; }, }; #ifdef _OS_WINDOWS_ static const auto jlexe_var = new JuliaVariable{ "jl_exe_handle", true, [](LLVMContext &C) { return T_pint8; }, }; static const auto jldll_var = new JuliaVariable{ "jl_libjulia_internal_handle", true, [](LLVMContext &C) { return T_pint8; }, }; #endif //_OS_WINDOWS_ static const auto jlstack_chk_guard_var = new JuliaVariable{ "__stack_chk_guard", true, get_pjlvalue, }; static const auto jlgetworld_global = new JuliaVariable{ "jl_world_counter", false, [](LLVMContext &C) { return (Type*)T_size; }, }; static const auto jlboxed_int8_cache = new JuliaVariable{ "jl_boxed_int8_cache", true, [](LLVMContext &C) { return (Type*)ArrayType::get(T_pjlvalue, 256); }, }; static const auto jlboxed_uint8_cache = new JuliaVariable{ "jl_boxed_uint8_cache", true, [](LLVMContext &C) { return (Type*)ArrayType::get(T_pjlvalue, 256); }, }; static const auto jltls_states_func = new JuliaFunction{ "julia.ptls_states", [](LLVMContext &C) { return FunctionType::get(PointerType::get(T_ppjlvalue, 0), false); }, nullptr, }; // important functions // Symbols are not gc-tracked, but we'll treat them as callee rooted anyway, // because they may come from a gc-rooted location static const auto jlnew_func = new JuliaFunction{ "jl_new_structv", get_func_sig, get_func_attrs, }; static const auto jlsplatnew_func = new JuliaFunction{ "jl_new_structt", [](LLVMContext &C) { return FunctionType::get(T_prjlvalue, {T_prjlvalue, T_prjlvalue}, false); }, get_func_attrs, }; static const auto jlthrow_func = new JuliaFunction{ "jl_throw", [](LLVMContext &C) { return FunctionType::get(T_void, {PointerType::get(T_jlvalue, AddressSpace::CalleeRooted)}, false); }, get_attrs_noreturn, }; static const auto jlerror_func = new JuliaFunction{ "jl_error", [](LLVMContext &C) { return FunctionType::get(T_void, {T_pint8}, false); }, get_attrs_noreturn, }; static const auto jltypeerror_func = new JuliaFunction{ "jl_type_error", [](LLVMContext &C) { return FunctionType::get(T_void, {T_pint8, T_prjlvalue, PointerType::get(T_jlvalue, AddressSpace::CalleeRooted)}, false); }, get_attrs_noreturn, }; static const auto jlundefvarerror_func = new JuliaFunction{ "jl_undefined_var_error", [](LLVMContext &C) { return FunctionType::get(T_void, {PointerType::get(T_jlvalue, AddressSpace::CalleeRooted)}, false); }, get_attrs_noreturn, }; static const auto jlboundserrorv_func = new JuliaFunction{ "jl_bounds_error_ints", [](LLVMContext &C) { return FunctionType::get(T_void, {PointerType::get(T_jlvalue, AddressSpace::CalleeRooted), T_psize, T_size}, false); }, get_attrs_noreturn, }; static const auto jlboundserror_func = new JuliaFunction{ "jl_bounds_error_int", [](LLVMContext &C) { return FunctionType::get(T_void, {PointerType::get(T_jlvalue, AddressSpace::CalleeRooted), T_size}, false); }, get_attrs_noreturn, }; static const auto jlvboundserror_func = new JuliaFunction{ "jl_bounds_error_tuple_int", [](LLVMContext &C) { return FunctionType::get(T_void, {T_pprjlvalue, T_size, T_size}, false); }, get_attrs_noreturn, }; static const auto jluboundserror_func = new JuliaFunction{ "jl_bounds_error_unboxed_int", [](LLVMContext &C) { return FunctionType::get(T_void, {PointerType::get(T_int8, AddressSpace::Derived), T_pjlvalue, T_size}, false); }, get_attrs_noreturn, }; static const auto jlcheckassign_func = new JuliaFunction{ "jl_checked_assignment", [](LLVMContext &C) { return FunctionType::get(T_void, {T_pjlvalue, PointerType::get(T_jlvalue, AddressSpace::CalleeRooted)}, false); }, nullptr, }; static const auto jldeclareconst_func = new JuliaFunction{ "jl_declare_constant", [](LLVMContext &C) { return FunctionType::get(T_void, {T_pjlvalue}, false); }, nullptr, }; static const auto jlgetbindingorerror_func = new JuliaFunction{ "jl_get_binding_or_error", [](LLVMContext &C) { return FunctionType::get(T_pjlvalue, {T_pjlvalue, T_pjlvalue}, false); }, nullptr, }; static const auto jlboundp_func = new JuliaFunction{ "jl_boundp", [](LLVMContext &C) { return FunctionType::get(T_int32, {T_pjlvalue, T_pjlvalue}, false); }, nullptr, }; static const auto jltopeval_func = new JuliaFunction{ "jl_toplevel_eval", [](LLVMContext &C) { return FunctionType::get(T_pjlvalue, {T_pjlvalue, T_pjlvalue}, false); }, [](LLVMContext &C) { return AttributeList::get(C, AttributeSet(), Attributes(C, {Attribute::NonNull}), None); }, }; static const auto jlcopyast_func = new JuliaFunction{ "jl_copy_ast", [](LLVMContext &C) { return FunctionType::get(T_prjlvalue, {T_prjlvalue}, false); }, [](LLVMContext &C) { return AttributeList::get(C, AttributeSet(), Attributes(C, {Attribute::NonNull}), None); }, }; //static const auto jlnsvec_func = new JuliaFunction{ // "jl_svec", // [](LLVMContext &C) { return FunctionType::get(T_prjlvalue, // {T_size}, true); }, // [](LLVMContext &C) { return AttributeList::get(C, // AttributeSet(), // Attributes(C, {Attribute::NonNull}), // None); }, //}; static const auto jlapplygeneric_func = new JuliaFunction{ "jl_apply_generic", get_func_sig, get_func_attrs, }; static const auto jlinvoke_func = new JuliaFunction{ "jl_invoke", [](LLVMContext &C) { return FunctionType::get(T_prjlvalue, {T_prjlvalue, T_pprjlvalue, T_uint32, T_prjlvalue}, false); }, [](LLVMContext &C) { return AttributeList::get(C, AttributeSet(), Attributes(C, {Attribute::NonNull}), {AttributeSet(), Attributes(C, {Attribute::ReadOnly, Attribute::NoCapture})}); }, }; static const auto jlmethod_func = new JuliaFunction{ "jl_method_def", [](LLVMContext &C) { return FunctionType::get(T_prjlvalue, {T_prjlvalue, T_prjlvalue, T_pjlvalue}, false); }, nullptr, }; static const auto jlgenericfunction_func = new JuliaFunction{ "jl_generic_function_def", [](LLVMContext &C) { return FunctionType::get(T_prjlvalue, {T_pjlvalue, T_pjlvalue, T_pprjlvalue, T_pjlvalue, T_pjlvalue}, false); }, nullptr, }; static const auto jlenter_func = new JuliaFunction{ "jl_enter_handler", [](LLVMContext &C) { return FunctionType::get(T_void, {T_pint8}, false); }, nullptr, }; static const auto jl_current_exception_func = new JuliaFunction{ "jl_current_exception", [](LLVMContext &C) { return FunctionType::get(T_prjlvalue, false); }, nullptr, }; static const auto jlleave_func = new JuliaFunction{ "jl_pop_handler", [](LLVMContext &C) { return FunctionType::get(T_void, {T_int32}, false); }, nullptr, }; static const auto jl_restore_excstack_func = new JuliaFunction{ "jl_restore_excstack", [](LLVMContext &C) { return FunctionType::get(T_void, {T_size}, false); }, nullptr, }; static const auto jl_excstack_state_func = new JuliaFunction{ "jl_excstack_state", [](LLVMContext &C) { return FunctionType::get(T_size, false); }, nullptr, }; static const auto jlegal_func = new JuliaFunction{ "jl_egal", [](LLVMContext &C) { Type *T = PointerType::get(T_jlvalue, AddressSpace::CalleeRooted); return FunctionType::get(T_int32, {T, T}, false); }, nullptr, }; static const auto jl_alloc_obj_func = new JuliaFunction{ "julia.gc_alloc_obj", [](LLVMContext &C) { return FunctionType::get(T_prjlvalue, {T_pint8, T_size, T_prjlvalue}, false); }, [](LLVMContext &C) { return AttributeList::get(C, AttributeSet::get(C, makeArrayRef({Attribute::getWithAllocSizeArgs(C, 1, None)})), // returns %1 bytes Attributes(C, {Attribute::NoAlias, Attribute::NonNull}), None); }, }; static const auto jl_newbits_func = new JuliaFunction{ "jl_new_bits", [](LLVMContext &C) { return FunctionType::get(T_prjlvalue, {T_prjlvalue, T_pint8}, false); }, [](LLVMContext &C) { return AttributeList::get(C, AttributeSet(), Attributes(C, {Attribute::NonNull}), None); }, }; // `julia.typeof` does read memory, but it is effectively readnone before we lower // the allocation function. This is OK as long as we lower `julia.typeof` no later than // `julia.gc_alloc_obj`. static const auto jl_typeof_func = new JuliaFunction{ "julia.typeof", [](LLVMContext &C) { return FunctionType::get(T_prjlvalue, {T_prjlvalue}, false); }, [](LLVMContext &C) { return AttributeList::get(C, Attributes(C, {Attribute::ReadNone, Attribute::NoUnwind, Attribute::NoRecurse}), Attributes(C, {Attribute::NonNull}), None); }, }; static const auto jl_loopinfo_marker_func = new JuliaFunction{ "julia.loopinfo_marker", [](LLVMContext &C) { return FunctionType::get(T_void, false); }, [](LLVMContext &C) { return AttributeList::get(C, Attributes(C, {Attribute::ReadOnly, Attribute::NoRecurse, Attribute::InaccessibleMemOnly}), AttributeSet(), None); }, }; static const auto jl_write_barrier_func = new JuliaFunction{ "julia.write_barrier", [](LLVMContext &C) { return FunctionType::get(T_void, {T_prjlvalue}, true); }, [](LLVMContext &C) { return AttributeList::get(C, Attributes(C, {Attribute::NoUnwind, Attribute::NoRecurse, Attribute::InaccessibleMemOnly}), AttributeSet(), None); }, }; static const auto jlisa_func = new JuliaFunction{ "jl_isa", [](LLVMContext &C) { return FunctionType::get(T_int32, {T_prjlvalue, T_prjlvalue}, false); }, nullptr, }; static const auto jlsubtype_func = new JuliaFunction{ "jl_subtype", [](LLVMContext &C) { return FunctionType::get(T_int32, {T_prjlvalue, T_prjlvalue}, false); }, nullptr, }; static const auto jlapplytype_func = new JuliaFunction{ "jl_instantiate_type_in_env", [](LLVMContext &C) { return FunctionType::get(T_prjlvalue, {T_pjlvalue, T_pjlvalue, T_pprjlvalue}, false); }, [](LLVMContext &C) { return AttributeList::get(C, AttributeSet(), AttributeSet::get(C, makeArrayRef({Attribute::get(C, Attribute::NonNull), Attribute::getWithAlignment(C, Align(16))})), None); }, }; static const auto jl_object_id__func = new JuliaFunction{ "jl_object_id_", [](LLVMContext &C) { return FunctionType::get(T_size, {T_prjlvalue, PointerType::get(T_int8, AddressSpace::Derived)}, false); }, nullptr, }; static const auto setjmp_func = new JuliaFunction{ jl_setjmp_name, [](LLVMContext &C) { return FunctionType::get(T_int32, {T_pint8, #ifndef _OS_WINDOWS_ T_int32, #endif }, false); }, [](LLVMContext &C) { return AttributeList::get(C, Attributes(C, {Attribute::ReturnsTwice}), AttributeSet(), None); }, }; static const auto memcmp_func = new JuliaFunction{ "memcmp", [](LLVMContext &C) { return FunctionType::get(T_int32, {T_pint8, T_pint8, T_size}, false); }, [](LLVMContext &C) { return AttributeList::get(C, Attributes(C, {Attribute::ReadOnly, Attribute::NoUnwind, Attribute::ArgMemOnly}), AttributeSet(), None); }, // TODO: inferLibFuncAttributes(*memcmp_func, TLI); }; static const auto jldlsym_func = new JuliaFunction{ "jl_load_and_lookup", [](LLVMContext &C) { return FunctionType::get(T_pvoidfunc, {T_pint8, T_pint8, PointerType::get(T_pint8, 0)}, false); }, nullptr, }; static const auto jllazydlsym_func = new JuliaFunction{ "jl_lazy_load_and_lookup", [](LLVMContext &C) { return FunctionType::get(T_pvoidfunc, {T_prjlvalue, T_pint8}, false); }, nullptr, }; static const auto jltypeassert_func = new JuliaFunction{ "jl_typeassert", [](LLVMContext &C) { return FunctionType::get(T_void, {T_prjlvalue, T_prjlvalue}, false); }, nullptr, }; static const auto jlgetnthfieldchecked_func = new JuliaFunction{ "jl_get_nth_field_checked", [](LLVMContext &C) { return FunctionType::get(T_prjlvalue, {T_prjlvalue, T_size}, false); }, [](LLVMContext &C) { return AttributeList::get(C, AttributeSet(), Attributes(C, {Attribute::NonNull}), None); }, }; static const auto jlgetcfunctiontrampoline_func = new JuliaFunction{ "jl_get_cfunction_trampoline", [](LLVMContext &C) { return FunctionType::get(T_prjlvalue, { T_prjlvalue, // f (object) T_pjlvalue, // result T_pint8, // cache T_pjlvalue, // fill FunctionType::get(T_pint8, { T_pint8, T_ppjlvalue }, false)->getPointerTo(), // trampoline T_pjlvalue, // env T_pprjlvalue, // vals }, false); }, [](LLVMContext &C) { return AttributeList::get(C, AttributeSet(), Attributes(C, {Attribute::NonNull}), None); }, }; static const auto diff_gc_total_bytes_func = new JuliaFunction{ "jl_gc_diff_total_bytes", [](LLVMContext &C) { return FunctionType::get(T_int64, false); }, nullptr, }; static const auto sync_gc_total_bytes_func = new JuliaFunction{ "jl_gc_sync_total_bytes", [](LLVMContext &C) { return FunctionType::get(T_int64, {T_int64}, false); }, nullptr, }; static const auto jlarray_data_owner_func = new JuliaFunction{ "jl_array_data_owner", [](LLVMContext &C) { return FunctionType::get(T_prjlvalue, {T_prjlvalue}, false); }, [](LLVMContext &C) { return AttributeList::get(C, Attributes(C, {Attribute::ReadOnly, Attribute::NoUnwind}), Attributes(C, {Attribute::NonNull}), None); }, }; #define BOX_FUNC(ct,rt,at,attrs) \ static const auto box_##ct##_func = new JuliaFunction{ \ "jl_box_"#ct, \ [](LLVMContext &C) { return FunctionType::get(rt, \ {at}, false); }, \ attrs, \ } BOX_FUNC(int16, T_prjlvalue, T_int16, get_attrs_sext); BOX_FUNC(uint16, T_prjlvalue, T_int16, get_attrs_zext); BOX_FUNC(int32, T_prjlvalue, T_int32, get_attrs_sext); BOX_FUNC(uint32, T_prjlvalue, T_int32, get_attrs_zext); BOX_FUNC(int64, T_prjlvalue, T_int64, get_attrs_sext); BOX_FUNC(uint64, T_prjlvalue, T_int64, get_attrs_zext); BOX_FUNC(char, T_prjlvalue, T_char, get_attrs_zext); BOX_FUNC(float32, T_prjlvalue, T_float32, get_func_attrs); BOX_FUNC(float64, T_prjlvalue, T_float64, get_func_attrs); BOX_FUNC(ssavalue, T_prjlvalue, T_size, get_func_attrs); #undef BOX_FUNC // placeholder functions static const auto gcroot_flush_func = new JuliaFunction{ "julia.gcroot_flush", [](LLVMContext &C) { return FunctionType::get(T_void, false); }, nullptr, }; static const auto gc_preserve_begin_func = new JuliaFunction{ "llvm.julia.gc_preserve_begin", [](LLVMContext &C) { return FunctionType::get(Type::getTokenTy(C), true); }, nullptr, }; static const auto gc_preserve_end_func = new JuliaFunction { "llvm.julia.gc_preserve_end", [](LLVMContext &C) { return FunctionType::get(T_void, {Type::getTokenTy(C)}, false); }, nullptr, }; static const auto except_enter_func = new JuliaFunction{ "julia.except_enter", [](LLVMContext &C) { return FunctionType::get(T_int32, false); }, [](LLVMContext &C) { return AttributeList::get(C, AttributeSet::get(C, makeArrayRef({Attribute::get(C, Attribute::ReturnsTwice)})), AttributeSet(), None); }, }; static const auto pointer_from_objref_func = new JuliaFunction{ "julia.pointer_from_objref", [](LLVMContext &C) { return FunctionType::get(T_pjlvalue, {PointerType::get(T_jlvalue, AddressSpace::Derived)}, false); }, [](LLVMContext &C) { return AttributeList::get(C, AttributeSet::get(C, makeArrayRef({Attribute::get(C, Attribute::ReadNone), Attribute::get(C, Attribute::NoUnwind)})), Attributes(C, {Attribute::NonNull}), None); }, }; static const auto jltuple_func = new JuliaFunction{"jl_f_tuple", get_func_sig, get_func_attrs}; static const auto jlgetfield_func = new JuliaFunction{"jl_f_getfield", get_func_sig, get_func_attrs}; static const std::map builtin_func_map = { { &jl_f_is, new JuliaFunction{"jl_f_is", get_func_sig, get_func_attrs} }, { &jl_f_typeof, new JuliaFunction{"jl_f_typeof", get_func_sig, get_func_attrs} }, { &jl_f_sizeof, new JuliaFunction{"jl_f_sizeof", get_func_sig, get_func_attrs} }, { &jl_f_issubtype, new JuliaFunction{"jl_f_issubtype", get_func_sig, get_func_attrs} }, { &jl_f_isa, new JuliaFunction{"jl_f_isa", get_func_sig, get_func_attrs} }, { &jl_f_typeassert, new JuliaFunction{"jl_f_typeassert", get_func_sig, get_func_attrs} }, { &jl_f_ifelse, new JuliaFunction{"jl_f_ifelse", get_func_sig, get_func_attrs} }, { &jl_f__apply_iterate, new JuliaFunction{"jl_f__apply_iterate", get_func_sig, get_func_attrs} }, { &jl_f__apply_pure, new JuliaFunction{"jl_f__apply_pure", get_func_sig, get_func_attrs} }, { &jl_f__call_latest, new JuliaFunction{"jl_f__call_latest", get_func_sig, get_func_attrs} }, { &jl_f__call_in_world, new JuliaFunction{"jl_f__call_in_world", get_func_sig, get_func_attrs} }, { &jl_f_throw, new JuliaFunction{"jl_f_throw", get_func_sig, get_func_attrs} }, { &jl_f_tuple, jltuple_func }, { &jl_f_svec, new JuliaFunction{"jl_f_svec", get_func_sig, get_func_attrs} }, { &jl_f_applicable, new JuliaFunction{"jl_f_applicable", get_func_sig, get_func_attrs} }, { &jl_f_invoke, new JuliaFunction{"jl_f_invoke", get_func_sig, get_func_attrs} }, { &jl_f_invoke_kwsorter, new JuliaFunction{"jl_f_invoke_kwsorter", get_func_sig, get_func_attrs} }, { &jl_f_isdefined, new JuliaFunction{"jl_f_isdefined", get_func_sig, get_func_attrs} }, { &jl_f_getfield, jlgetfield_func }, { &jl_f_setfield, new JuliaFunction{"jl_f_setfield", get_func_sig, get_func_attrs} }, { &jl_f_fieldtype, new JuliaFunction{"jl_f_fieldtype", get_func_sig, get_func_attrs} }, { &jl_f_nfields, new JuliaFunction{"jl_f_nfields", get_func_sig, get_func_attrs} }, { &jl_f__expr, new JuliaFunction{"jl_f__expr", get_func_sig, get_func_attrs} }, { &jl_f__typevar, new JuliaFunction{"jl_f__typevar", get_func_sig, get_func_attrs} }, { &jl_f_arrayref, new JuliaFunction{"jl_f_arrayref", get_func_sig, get_func_attrs} }, { &jl_f_const_arrayref, new JuliaFunction{"jl_f_const_arrayref", get_func_sig, get_func_attrs} }, { &jl_f_arrayset, new JuliaFunction{"jl_f_arrayset", get_func_sig, get_func_attrs} }, { &jl_f_arraysize, new JuliaFunction{"jl_f_arraysize", get_func_sig, get_func_attrs} }, { &jl_f_apply_type, new JuliaFunction{"jl_f_apply_type", get_func_sig, get_func_attrs} }, }; static const auto jl_new_opaque_closure_jlcall_func = new JuliaFunction{"jl_new_opaque_closure_jlcall", get_func_sig, get_func_attrs}; static int globalUnique = 0; // --- code generation --- extern "C" { int jl_default_debug_info_kind = (int) DICompileUnit::DebugEmissionKind::FullDebug; jl_cgparams_t jl_default_cgparams = {1, 1, 0, #ifdef _OS_WINDOWS_ 0, #else 1, #endif jl_default_debug_info_kind, jl_rettype_inferred, NULL }; } template static void add_return_attr(T *f, Attribute::AttrKind Kind) { f->addAttribute(AttributeList::ReturnIndex, Kind); } static MDNode *best_tbaa(jl_value_t *jt) { jt = jl_unwrap_unionall(jt); if (jt == (jl_value_t*)jl_datatype_type || (jl_is_type_type(jt) && jl_is_datatype(jl_tparam0(jt)))) return tbaa_datatype; if (!jl_is_datatype(jt)) return tbaa_value; if (jl_is_abstracttype(jt)) return tbaa_value; // If we're here, we know all subtypes are (im)mutable, even if we // don't know what the exact type is return jl_is_mutable(jt) ? tbaa_mutab : tbaa_immut; } // tracks whether codegen is currently able to simply stack-allocate this type // note that this includes jl_isbits, although codegen should work regardless static bool jl_is_concrete_immutable(jl_value_t* t) { return jl_is_immutable_datatype(t) && ((jl_datatype_t*)t)->layout; } static bool jl_is_pointerfree(jl_value_t* t) { if (!jl_is_immutable_datatype(t)) return 0; const jl_datatype_layout_t *layout = ((jl_datatype_t*)t)->layout; return layout && layout->npointers == 0; } // these queries are usually related, but we split them out here // for convenience and clarity (and because it changes the calling convention) static bool deserves_stack(jl_value_t* t, bool pointerfree=false) { if (!jl_is_concrete_immutable(t)) return false; return ((jl_datatype_t*)t)->isinlinealloc; } static bool deserves_argbox(jl_value_t* t) { return !deserves_stack(t); } static bool deserves_retbox(jl_value_t* t) { return deserves_argbox(t); } static bool deserves_sret(jl_value_t *dt, Type *T) { assert(jl_is_datatype(dt)); return (size_t)jl_datatype_size(dt) > sizeof(void*) && !T->isFloatingPointTy() && !T->isVectorTy(); } // metadata tracking for a llvm Value* during codegen struct jl_cgval_t { Value *V; // may be of type T* or T, or set to NULL if ghost (or if the value has not been initialized yet, for a variable definition) // For unions, we may need to keep a reference to the boxed part individually. // If this is non-NULL, then, at runtime, we satisfy the invariant that (for the corresponding // runtime values) if `(TIndex | 0x80) != 0`, then `Vboxed == V` (by value). // For convenience, we also set this value of isboxed values, in which case // it is equal (at compile time) to V. // If this is non-NULL, it is always of type `T_prjlvalue` Value *Vboxed; Value *TIndex; // if `V` is an unboxed (tagged) Union described by `typ`, this gives the DataType index (1-based, small int) as an i8 jl_value_t *constant; // constant value (rooted in linfo.def.roots) jl_value_t *typ; // the original type of V, never NULL bool isboxed; // whether this value is a jl_value_t* allocated on the heap with the right type tag bool isghost; // whether this value is "ghost" MDNode *tbaa; // The related tbaa node. Non-NULL iff this holds an address. bool ispointer() const { // whether this value is compatible with `data_pointer` return tbaa != nullptr; } jl_cgval_t(Value *V, Value *gcroot, bool isboxed, jl_value_t *typ, Value *tindex) : // general constructor (with pointer type auto-detect) V(V), // V is allowed to be NULL in a jl_varinfo_t context, but not during codegen contexts Vboxed(isboxed ? V : nullptr), TIndex(tindex), constant(NULL), typ(typ), isboxed(isboxed), isghost(false), tbaa(isboxed ? best_tbaa(typ) : nullptr) { if (Vboxed) assert(Vboxed->getType() == T_prjlvalue); assert(gcroot == nullptr); assert(!(isboxed && TIndex != NULL)); assert(TIndex == NULL || TIndex->getType() == T_int8); } explicit jl_cgval_t(jl_value_t *typ) : // ghost value constructor // mark explicit to avoid being used implicitly for conversion from NULL (use jl_cgval_t() instead) V(NULL), Vboxed(NULL), TIndex(NULL), constant(((jl_datatype_t*)typ)->instance), typ(typ), isboxed(false), isghost(true), tbaa(nullptr) { assert(jl_is_datatype(typ)); assert(constant); } jl_cgval_t(const jl_cgval_t &v, jl_value_t *typ, Value *tindex) : // copy constructor with new type V(v.V), Vboxed(v.Vboxed), TIndex(tindex), constant(v.constant), typ(typ), isboxed(v.isboxed), isghost(v.isghost), tbaa(v.tbaa) { if (Vboxed) assert(Vboxed->getType() == T_prjlvalue); // this constructor expects we had a badly or equivalently typed version // make sure we aren't discarding the actual type information if (v.TIndex) { assert((TIndex == NULL) == jl_is_concrete_type(typ)); } else { assert(isboxed || v.typ == typ || tindex); } } jl_cgval_t() : // undef / unreachable / default constructor V(UndefValue::get(T_void)), Vboxed(NULL), TIndex(NULL), constant(NULL), typ(jl_bottom_type), isboxed(false), isghost(true), tbaa(nullptr) { } }; // per-local-variable information struct jl_varinfo_t { Instruction *boxroot; // an address, if the var might be in a jl_value_t** stack slot (marked tbaa_const, if appropriate) jl_cgval_t value; // a stack slot or constant value Value *pTIndex; // i8* stack slot for the value.TIndex tag describing `value.V` DILocalVariable *dinfo; // if the variable might be used undefined and is not boxed // this i1 flag is true when it is defined Value *defFlag; bool isSA; // whether all stores dominate all uses bool isVolatile; bool isArgument; bool usedUndef; bool used; jl_varinfo_t() : boxroot(NULL), value(jl_cgval_t()), pTIndex(NULL), dinfo(NULL), defFlag(NULL), isSA(false), isVolatile(false), isArgument(false), usedUndef(false), used(false) { } }; // information about the context of a piece of code: its enclosing // function and module, and visible local variables and labels. class jl_codectx_t { public: IRBuilder<> builder; jl_codegen_params_t &emission_context; jl_codegen_call_targets_t &call_targets; std::map &global_targets; Function *f = NULL; // local var info. globals are not in here. std::vector slots; std::map phic_slots; std::vector SAvalues; std::vector> PhiNodes; std::vector ssavalue_assigned; std::vector> oc_modules; jl_module_t *module = NULL; jl_method_instance_t *linfo = NULL; jl_value_t *rettype = NULL; jl_code_info_t *source = NULL; jl_array_t *code = NULL; size_t world = 0; jl_array_t *roots = NULL; const char *name = NULL; StringRef file{}; ssize_t *line = NULL; Value *spvals_ptr = NULL; Value *argArray = NULL; Value *argCount = NULL; MDNode *aliasscope = NULL; std::string funcName; int vaSlot = -1; // name of vararg argument int nReqArgs = 0; int nargs = 0; int nvargs = -1; bool is_opaque_closure = false; CallInst *ptlsStates = NULL; Value *signalPage = NULL; Value *world_age_field = NULL; bool debug_enabled = false; bool use_cache = false; const jl_cgparams_t *params = NULL; std::vector> llvmcall_modules; jl_codectx_t(LLVMContext &llvmctx, jl_codegen_params_t ¶ms) : builder(llvmctx), emission_context(params), call_targets(params.workqueue), global_targets(params.globals), world(params.world), use_cache(params.cache), params(params.params) { } ~jl_codectx_t() { assert(this->roots == NULL); } }; GlobalVariable *JuliaVariable::realize(jl_codectx_t &ctx) { return realize(jl_Module); } static Type *julia_type_to_llvm(jl_codectx_t &ctx, jl_value_t *jt, bool *isboxed = NULL); static jl_returninfo_t get_specsig_function(jl_codectx_t &ctx, Module *M, StringRef name, jl_value_t *sig, jl_value_t *jlrettype); static jl_cgval_t emit_expr(jl_codectx_t &ctx, jl_value_t *expr, ssize_t ssaval = -1); static Value *global_binding_pointer(jl_codectx_t &ctx, jl_module_t *m, jl_sym_t *s, jl_binding_t **pbnd, bool assign); static jl_cgval_t emit_checked_var(jl_codectx_t &ctx, Value *bp, jl_sym_t *name, bool isvol, MDNode *tbaa); static jl_cgval_t emit_sparam(jl_codectx_t &ctx, size_t i); static Value *emit_condition(jl_codectx_t &ctx, const jl_cgval_t &condV, const std::string &msg); static void allocate_gc_frame(jl_codectx_t &ctx, BasicBlock *b0); static void CreateTrap(IRBuilder<> &irbuilder); static CallInst *emit_jlcall(jl_codectx_t &ctx, Function *theFptr, Value *theF, jl_cgval_t *args, size_t nargs, CallingConv::ID cc); static CallInst *emit_jlcall(jl_codectx_t &ctx, JuliaFunction *theFptr, Value *theF, jl_cgval_t *args, size_t nargs, CallingConv::ID cc); static Value *literal_pointer_val(jl_codectx_t &ctx, jl_value_t *p); static GlobalVariable *prepare_global_in(Module *M, GlobalVariable *G); static Instruction *tbaa_decorate(MDNode *md, Instruction *inst); static GlobalVariable *prepare_global_in(Module *M, JuliaVariable *G) { return G->realize(M); } static Function *prepare_call_in(Module *M, JuliaFunction *G) { return G->realize(M); } static inline GlobalVariable *prepare_global_in(Module *M, GlobalVariable *G) { if (G->getParent() == M) return G; GlobalValue *local = M->getNamedValue(G->getName()); if (!local) { // Copy the GlobalVariable, but without the initializer, so it becomes a declaration GlobalVariable *proto = new GlobalVariable(*M, G->getType()->getElementType(), G->isConstant(), GlobalVariable::ExternalLinkage, nullptr, G->getName(), nullptr, G->getThreadLocalMode()); proto->copyAttributesFrom(G); // DLLImport only needs to be set for the shadow module // it just gets annoying in the JIT proto->setDLLStorageClass(GlobalValue::DefaultStorageClass); return proto; } return cast(local); } // --- convenience functions for tagging llvm values with julia types --- static GlobalVariable *get_pointer_to_constant(jl_codegen_params_t &emission_context, Constant *val, StringRef name, Module &M) { GlobalVariable *&gv = emission_context.mergedConstants[val]; StringRef localname; std::string ssno; if (gv == nullptr) { raw_string_ostream(ssno) << name << emission_context.mergedConstants.size(); localname = StringRef(ssno); } else { localname = gv->getName(); if (gv->getParent() != &M) gv = cast_or_null(M.getNamedValue(localname)); } if (gv == nullptr) { gv = new GlobalVariable( M, val->getType(), true, GlobalVariable::PrivateLinkage, val, localname); gv->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); } assert(localname == gv->getName()); assert(val == gv->getInitializer()); return gv; } static AllocaInst *emit_static_alloca(jl_codectx_t &ctx, Type *lty) { return new AllocaInst(lty, 0, "", /*InsertBefore=*/ctx.ptlsStates); } static void undef_derived_strct(IRBuilder<> &irbuilder, Value *ptr, jl_datatype_t *sty, MDNode *tbaa) { assert(ptr->getType()->getPointerAddressSpace() != AddressSpace::Tracked); size_t i, np = sty->layout->npointers; if (np == 0) return; ptr = irbuilder.CreateBitCast(ptr, T_prjlvalue->getPointerTo(ptr->getType()->getPointerAddressSpace())); for (i = 0; i < np; i++) { Value *fld = irbuilder.CreateConstInBoundsGEP1_32(T_prjlvalue, ptr, jl_ptr_offset(sty, i)); tbaa_decorate(tbaa, irbuilder.CreateStore(V_rnull, fld)); } } static Value *emit_inttoptr(jl_codectx_t &ctx, Value *v, Type *ty) { // Almost all of our inttoptr are generated due to representing `Ptr` with `T_size` // in LLVM and most of these integers are generated from `ptrtoint` in the first place. if (auto I = dyn_cast(v)) { auto ptr = I->getOperand(0); if (ty->getPointerAddressSpace() == ptr->getType()->getPointerAddressSpace()) return ctx.builder.CreateBitCast(ptr, ty); else if (ty->getPointerElementType() == ptr->getType()->getPointerElementType()) return ctx.builder.CreateAddrSpaceCast(ptr, ty); } return ctx.builder.CreateIntToPtr(v, ty); } static inline jl_cgval_t ghostValue(jl_value_t *typ) { if (typ == jl_bottom_type) return jl_cgval_t(); // Undef{} if (typ == (jl_value_t*)jl_typeofbottom_type) { // normalize TypeofBottom to Type{Union{}} typ = (jl_value_t*)jl_typeofbottom_type->super; } if (jl_is_type_type(typ)) { // replace T::Type{T} with T, by assuming that T must be a leaftype of some sort jl_cgval_t constant(NULL, NULL, true, typ, NULL); constant.constant = jl_tparam0(typ); return constant; } return jl_cgval_t(typ); } static inline jl_cgval_t ghostValue(jl_datatype_t *typ) { return ghostValue((jl_value_t*)typ); } static inline jl_cgval_t mark_julia_const(jl_value_t *jv) { jl_value_t *typ; if (jl_is_type(jv)) { typ = (jl_value_t*)jl_wrap_Type(jv); // TODO: gc-root this? } else { typ = jl_typeof(jv); if (jl_is_datatype_singleton((jl_datatype_t*)typ)) return ghostValue(typ); } jl_cgval_t constant(NULL, NULL, true, typ, NULL); constant.constant = jv; return constant; } static inline jl_cgval_t mark_julia_slot(Value *v, jl_value_t *typ, Value *tindex, MDNode *tbaa) { // this enables lazy-copying of immutable values and stack or argument slots assert(tbaa); jl_cgval_t tagval(v, NULL, false, typ, tindex); tagval.tbaa = tbaa; return tagval; } static bool valid_as_globalinit(const Value *v) { if (isa(v)) { // llvm can't handle all the things that could be inside a ConstantExpr // (such as addrspacecast), and we don't really mind losing this optimization return false; } if (const auto *CC = dyn_cast(v)) { for (const Value *elem : CC->operand_values()) if (!valid_as_globalinit(elem)) return false; } return isa(v); } static inline jl_cgval_t value_to_pointer(jl_codectx_t &ctx, Value *v, jl_value_t *typ, Value *tindex) { Value *loc; if (valid_as_globalinit(v)) { // llvm can't handle all the things that could be inside a ConstantExpr loc = get_pointer_to_constant(ctx.emission_context, cast(v), "_j_const", *jl_Module); } else { loc = emit_static_alloca(ctx, v->getType()); ctx.builder.CreateStore(v, loc); } return mark_julia_slot(loc, typ, tindex, tbaa_stack); } static inline jl_cgval_t value_to_pointer(jl_codectx_t &ctx, const jl_cgval_t &v) { if (v.ispointer()) return v; return value_to_pointer(ctx, v.V, v.typ, v.TIndex); } static inline jl_cgval_t mark_julia_type(jl_codectx_t &ctx, Value *v, bool isboxed, jl_value_t *typ) { if (jl_is_datatype(typ) && jl_is_datatype_singleton((jl_datatype_t*)typ)) { // no need to explicitly load/store a constant/ghost value return ghostValue(typ); } if (jl_is_type_type(typ)) { jl_value_t *tp0 = jl_tparam0(typ); if (jl_is_concrete_type(tp0) || tp0 == jl_bottom_type) { // replace T::Type{T} with T return ghostValue(typ); } } Type *T = julia_type_to_llvm(ctx, typ); if (type_is_ghost(T)) { return ghostValue(typ); } if (v && !isboxed && v->getType()->isAggregateType() && !jl_is_vecelement_type(typ) && CountTrackedPointers(v->getType()).count == 0) { // eagerly put this back onto the stack // llvm mem2reg pass will remove this if unneeded return value_to_pointer(ctx, v, typ, NULL); } return jl_cgval_t(v, NULL, isboxed, typ, NULL); } static inline jl_cgval_t mark_julia_type(jl_codectx_t &ctx, Value *v, bool isboxed, jl_datatype_t *typ) { return mark_julia_type(ctx, v, isboxed, (jl_value_t*)typ); } // see if it might be profitable (and cheap) to change the type of v to typ static inline jl_cgval_t update_julia_type(jl_codectx_t &ctx, const jl_cgval_t &v, jl_value_t *typ) { if (v.typ == typ || v.typ == jl_bottom_type || v.constant || typ == (jl_value_t*)jl_any_type || jl_egal(v.typ, typ)) return v; // fast-path if (jl_is_concrete_type(v.typ) && !jl_is_kind(v.typ)) { if (jl_is_concrete_type(typ) && !jl_is_kind(typ)) { // type mismatch: changing from one leaftype to another CreateTrap(ctx.builder); return jl_cgval_t(); } return v; // doesn't improve type info } if (v.TIndex) { jl_value_t *utyp = jl_unwrap_unionall(typ); if (jl_is_datatype(utyp)) { bool alwaysboxed; if (jl_is_concrete_type(utyp)) alwaysboxed = !jl_is_pointerfree(utyp); else alwaysboxed = !((jl_datatype_t*)utyp)->abstract && ((jl_datatype_t*)utyp)->mutabl; if (alwaysboxed) { // discovered that this union-split type must actually be isboxed if (v.Vboxed) { return jl_cgval_t(v.Vboxed, nullptr, true, typ, NULL); } else { // type mismatch (there weren't any boxed values in the union) CreateTrap(ctx.builder); return jl_cgval_t(); } } } if (!jl_is_concrete_type(typ)) return v; // not generally worth trying to change type info (which would require recomputing tindex) } Type *T = julia_type_to_llvm(ctx, typ); if (type_is_ghost(T)) return ghostValue(typ); return jl_cgval_t(v, typ, NULL); } static jl_cgval_t convert_julia_type(jl_codectx_t &ctx, const jl_cgval_t &v, jl_value_t *typ, Value **skip=nullptr); // --- allocating local variables --- static jl_sym_t *slot_symbol(jl_codectx_t &ctx, int s) { return (jl_sym_t*)jl_array_ptr_ref(ctx.source->slotnames, s); } static void store_def_flag(jl_codectx_t &ctx, const jl_varinfo_t &vi, bool val) { assert((!vi.boxroot || vi.pTIndex) && "undef check is null pointer for boxed things"); assert(vi.usedUndef && vi.defFlag && "undef flag codegen corrupted"); ctx.builder.CreateStore(ConstantInt::get(T_int1, val), vi.defFlag, vi.isVolatile); } static void alloc_def_flag(jl_codectx_t &ctx, jl_varinfo_t& vi) { assert((!vi.boxroot || vi.pTIndex) && "undef check is null pointer for boxed things"); if (vi.usedUndef) { vi.defFlag = emit_static_alloca(ctx, T_int1); store_def_flag(ctx, vi, false); } } // --- utilities --- static void CreateTrap(IRBuilder<> &irbuilder) { Function *f = irbuilder.GetInsertBlock()->getParent(); Function *trap_func = Intrinsic::getDeclaration( f->getParent(), Intrinsic::trap); irbuilder.CreateCall(trap_func); irbuilder.CreateUnreachable(); BasicBlock *newBB = BasicBlock::Create(irbuilder.getContext(), "after_noret", f); irbuilder.SetInsertPoint(newBB); } #if 0 // this code is likely useful, but currently unused #ifndef JL_NDEBUG static void CreateConditionalAbort(IRBuilder<> &irbuilder, Value *test) { Function *f = irbuilder.GetInsertBlock()->getParent(); BasicBlock *abortBB = BasicBlock::Create(jl_LLVMContext, "debug_abort", f); BasicBlock *postBB = BasicBlock::Create(jl_LLVMContext, "post_abort", f); irbuilder.CreateCondBr(test, abortBB, postBB); irbuilder.SetInsertPoint(abortBB); Function *trap_func = Intrinsic::getDeclaration( f->getParent(), Intrinsic::trap); irbuilder.CreateCall(trap_func); irbuilder.CreateUnreachable(); irbuilder.SetInsertPoint(postBB); } #endif #endif #include "cgutils.cpp" static jl_cgval_t convert_julia_type_union(jl_codectx_t &ctx, const jl_cgval_t &v, jl_value_t *typ, Value **skip) { // previous value was a split union, compute new index, or box Value *new_tindex = ConstantInt::get(T_int8, 0x80); SmallBitVector skip_box(1, true); Value *tindex = ctx.builder.CreateAnd(v.TIndex, ConstantInt::get(T_int8, 0x7f)); if (jl_is_uniontype(typ)) { // compute the TIndex mapping from v.typ -> typ unsigned counter = 0; for_each_uniontype_small( // for each old union-split value [&](unsigned idx, jl_datatype_t *jt) { unsigned new_idx = get_box_tindex(jt, typ); bool t; if (new_idx) { // found a matching element, // match it against either the unboxed index Value *cmp = ctx.builder.CreateICmpEQ(tindex, ConstantInt::get(T_int8, idx)); new_tindex = ctx.builder.CreateSelect(cmp, ConstantInt::get(T_int8, new_idx), new_tindex); t = true; } else if (!jl_subtype((jl_value_t*)jt, typ)) { // new value doesn't need to be boxed // since it isn't part of the new union t = true; if (skip) { Value *skip1 = ctx.builder.CreateICmpEQ(tindex, ConstantInt::get(T_int8, idx)); *skip = *skip ? ctx.builder.CreateOr(*skip, skip1) : skip1; } } else { // will actually need to box this element // since it appeared as a leaftype in the original type // but not in the remark type t = false; } skip_box.resize(idx + 1, t); }, v.typ, counter); } // some of the values are still unboxed if (!isa(new_tindex)) { Value *wasboxed = NULL; // If the old value was boxed and unknown (type tag 0x80), // it is possible that the tag was actually one of the types // that are now explicitly represented. To find out, we need // to compare typeof(v.Vboxed) (i.e. the type of the unknown // value) against all the types that are now explicitly // selected and select the appropriate one as our new tindex. if (v.Vboxed) { wasboxed = ctx.builder.CreateAnd(v.TIndex, ConstantInt::get(T_int8, 0x80)); new_tindex = ctx.builder.CreateOr(wasboxed, new_tindex); wasboxed = ctx.builder.CreateICmpNE(wasboxed, ConstantInt::get(T_int8, 0)); BasicBlock *currBB = ctx.builder.GetInsertBlock(); // We lazily create a BB for this, once we decide that we // actually need it. Value *union_box_dt = NULL; BasicBlock *union_isaBB = NULL; auto maybe_setup_union_isa = [&]() { if (!union_isaBB) { union_isaBB = BasicBlock::Create(jl_LLVMContext, "union_isa", ctx.f); ctx.builder.SetInsertPoint(union_isaBB); union_box_dt = emit_typeof(ctx, v.Vboxed); } }; // If we don't find a match. The type remains unknown // (0x80). We could use `v.Tindex`, here, since we know // it has to be 0x80, but it seems likely the backend // will like the explicit constant better. Value *union_box_tindex = ConstantInt::get(T_int8, 0x80); unsigned counter = 0; for_each_uniontype_small( // for each new union-split value [&](unsigned idx, jl_datatype_t *jt) { unsigned old_idx = get_box_tindex(jt, v.typ); if (old_idx == 0) { // didn't handle this item before, select its new union index maybe_setup_union_isa(); Value *cmp = ctx.builder.CreateICmpEQ(track_pjlvalue(ctx, literal_pointer_val(ctx, (jl_value_t*)jt)), union_box_dt); union_box_tindex = ctx.builder.CreateSelect(cmp, ConstantInt::get(T_int8, 0x80 | idx), union_box_tindex); } }, typ, counter); if (union_box_dt) { BasicBlock *postBB = BasicBlock::Create(jl_LLVMContext, "post_union_isa", ctx.f); ctx.builder.CreateBr(postBB); ctx.builder.SetInsertPoint(currBB); Value *wasunknown = ctx.builder.CreateICmpEQ(v.TIndex, ConstantInt::get(T_int8, 0x80)); ctx.builder.CreateCondBr(wasunknown, union_isaBB, postBB); ctx.builder.SetInsertPoint(postBB); PHINode *tindex_phi = ctx.builder.CreatePHI(T_int8, 2); tindex_phi->addIncoming(new_tindex, currBB); tindex_phi->addIncoming(union_box_tindex, union_isaBB); new_tindex = tindex_phi; } } if (!skip_box.all()) { // some values weren't unboxed in the new union // box them now (tindex above already selected 0x80 = box for them) Value *boxv = box_union(ctx, v, skip_box); if (v.Vboxed) { // If the value is boxed both before and after, we don't need // to touch it at all. Otherwise we're either transitioning // unboxed->boxed, or leaving an unboxed value in place. Value *isboxed = ctx.builder.CreateICmpNE( ctx.builder.CreateAnd(new_tindex, ConstantInt::get(T_int8, 0x80)), ConstantInt::get(T_int8, 0)); boxv = ctx.builder.CreateSelect( ctx.builder.CreateAnd(wasboxed, isboxed), v.Vboxed, boxv); } if (v.V == NULL) { // v.V might be NULL if it was all ghost objects before return jl_cgval_t(boxv, NULL, false, typ, new_tindex); } else { Value *isboxv = ctx.builder.CreateIsNotNull(boxv); Value *slotv; MDNode *tbaa; if (v.ispointer()) { slotv = v.V; tbaa = v.tbaa; } else { slotv = emit_static_alloca(ctx, v.V->getType()); ctx.builder.CreateStore(v.V, slotv); tbaa = tbaa_stack; } slotv = ctx.builder.CreateSelect(isboxv, decay_derived(ctx, boxv), decay_derived(ctx, emit_bitcast(ctx, slotv, boxv->getType()))); jl_cgval_t newv = jl_cgval_t(slotv, NULL, false, typ, new_tindex); assert(boxv->getType() == T_prjlvalue); newv.Vboxed = boxv; newv.tbaa = tbaa; return newv; } } } else { return jl_cgval_t(boxed(ctx, v), NULL, true, typ, NULL); } return jl_cgval_t(v, typ, new_tindex); } // given a value marked with type `v.typ`, compute the mapping and/or boxing to return a value of type `typ` // TODO: should this set TIndex when trivial (such as 0x80 or concrete types) ? static jl_cgval_t convert_julia_type(jl_codectx_t &ctx, const jl_cgval_t &v, jl_value_t *typ, Value **skip) { if (typ == (jl_value_t*)jl_typeofbottom_type) return ghostValue(typ); // normalize TypeofBottom to Type{Union{}} if (v.typ == typ || v.typ == jl_bottom_type || jl_egal(v.typ, typ)) return v; // fast-path Type *T = julia_type_to_llvm(ctx, typ); if (type_is_ghost(T)) return ghostValue(typ); Value *new_tindex = NULL; if (jl_is_concrete_type(typ)) { assert(skip == nullptr && "skip only valid for union type return"); if (v.TIndex && !jl_is_pointerfree(typ)) { // discovered that this union-split type must actually be isboxed if (v.Vboxed) { return jl_cgval_t(v.Vboxed, nullptr, true, typ, NULL); } else { // type mismatch: there weren't any boxed values in the union CreateTrap(ctx.builder); return jl_cgval_t(); } } if (jl_is_concrete_type(v.typ) && !jl_is_kind(v.typ)) { if (jl_is_concrete_type(typ) && !jl_is_kind(typ)) { // type mismatch: changing from one leaftype to another CreateTrap(ctx.builder); return jl_cgval_t(); } } } else { bool makeboxed = false; if (v.TIndex) { return convert_julia_type_union(ctx, v, typ, skip); } else if (!v.isboxed && jl_is_uniontype(typ)) { // previous value was unboxed (leaftype), statically compute union tindex assert(jl_is_concrete_type(v.typ)); unsigned new_idx = get_box_tindex((jl_datatype_t*)v.typ, typ); if (new_idx) { new_tindex = ConstantInt::get(T_int8, new_idx); if (v.V && !v.ispointer()) { // TODO: remove this branch once all consumers of v.TIndex understand how to handle a non-ispointer value Value *slotv = emit_static_alloca(ctx, v.V->getType()); ctx.builder.CreateStore(v.V, slotv); jl_cgval_t newv = jl_cgval_t(slotv, NULL, false, typ, new_tindex); newv.tbaa = tbaa_stack; return newv; } } else if (jl_subtype(v.typ, typ)) { makeboxed = true; } else if (skip) { // undef *skip = ConstantInt::get(T_int1, 1); return jl_cgval_t(); } else { // unreachable CreateTrap(ctx.builder); return jl_cgval_t(); } } else if (!v.isboxed) { makeboxed = true; } if (makeboxed) { // convert to a simple isboxed value return jl_cgval_t(boxed(ctx, v), NULL, true, typ, NULL); } } return jl_cgval_t(v, typ, new_tindex); } static void jl_setup_module(Module *m, const jl_cgparams_t *params = &jl_default_cgparams) { // Some linkers (*cough* OS X) don't understand DWARF v4, so we use v2 in // imaging mode. The structure of v4 is slightly nicer for debugging JIT // code. if (!m->getModuleFlag("Dwarf Version")) { int dwarf_version = 4; #ifdef _OS_DARWIN_ if (imaging_mode) dwarf_version = 2; #endif m->addModuleFlag(llvm::Module::Warning, "Dwarf Version", dwarf_version); } if (!m->getModuleFlag("Debug Info Version")) m->addModuleFlag(llvm::Module::Error, "Debug Info Version", llvm::DEBUG_METADATA_VERSION); m->setDataLayout(jl_data_layout); m->setTargetTriple(jl_TargetMachine->getTargetTriple().str()); } Module *jl_create_llvm_module(StringRef name) { Module *M = new Module(name, jl_LLVMContext); jl_setup_module(M); return M; } static void jl_init_function(Function *F) { // set any attributes that *must* be set on all functions #if defined(_OS_WINDOWS_) && !defined(_CPU_X86_64_) // tell Win32 to realign the stack to the next 16-byte boundary // upon entry to any function. This achieves compatibility // with both MinGW-GCC (which assumes an 16-byte-aligned stack) and // i686 Windows (which uses a 4-byte-aligned stack) AttrBuilder attr; attr.addStackAlignmentAttr(16); F->addAttributes(AttributeList::FunctionIndex, attr); #endif #if defined(_OS_WINDOWS_) && defined(_CPU_X86_64_) F->setHasUWTable(); // force NeedsWinEH #endif #ifdef JL_DISABLE_FPO #if LLVM_VERSION_MAJOR >= 8 F->addFnAttr("frame-pointer", "all"); #else F->addFnAttr("no-frame-pointer-elim", "true"); #endif #endif } static std::pair uses_specsig(jl_method_instance_t *lam, jl_value_t *rettype, bool prefer_specsig) { size_t nreq = jl_is_method(lam->def.method) ? lam->def.method->nargs : 0; int va = 0; if (nreq > 0 && lam->def.method->isva) { nreq--; va = 1; } jl_value_t *sig = lam->specTypes; bool needsparams = false; if (jl_is_method(lam->def.method)) { if ((size_t)jl_subtype_env_size(lam->def.method->sig) != jl_svec_len(lam->sparam_vals)) needsparams = true; for (size_t i = 0; i < jl_svec_len(lam->sparam_vals); ++i) { if (jl_is_typevar(jl_svecref(lam->sparam_vals, i))) needsparams = true; } } if (needsparams) return std::make_pair(false, true); if (sig == (jl_value_t*)jl_anytuple_type) return std::make_pair(false, false); if (!jl_is_datatype(sig)) return std::make_pair(false, false); if (jl_nparams(sig) == 0) return std::make_pair(false, false); if (va) { if (jl_is_vararg(jl_tparam(sig, jl_nparams(sig) - 1))) return std::make_pair(false, false); } // not invalid, consider if specialized signature is worthwhile if (prefer_specsig) return std::make_pair(true, false); if (!deserves_retbox(rettype) && !jl_is_datatype_singleton((jl_datatype_t*)rettype)) return std::make_pair(true, false); if (jl_is_uniontype(rettype)) { bool allunbox; size_t nbytes, align, min_align; union_alloca_type((jl_uniontype_t*)rettype, allunbox, nbytes, align, min_align); if (nbytes > 0) return std::make_pair(true, false); // some elements of the union could be returned unboxed avoiding allocation } bool allSingleton = true; for (size_t i = 0; i < jl_nparams(sig); i++) { jl_value_t *sigt = jl_tparam(sig, i); bool issing = jl_is_datatype(sigt) && jl_is_datatype_singleton((jl_datatype_t*)sigt); allSingleton &= issing; if (!deserves_argbox(sigt) && !issing) { return std::make_pair(true, false); } } if (allSingleton) return std::make_pair(true, false); return std::make_pair(false, false); // jlcall sig won't require any box allocations } // Logging for code coverage and memory allocation const int logdata_blocksize = 32; // target getting nearby lines in the same general cache area and reducing calls to malloc by chunking typedef uint64_t logdata_block[logdata_blocksize]; typedef StringMap< std::vector > logdata_t; static uint64_t *allocLine(std::vector &vec, int line) { unsigned block = line / logdata_blocksize; line = line % logdata_blocksize; if (vec.size() <= block) vec.resize(block + 1); if (vec[block] == NULL) { vec[block] = (logdata_block*)calloc(1, sizeof(logdata_block)); } logdata_block &data = *vec[block]; if (data[line] == 0) data[line] = 1; return &data[line]; } static void visitLine(jl_codectx_t &ctx, std::vector &vec, int line, Value *addend, const char* name) { uint64_t *ptr = allocLine(vec, line); Value *pv = ConstantExpr::getIntToPtr( ConstantInt::get(T_size, (uintptr_t)ptr), T_pint64); Value *v = ctx.builder.CreateLoad(pv, true, name); v = ctx.builder.CreateAdd(v, addend); ctx.builder.CreateStore(v, pv, true); // volatile, not atomic, so this might be an underestimate, // but it's faster this way } // Code coverage static logdata_t coverageData; static void coverageVisitLine(jl_codectx_t &ctx, StringRef filename, int line) { assert(!imaging_mode); if (filename == "" || filename == "none" || filename == "no file" || filename == "" || line < 0) return; visitLine(ctx, coverageData[filename], line, ConstantInt::get(T_int64, 1), "lcnt"); } static void coverageAllocLine(StringRef filename, int line) { assert(!imaging_mode); if (filename == "" || filename == "none" || filename == "no file" || filename == "" || line < 0) return; allocLine(coverageData[filename], line); } // Memory allocation log (malloc_log) static logdata_t mallocData; static void mallocVisitLine(jl_codectx_t &ctx, StringRef filename, int line, Value *sync) { assert(!imaging_mode); if (filename == "" || filename == "none" || filename == "no file" || filename == "" || line < 0) return; Value *addend = sync ? ctx.builder.CreateCall(prepare_call(sync_gc_total_bytes_func), {sync}) : ctx.builder.CreateCall(prepare_call(diff_gc_total_bytes_func), {}); visitLine(ctx, mallocData[filename], line, addend, "bytecnt"); } // Resets the malloc counts. extern "C" JL_DLLEXPORT void jl_clear_malloc_data(void) { logdata_t::iterator it = mallocData.begin(); for (; it != mallocData.end(); it++) { std::vector &bytes = (*it).second; std::vector::iterator itb; for (itb = bytes.begin(); itb != bytes.end(); itb++) { if (*itb) { logdata_block &data = **itb; for (int i = 0; i < logdata_blocksize; i++) { if (data[i] > 0) data[i] = 1; } } } } jl_gc_sync_total_bytes(0); } static void write_log_data(logdata_t &logData, const char *extension) { std::string base = std::string(jl_options.julia_bindir); base = base + "/../share/julia/base/"; logdata_t::iterator it = logData.begin(); for (; it != logData.end(); it++) { std::string filename(it->first()); std::vector &values = it->second; if (!values.empty()) { if (!isabspath(filename.c_str())) filename = base + filename; std::ifstream inf(filename.c_str()); if (!inf.is_open()) continue; std::string outfile = filename + extension; std::ofstream outf(outfile.c_str(), std::ofstream::trunc | std::ofstream::out | std::ofstream::binary); if (outf.is_open()) { inf.exceptions(std::ifstream::badbit); outf.exceptions(std::ifstream::failbit | std::ifstream::badbit); char line[1024]; int l = 1; unsigned block = 0; while (!inf.eof()) { inf.getline(line, sizeof(line)); if (inf.fail()) { if (inf.eof()) break; // no content on trailing line // Read through lines longer than sizeof(line) inf.clear(); inf.ignore(std::numeric_limits::max(), '\n'); } logdata_block *data = NULL; if (block < values.size()) { data = values[block]; } uint64_t value = data ? (*data)[l] : 0; if (++l >= logdata_blocksize) { l = 0; block++; } outf.width(9); if (value == 0) outf << '-'; else outf << (value - 1); outf.width(0); outf << " " << line << '\n'; } outf.close(); } inf.close(); } } } static void write_lcov_data(logdata_t &logData, const std::string &outfile) { std::ofstream outf(outfile.c_str(), std::ofstream::ate | std::ofstream::out | std::ofstream::binary); //std::string base = std::string(jl_options.julia_bindir); //base = base + "/../share/julia/base/"; logdata_t::iterator it = logData.begin(); for (; it != logData.end(); it++) { StringRef filename = it->first(); const std::vector &values = it->second; if (!values.empty()) { outf << "SF:" << filename.str() << '\n'; size_t n_covered = 0; size_t n_instrumented = 0; size_t lno = 0; for (auto &itv : values) { if (itv) { logdata_block &data = *itv; for (int i = 0; i < logdata_blocksize; i++) { auto cov = data[i]; if (cov > 0) { n_instrumented++; if (cov > 1) n_covered++; outf << "DA:" << lno << ',' << (cov - 1) << '\n'; } lno++; } } else { lno += logdata_blocksize; } } outf << "LH:" << n_covered << '\n'; outf << "LF:" << n_instrumented << '\n'; outf << "end_of_record\n"; } } outf.close(); } extern "C" void jl_write_coverage_data(const char *output) { if (output) { StringRef output_pattern(output); if (output_pattern.endswith(".info")) write_lcov_data(coverageData, jl_format_filename(output_pattern)); } else { std::string stm; raw_string_ostream(stm) << "." << jl_getpid() << ".cov"; write_log_data(coverageData, stm.c_str()); } } extern "C" void jl_write_malloc_log(void) { std::string stm; raw_string_ostream(stm) << "." << jl_getpid() << ".mem"; write_log_data(mallocData, stm.c_str()); } // --- constant determination --- static void show_source_loc(jl_codectx_t &ctx, JL_STREAM *out) { jl_printf(out, "in %s at %s", ctx.name, ctx.file.str().c_str()); } static void cg_bdw(jl_codectx_t &ctx, jl_binding_t *b) { jl_binding_deprecation_warning(ctx.module, b); if (b->deprecated == 1 && jl_options.depwarn) { show_source_loc(ctx, JL_STDERR); jl_printf(JL_STDERR, "\n"); } } static jl_value_t *static_apply_type(jl_codectx_t &ctx, const jl_cgval_t *args, size_t nargs) { jl_value_t **v = (jl_value_t**)alloca(sizeof(jl_value_t*) * nargs); for (size_t i = 0; i < nargs; i++) { if (!args[i].constant) return NULL; v[i] = args[i].constant; } assert(v[0] == jl_builtin_apply_type); size_t last_age = jl_get_ptls_states()->world_age; // call apply_type, but ignore errors. we know that will work in world 1. jl_get_ptls_states()->world_age = 1; jl_value_t *result; JL_TRY { result = jl_apply(v, nargs); } JL_CATCH { result = NULL; } jl_get_ptls_states()->world_age = last_age; return result; } // try to statically evaluate, NULL if not possible. note that this may allocate, and as // such the resulting value should not be embedded directly in the generated code. static jl_value_t *static_eval(jl_codectx_t &ctx, jl_value_t *ex) { if (jl_is_symbol(ex)) { jl_sym_t *sym = (jl_sym_t*)ex; if (jl_is_const(ctx.module, sym)) return jl_get_global(ctx.module, sym); return NULL; } if (jl_is_slot(ex) || jl_is_argument(ex)) return NULL; if (jl_is_ssavalue(ex)) { ssize_t idx = ((jl_ssavalue_t*)ex)->id - 1; assert(idx >= 0); if (ctx.ssavalue_assigned.at(idx)) { return ctx.SAvalues.at(idx).constant; } return NULL; } if (jl_is_quotenode(ex)) return jl_fieldref(ex, 0); if (jl_is_method_instance(ex)) return NULL; jl_module_t *m = NULL; jl_sym_t *s = NULL; if (jl_is_globalref(ex)) { s = jl_globalref_name(ex); jl_binding_t *b = jl_get_binding(jl_globalref_mod(ex), s); if (b && b->constp) { if (b->deprecated) cg_bdw(ctx, b); return b->value; } return NULL; } if (jl_is_expr(ex)) { jl_expr_t *e = (jl_expr_t*)ex; if (e->head == call_sym) { jl_value_t *f = static_eval(ctx, jl_exprarg(e, 0)); if (f) { if (jl_array_dim0(e->args) == 3 && f == jl_builtin_getfield) { m = (jl_module_t*)static_eval(ctx, jl_exprarg(e, 1)); // Check the tag before evaluating `s` so that a value of random // type won't be corrupted. if (!m || !jl_is_module(m)) return NULL; // Assumes that the module is rooted somewhere. s = (jl_sym_t*)static_eval(ctx, jl_exprarg(e, 2)); if (s && jl_is_symbol(s)) { jl_binding_t *b = jl_get_binding(m, s); if (b && b->constp) { if (b->deprecated) cg_bdw(ctx, b); return b->value; } } } else if (f==jl_builtin_tuple || f==jl_builtin_apply_type) { size_t i; size_t n = jl_array_dim0(e->args)-1; if (n==0 && f==jl_builtin_tuple) return (jl_value_t*)jl_emptytuple; jl_value_t **v; JL_GC_PUSHARGS(v, n+1); v[0] = f; for (i = 0; i < n; i++) { v[i+1] = static_eval(ctx, jl_exprarg(e, i+1)); if (v[i+1] == NULL) { JL_GC_POP(); return NULL; } } size_t last_age = jl_get_ptls_states()->world_age; // here we know we're calling specific builtin functions that work in world 1. jl_get_ptls_states()->world_age = 1; jl_value_t *result; JL_TRY { result = jl_apply(v, n+1); } JL_CATCH { result = NULL; } jl_get_ptls_states()->world_age = last_age; JL_GC_POP(); return result; } } } else if (e->head == static_parameter_sym) { size_t idx = jl_unbox_long(jl_exprarg(e, 0)); if (idx <= jl_svec_len(ctx.linfo->sparam_vals)) { jl_value_t *e = jl_svecref(ctx.linfo->sparam_vals, idx - 1); if (jl_is_typevar(e)) return NULL; return e; } } return NULL; } return ex; } static bool slot_eq(jl_value_t *e, int sl) { return (jl_is_slot(e) || jl_is_argument(e)) && jl_slot_number(e)-1 == sl; } // --- code gen for intrinsic functions --- #include "intrinsics.cpp" // --- find volatile variables --- // assigned in a try block and used outside that try block static bool local_var_occurs(jl_value_t *e, int sl) { if (slot_eq(e, sl)) { return true; } else if (jl_is_expr(e)) { jl_expr_t *ex = (jl_expr_t*)e; size_t alength = jl_array_dim0(ex->args); for(int i=0; i < (int)alength; i++) { if (local_var_occurs(jl_exprarg(ex,i),sl)) return true; } } else if (jl_is_returnnode(e)) { jl_value_t *retexpr = jl_returnnode_value(e); if (retexpr != NULL) return local_var_occurs(retexpr, sl); } else if (jl_is_gotoifnot(e)) { return local_var_occurs(jl_gotoifnot_cond(e), sl); } return false; } static std::set assigned_in_try(jl_array_t *stmts, int s, long l) { std::set av; for(int i=s; i <= l; i++) { jl_value_t *st = jl_array_ptr_ref(stmts,i); if (jl_is_expr(st)) { if (((jl_expr_t*)st)->head == assign_sym) { jl_value_t *ar = jl_exprarg(st, 0); if (jl_is_slot(ar)) { av.insert(jl_slot_number(ar)-1); } } } } return av; } static void mark_volatile_vars(jl_array_t *stmts, std::vector &slots) { size_t slength = jl_array_dim0(stmts); for (int i = 0; i < (int)slength; i++) { jl_value_t *st = jl_array_ptr_ref(stmts, i); if (jl_is_expr(st)) { if (((jl_expr_t*)st)->head == enter_sym) { int last = jl_unbox_long(jl_exprarg(st, 0)); std::set as = assigned_in_try(stmts, i + 1, last); for (int j = 0; j < (int)slength; j++) { if (j < i || j > last) { std::set::iterator it = as.begin(); for (; it != as.end(); it++) { if (local_var_occurs(jl_array_ptr_ref(stmts, j), *it)) { jl_varinfo_t &vi = slots[*it]; vi.isVolatile = true; } } } } } } } } // --- use analysis --- // a very simple, conservative use analysis // to eagerly remove slot assignments that are never read from static void simple_use_analysis(jl_codectx_t &ctx, jl_value_t *expr) { if (jl_is_slot(expr) || jl_is_argument(expr)) { int i = jl_slot_number(expr) - 1; ctx.slots[i].used = true; } else if (jl_is_expr(expr)) { jl_expr_t *e = (jl_expr_t*)expr; if (e->head == method_sym) { simple_use_analysis(ctx, jl_exprarg(e, 0)); if (jl_expr_nargs(e) > 1) { simple_use_analysis(ctx, jl_exprarg(e, 1)); simple_use_analysis(ctx, jl_exprarg(e, 2)); } } else if (e->head == assign_sym) { // don't consider assignment LHS as a variable "use" simple_use_analysis(ctx, jl_exprarg(e, 1)); } else { size_t i, elen = jl_array_dim0(e->args); for (i = 0; i < elen; i++) { simple_use_analysis(ctx, jl_exprarg(e, i)); } } } else if (jl_is_returnnode(expr)) { jl_value_t *retexpr = jl_returnnode_value(expr); if (retexpr != NULL) simple_use_analysis(ctx, retexpr); } else if (jl_is_gotoifnot(expr)) { simple_use_analysis(ctx, jl_gotoifnot_cond(expr)); } else if (jl_is_pinode(expr)) { simple_use_analysis(ctx, jl_fieldref_noalloc(expr, 0)); } else if (jl_is_upsilonnode(expr)) { jl_value_t *val = jl_fieldref_noalloc(expr, 0); if (val) simple_use_analysis(ctx, val); } else if (jl_is_phicnode(expr)) { jl_array_t *values = (jl_array_t*)jl_fieldref_noalloc(expr, 0); size_t i, elen = jl_array_len(values); for (i = 0; i < elen; i++) { jl_value_t *v = jl_array_ptr_ref(values, i); simple_use_analysis(ctx, v); } } else if (jl_is_phinode(expr)) { jl_array_t *values = (jl_array_t*)jl_fieldref_noalloc(expr, 1); size_t i, elen = jl_array_len(values); for (i = 0; i < elen; i++) { jl_value_t *v = jl_array_ptr_ref(values, i); if (v) simple_use_analysis(ctx, v); } } } // --- gc root utils --- // ---- Get Element Pointer (GEP) instructions within the GC frame ---- static void jl_add_method_root(jl_codectx_t &ctx, jl_value_t *val) { if (jl_is_concrete_type(val) || jl_is_bool(val) || jl_is_symbol(val) || val == jl_nothing || val == (jl_value_t*)jl_any_type || val == (jl_value_t*)jl_bottom_type || val == (jl_value_t*)jl_core_module) return; JL_GC_PUSH1(&val); if (ctx.roots == NULL) { ctx.roots = jl_alloc_vec_any(1); jl_array_ptr_set(ctx.roots, 0, val); } else { size_t rlen = jl_array_dim0(ctx.roots); for (size_t i = 0; i < rlen; i++) { if (jl_array_ptr_ref(ctx.roots,i) == val) { JL_GC_POP(); return; } } jl_array_ptr_1d_push(ctx.roots, val); } JL_GC_POP(); } // --- generating function calls --- static jl_cgval_t emit_globalref(jl_codectx_t &ctx, jl_module_t *mod, jl_sym_t *name) { jl_binding_t *bnd = NULL; Value *bp = global_binding_pointer(ctx, mod, name, &bnd, false); if (bnd && bnd->value != NULL) { if (bnd->constp) { return mark_julia_const(bnd->value); } LoadInst *v = ctx.builder.CreateAlignedLoad(T_prjlvalue, bp, Align(sizeof(void*))); v->setOrdering(AtomicOrdering::Unordered); tbaa_decorate(tbaa_binding, v); return mark_julia_type(ctx, v, true, (jl_value_t*)jl_any_type); } // todo: use type info to avoid undef check return emit_checked_var(ctx, bp, name, false, tbaa_binding); } static jl_cgval_t emit_getfield(jl_codectx_t &ctx, const jl_cgval_t &strct, jl_sym_t *name) { if (strct.constant && jl_is_module(strct.constant)) return emit_globalref(ctx, (jl_module_t*)strct.constant, name); jl_datatype_t *sty = (jl_datatype_t*)strct.typ; if (jl_is_type_type((jl_value_t*)sty) && jl_is_concrete_type(jl_tparam0(sty))) sty = (jl_datatype_t*)jl_typeof(jl_tparam0(sty)); sty = (jl_datatype_t*)jl_unwrap_unionall((jl_value_t*)sty); if (jl_is_structtype(sty) && sty != jl_module_type && sty->layout) { unsigned idx = jl_field_index(sty, name, 0); if (idx != (unsigned)-1) { return emit_getfield_knownidx(ctx, strct, idx, sty); } } // TODO: attempt better codegen for approximate types, if the types // and offsets of some fields are independent of parameters. // TODO: generic getfield func with more efficient calling convention jl_cgval_t myargs_array[2] = { strct, mark_julia_const((jl_value_t*)name) }; Value *result = emit_jlcall(ctx, jlgetfield_func, V_rnull, myargs_array, 2, JLCALL_F_CC); return mark_julia_type(ctx, result, true, jl_any_type); } template static Value *emit_guarded_test(jl_codectx_t &ctx, Value *ifnot, bool defval, Func &&func) { BasicBlock *currBB = ctx.builder.GetInsertBlock(); BasicBlock *passBB = BasicBlock::Create(jl_LLVMContext, "guard_pass", ctx.f); BasicBlock *exitBB = BasicBlock::Create(jl_LLVMContext, "guard_exit", ctx.f); ctx.builder.CreateCondBr(ifnot, passBB, exitBB); ctx.builder.SetInsertPoint(passBB); auto res = func(); passBB = ctx.builder.GetInsertBlock(); ctx.builder.CreateBr(exitBB); ctx.builder.SetInsertPoint(exitBB); PHINode *phi = ctx.builder.CreatePHI(T_int1, 2); phi->addIncoming(ConstantInt::get(T_int1, defval), currBB); phi->addIncoming(res, passBB); return phi; } template static Value *emit_nullcheck_guard(jl_codectx_t &ctx, Value *nullcheck, Func &&func) { if (!nullcheck) return func(); return emit_guarded_test(ctx, null_pointer_cmp(ctx, nullcheck), false, func); } template static Value *emit_nullcheck_guard2(jl_codectx_t &ctx, Value *nullcheck1, Value *nullcheck2, Func &&func) { if (!nullcheck1) return emit_nullcheck_guard(ctx, nullcheck2, func); if (!nullcheck2) return emit_nullcheck_guard(ctx, nullcheck1, func); nullcheck1 = null_pointer_cmp(ctx, nullcheck1); nullcheck2 = null_pointer_cmp(ctx, nullcheck2); // If both are NULL, return true. return emit_guarded_test(ctx, ctx.builder.CreateOr(nullcheck1, nullcheck2), true, [&] { return emit_guarded_test(ctx, ctx.builder.CreateAnd(nullcheck1, nullcheck2), false, func); }); } static Value *emit_box_compare(jl_codectx_t &ctx, const jl_cgval_t &arg1, const jl_cgval_t &arg2, Value *nullcheck1, Value *nullcheck2) { if (jl_pointer_egal(arg1.typ) || jl_pointer_egal(arg2.typ)) { Value *varg1 = arg1.constant ? literal_pointer_val(ctx, arg1.constant) : arg1.V; Value *varg2 = arg2.constant ? literal_pointer_val(ctx, arg2.constant) : arg2.V; assert(varg1 && varg2 && (arg1.isboxed || arg1.TIndex) && (arg2.isboxed || arg2.TIndex) && "Only boxed types are valid for pointer comparison."); varg1 = maybe_decay_tracked(ctx, varg1); varg2 = maybe_decay_tracked(ctx, varg2); if (cast(varg1->getType())->getAddressSpace() != cast(varg2->getType())->getAddressSpace()) { varg1 = decay_derived(ctx, varg1); varg2 = decay_derived(ctx, varg2); } return ctx.builder.CreateICmpEQ(emit_bitcast(ctx, varg1, T_pint8), emit_bitcast(ctx, varg2, T_pint8)); } return emit_nullcheck_guard2(ctx, nullcheck1, nullcheck2, [&] { Value *varg1 = mark_callee_rooted(ctx, boxed(ctx, arg1)); Value *varg2 = mark_callee_rooted(ctx, boxed(ctx, arg2)); return ctx.builder.CreateTrunc(ctx.builder.CreateCall(prepare_call(jlegal_func), {varg1, varg2}), T_int1); }); } static Value *emit_bits_compare(jl_codectx_t &ctx, jl_cgval_t arg1, jl_cgval_t arg2); static Value *emit_f_is(jl_codectx_t &ctx, const jl_cgval_t &arg1, const jl_cgval_t &arg2, Value *nullcheck1 = nullptr, Value *nullcheck2 = nullptr); static Value *emit_bitsunion_compare(jl_codectx_t &ctx, const jl_cgval_t &arg1, const jl_cgval_t &arg2) { assert(jl_egal(arg1.typ, arg2.typ) && arg1.TIndex && arg2.TIndex && jl_is_uniontype(arg1.typ) && "unimplemented"); Value *tindex = arg1.TIndex; BasicBlock *defaultBB = BasicBlock::Create(jl_LLVMContext, "unionbits_is_boxed", ctx.f); SwitchInst *switchInst = ctx.builder.CreateSwitch(tindex, defaultBB); BasicBlock *postBB = BasicBlock::Create(jl_LLVMContext, "post_unionbits_is", ctx.f); ctx.builder.SetInsertPoint(postBB); PHINode *phi = ctx.builder.CreatePHI(T_int1, 2); unsigned counter = 0; bool allunboxed = for_each_uniontype_small( [&](unsigned idx, jl_datatype_t *jt) { BasicBlock *tempBB = BasicBlock::Create(jl_LLVMContext, "unionbits_is", ctx.f); ctx.builder.SetInsertPoint(tempBB); switchInst->addCase(ConstantInt::get(T_int8, idx), tempBB); jl_cgval_t sel_arg1(arg1, (jl_value_t*)jt, NULL); jl_cgval_t sel_arg2(arg2, (jl_value_t*)jt, NULL); Value *cmp = emit_bits_compare(ctx, sel_arg1, sel_arg2); tempBB = ctx.builder.GetInsertBlock(); // could have changed phi->addIncoming(cmp, tempBB); ctx.builder.CreateBr(postBB); }, arg1.typ, counter); assert(allunboxed); (void)allunboxed; ctx.builder.SetInsertPoint(defaultBB); Function *trap_func = Intrinsic::getDeclaration( ctx.f->getParent(), Intrinsic::trap); ctx.builder.CreateCall(trap_func); ctx.builder.CreateUnreachable(); ctx.builder.SetInsertPoint(postBB); return ctx.builder.CreateAnd(phi, ctx.builder.CreateICmpEQ(arg1.TIndex, arg2.TIndex)); } static Value *emit_bits_compare(jl_codectx_t &ctx, jl_cgval_t arg1, jl_cgval_t arg2) { bool isboxed; Type *at = julia_type_to_llvm(ctx, arg1.typ, &isboxed); assert(jl_is_datatype(arg1.typ) && arg1.typ == arg2.typ && !isboxed); if (type_is_ghost(at)) return ConstantInt::get(T_int1, 1); if (at->isIntegerTy() || at->isPointerTy() || at->isFloatingPointTy()) { Type *at_int = INTT(at); Value *varg1 = emit_unbox(ctx, at_int, arg1, arg1.typ); Value *varg2 = emit_unbox(ctx, at_int, arg2, arg2.typ); return ctx.builder.CreateICmpEQ(varg1, varg2); } if (at->isVectorTy()) { jl_svec_t *types = ((jl_datatype_t*)arg1.typ)->types; Value *answer = ConstantInt::get(T_int1, 1); Value *varg1 = emit_unbox(ctx, at, arg1, arg1.typ); Value *varg2 = emit_unbox(ctx, at, arg2, arg2.typ); for (size_t i = 0, l = jl_svec_len(types); i < l; i++) { jl_value_t *fldty = jl_svecref(types, i); Value *subAns, *fld1, *fld2; fld1 = ctx.builder.CreateExtractElement(varg1, ConstantInt::get(T_int32, i)), fld2 = ctx.builder.CreateExtractElement(varg2, ConstantInt::get(T_int32, i)), subAns = emit_bits_compare(ctx, mark_julia_type(ctx, fld1, false, fldty), mark_julia_type(ctx, fld2, false, fldty)); answer = ctx.builder.CreateAnd(answer, subAns); } return answer; } if (at->isAggregateType()) { // Struct or Array jl_datatype_t *sty = (jl_datatype_t*)arg1.typ; size_t sz = jl_datatype_size(sty); if (sz > 512 && !sty->layout->haspadding) { Value *varg1 = arg1.ispointer() ? maybe_decay_tracked(ctx, data_pointer(ctx, arg1)) : value_to_pointer(ctx, arg1).V; Value *varg2 = arg2.ispointer() ? maybe_decay_tracked(ctx, data_pointer(ctx, arg2)) : value_to_pointer(ctx, arg2).V; varg1 = emit_pointer_from_objref(ctx, varg1); varg2 = emit_pointer_from_objref(ctx, varg2); Value *gc_uses[2]; int nroots = 0; if ((gc_uses[nroots] = get_gc_root_for(arg1))) nroots++; if ((gc_uses[nroots] = get_gc_root_for(arg2))) nroots++; OperandBundleDef OpBundle("jl_roots", makeArrayRef(gc_uses, nroots)); auto answer = ctx.builder.CreateCall(prepare_call(memcmp_func), { ctx.builder.CreateBitCast(varg1, T_pint8), ctx.builder.CreateBitCast(varg2, T_pint8), ConstantInt::get(T_size, sz) }, ArrayRef(&OpBundle, nroots ? 1 : 0)); MDNode *tbaa = nullptr; if (!arg1.tbaa) { tbaa = arg2.tbaa; } else if (!arg2.tbaa) { tbaa = arg1.tbaa; } else { tbaa = MDNode::getMostGenericTBAA(arg1.tbaa, arg2.tbaa); } if (tbaa) tbaa_decorate(tbaa, answer); return ctx.builder.CreateICmpEQ(answer, ConstantInt::get(T_int32, 0)); } else { jl_svec_t *types = sty->types; Value *answer = ConstantInt::get(T_int1, 1); for (size_t i = 0, l = jl_svec_len(types); i < l; i++) { jl_value_t *fldty = jl_svecref(types, i); if (type_is_ghost(julia_type_to_llvm(ctx, fldty))) continue; Value *nullcheck1 = nullptr; Value *nullcheck2 = nullptr; auto fld1 = emit_getfield_knownidx(ctx, arg1, i, sty, &nullcheck1); auto fld2 = emit_getfield_knownidx(ctx, arg2, i, sty, &nullcheck2); Value *fld_answer; if (jl_field_isptr(sty, i) && jl_is_concrete_immutable(fldty)) { // concrete immutables that are !isinlinealloc might be reference cycles // issue #37872 fld_answer = emit_box_compare(ctx, fld1, fld2, nullcheck1, nullcheck2); } else { fld_answer = emit_f_is(ctx, fld1, fld2, nullcheck1, nullcheck2); } answer = ctx.builder.CreateAnd(answer, fld_answer); } return answer; } } assert(0 && "what is this llvm type?"); abort(); } // emit code for is (===). // If either `nullcheck1` or `nullcheck2` are non-NULL, they are pointer values // representing the undef-ness of `arg1` and `arg2`. // This can only happen when comparing two fields of the same time and the result should be // true if both are NULL static Value *emit_f_is(jl_codectx_t &ctx, const jl_cgval_t &arg1, const jl_cgval_t &arg2, Value *nullcheck1, Value *nullcheck2) { // handle simple static expressions with no side-effects if (arg1.constant && arg2.constant) return ConstantInt::get(T_int1, jl_egal(arg1.constant, arg2.constant)); jl_value_t *rt1 = arg1.typ; jl_value_t *rt2 = arg2.typ; if (jl_is_concrete_type(rt1) && jl_is_concrete_type(rt2) && !jl_is_kind(rt1) && !jl_is_kind(rt2) && rt1 != rt2) { // disjoint concrete leaf types are never equal (quick test) return ConstantInt::get(T_int1, 0); } if (arg1.isghost || arg2.isghost || arg1.constant == jl_bottom_type || arg2.constant == jl_bottom_type) { // comparing to a singleton object, special case for value `jl_bottom_type` // since it is normalized to `::Type{Union{}}` instead... if (arg1.TIndex) return emit_nullcheck_guard(ctx, nullcheck1, [&] { return emit_isa(ctx, arg1, rt2, NULL).first; // rt2 is a singleton type }); if (arg2.TIndex) return emit_nullcheck_guard(ctx, nullcheck2, [&] { return emit_isa(ctx, arg2, rt1, NULL).first; // rt1 is a singleton type }); // rooting these values isn't needed since we won't load this pointer // and we know at least one of them is a unique Singleton // which is already enough to ensure pointer uniqueness for this test // even if the other pointer managed to get garbage collected return ctx.builder.CreateICmpEQ( mark_callee_rooted(ctx, boxed(ctx, arg1)), mark_callee_rooted(ctx, boxed(ctx, arg2))); } if (jl_type_intersection(rt1, rt2) == (jl_value_t*)jl_bottom_type) // types are disjoint (exhaustive test) return ConstantInt::get(T_int1, 0); // If both sides are boxed or can be trivially boxed, // we'll prefer to do a pointer check. // At this point, we know that at least one of the arguments isn't a constant // so a runtime content check will involve at least one load from the // pointer (and likely a type check) // so a pointer comparison should be no worse than that even in imaging mode // when the constant pointer has to be loaded. if ((arg1.V || arg1.constant) && (arg2.V || arg2.constant) && (jl_pointer_egal(rt1) || jl_pointer_egal(rt2)) && // jl_pointer_egal returns true for Bool, which is not helpful here (rt1 != (jl_value_t*)jl_bool_type || rt2 != (jl_value_t*)jl_bool_type)) return ctx.builder.CreateICmpEQ(boxed(ctx, arg1), boxed(ctx, arg2)); bool justbits1 = jl_is_concrete_immutable(rt1); bool justbits2 = jl_is_concrete_immutable(rt2); if (justbits1 || justbits2) { // whether this type is unique'd by value return emit_nullcheck_guard2(ctx, nullcheck1, nullcheck2, [&] () -> Value* { jl_value_t *typ = justbits1 ? rt1 : rt2; if (rt1 == rt2) return emit_bits_compare(ctx, arg1, arg2); Value *same_type = (typ == rt2) ? emit_isa(ctx, arg1, typ, NULL).first : emit_isa(ctx, arg2, typ, NULL).first; BasicBlock *currBB = ctx.builder.GetInsertBlock(); BasicBlock *isaBB = BasicBlock::Create(jl_LLVMContext, "is", ctx.f); BasicBlock *postBB = BasicBlock::Create(jl_LLVMContext, "post_is", ctx.f); ctx.builder.CreateCondBr(same_type, isaBB, postBB); ctx.builder.SetInsertPoint(isaBB); Value *bitcmp = emit_bits_compare(ctx, jl_cgval_t(arg1, typ, NULL), jl_cgval_t(arg2, typ, NULL)); isaBB = ctx.builder.GetInsertBlock(); // might have changed ctx.builder.CreateBr(postBB); ctx.builder.SetInsertPoint(postBB); PHINode *cmp = ctx.builder.CreatePHI(T_int1, 2); cmp->addIncoming(ConstantInt::get(T_int1, 0), currBB); cmp->addIncoming(bitcmp, isaBB); return cmp; }); } // TODO: handle the case where arg1.typ != arg2.typ, or when one of these isn't union, // or when the union can be pointer if (arg1.TIndex && arg2.TIndex && jl_egal(arg1.typ, arg2.typ) && jl_is_uniontype(arg1.typ) && is_uniontype_allunboxed(arg1.typ)) return emit_nullcheck_guard2(ctx, nullcheck1, nullcheck2, [&] { return emit_bitsunion_compare(ctx, arg1, arg2); }); return emit_box_compare(ctx, arg1, arg2, nullcheck1, nullcheck2); } static std::pair, jl_llvm_functions_t> emit_function( jl_method_instance_t *lam, jl_code_info_t *src, jl_value_t *jlrettype, jl_codegen_params_t ¶ms, bool vaOverride = false); static bool emit_builtin_call(jl_codectx_t &ctx, jl_cgval_t *ret, jl_value_t *f, const jl_cgval_t *argv, size_t nargs, jl_value_t *rt, jl_expr_t *ex) // returns true if the call has been handled { if (f == jl_builtin_is && nargs == 2) { // emit comparison test Value *ans = emit_f_is(ctx, argv[1], argv[2]); *ret = mark_julia_type(ctx, ctx.builder.CreateZExt(ans, T_int8), false, jl_bool_type); return true; } else if (f == jl_builtin_typeof && nargs == 1) { *ret = emit_typeof(ctx, argv[1]); return true; } else if (f == jl_builtin_typeassert && nargs == 2) { const jl_cgval_t &arg = argv[1]; const jl_cgval_t &ty = argv[2]; if (jl_is_type_type(ty.typ) && !jl_has_free_typevars(ty.typ)) { jl_value_t *tp0 = jl_tparam0(ty.typ); emit_typecheck(ctx, arg, tp0, "typeassert"); *ret = arg; return true; } if (jl_subtype(ty.typ, (jl_value_t*)jl_type_type)) { Value *rt_arg = boxed(ctx, arg); Value *rt_ty = boxed(ctx, ty); ctx.builder.CreateCall(prepare_call(jltypeassert_func), {rt_arg, rt_ty}); *ret = arg; return true; } } else if (f == jl_builtin_isa && nargs == 2) { const jl_cgval_t &arg = argv[1]; const jl_cgval_t &ty = argv[2]; if (jl_is_type_type(ty.typ) && !jl_has_free_typevars(ty.typ)) { jl_value_t *tp0 = jl_tparam0(ty.typ); Value *isa_result = emit_isa(ctx, arg, tp0, NULL).first; if (isa_result->getType() == T_int1) isa_result = ctx.builder.CreateZExt(isa_result, T_int8); *ret = mark_julia_type(ctx, isa_result, false, jl_bool_type); return true; } } else if (f == jl_builtin_issubtype && nargs == 2) { const jl_cgval_t &ta = argv[1]; const jl_cgval_t &tb = argv[2]; if (jl_is_type_type(ta.typ) && !jl_has_free_typevars(ta.typ) && jl_is_type_type(tb.typ) && !jl_has_free_typevars(tb.typ)) { int issub = jl_subtype(jl_tparam0(ta.typ), jl_tparam0(tb.typ)); *ret = mark_julia_type(ctx, ConstantInt::get(T_int8, issub), false, jl_bool_type); return true; } } else if ((f == jl_builtin__apply_iterate && nargs == 3) && ctx.vaSlot > 0) { // turn Core._apply_iterate(iter, f, Tuple) ==> f(Tuple...) using the jlcall calling convention if Tuple is the va allocation if (LoadInst *load = dyn_cast_or_null(argv[3].V)) { if (load->getPointerOperand() == ctx.slots[ctx.vaSlot].boxroot && ctx.argArray) { Value *theF = boxed(ctx, argv[2]); Value *nva = emit_n_varargs(ctx); #ifdef _P64 nva = ctx.builder.CreateTrunc(nva, T_int32); #endif Value *theArgs = ctx.builder.CreateInBoundsGEP(T_prjlvalue, ctx.argArray, ConstantInt::get(T_size, ctx.nReqArgs)); Value *r = ctx.builder.CreateCall(prepare_call(jlapplygeneric_func), { theF, theArgs, nva }); *ret = mark_julia_type(ctx, r, true, jl_any_type); return true; } } } else if (f == jl_builtin_tuple) { if (nargs == 0) { *ret = ghostValue(jl_emptytuple_type); return true; } if (jl_is_tuple_type(rt) && jl_is_concrete_type(rt) && nargs == jl_datatype_nfields(rt)) { *ret = emit_new_struct(ctx, rt, nargs, &argv[1]); return true; } } else if (f == jl_builtin_throw && nargs == 1) { Value *arg1 = boxed(ctx, argv[1]); raise_exception(ctx, arg1); *ret = jl_cgval_t(); return true; } else if (f == jl_builtin_arraysize && nargs == 2) { const jl_cgval_t &ary = argv[1]; const jl_cgval_t &idx = argv[2]; jl_value_t *aty = jl_unwrap_unionall(ary.typ); if (jl_is_array_type(aty) && idx.typ == (jl_value_t*)jl_long_type) { jl_value_t *ndp = jl_tparam1(aty); if (jl_is_long(ndp)) { size_t ndims = jl_unbox_long(ndp); if (idx.constant) { uint32_t idx_const = (uint32_t)jl_unbox_long(idx.constant); if (idx_const > 0 && idx_const <= ndims) { jl_value_t *ary_ex = jl_exprarg(ex, 1); *ret = mark_julia_type(ctx, emit_arraysize(ctx, ary, ary_ex, idx_const), false, jl_long_type); return true; } else if (idx_const > ndims) { *ret = mark_julia_type(ctx, ConstantInt::get(T_size, 1), false, jl_long_type); return true; } } else { Value *idx_dyn = emit_unbox(ctx, T_size, idx, (jl_value_t*)jl_long_type); error_unless(ctx, ctx.builder.CreateICmpSGT(idx_dyn, V_size0), "arraysize: dimension out of range"); BasicBlock *outBB = BasicBlock::Create(jl_LLVMContext, "outofrange", ctx.f); BasicBlock *inBB = BasicBlock::Create(jl_LLVMContext, "inrange"); BasicBlock *ansBB = BasicBlock::Create(jl_LLVMContext, "arraysize"); ctx.builder.CreateCondBr(ctx.builder.CreateICmpSLE(idx_dyn, ConstantInt::get(T_size, ndims)), inBB, outBB); ctx.builder.SetInsertPoint(outBB); Value *v_one = ConstantInt::get(T_size, 1); ctx.builder.CreateBr(ansBB); ctx.f->getBasicBlockList().push_back(inBB); ctx.builder.SetInsertPoint(inBB); Value *v_sz = emit_arraysize(ctx, ary, idx_dyn); ctx.builder.CreateBr(ansBB); inBB = ctx.builder.GetInsertBlock(); // could have changed ctx.f->getBasicBlockList().push_back(ansBB); ctx.builder.SetInsertPoint(ansBB); PHINode *result = ctx.builder.CreatePHI(T_size, 2); result->addIncoming(v_one, outBB); result->addIncoming(v_sz, inBB); *ret = mark_julia_type(ctx, result, false, jl_long_type); return true; } } } } else if ((f == jl_builtin_arrayref || f == jl_builtin_const_arrayref) && nargs >= 3) { const jl_cgval_t &ary = argv[2]; bool indices_ok = true; for (size_t i = 3; i <= nargs; i++) { if (argv[i].typ != (jl_value_t*)jl_long_type) { indices_ok = false; break; } } jl_value_t *aty_dt = jl_unwrap_unionall(ary.typ); if (jl_is_array_type(aty_dt) && indices_ok) { jl_value_t *ety = jl_tparam0(aty_dt); jl_value_t *ndp = jl_tparam1(aty_dt); if (!jl_has_free_typevars(ety) && (jl_is_long(ndp) || nargs == 3)) { jl_value_t *ary_ex = jl_exprarg(ex, 2); size_t elsz = 0, al = 0; int union_max = jl_islayout_inline(ety, &elsz, &al); bool isboxed = (union_max == 0); if (isboxed) ety = (jl_value_t*)jl_any_type; ssize_t nd = jl_is_long(ndp) ? jl_unbox_long(ndp) : -1; jl_value_t *boundscheck = argv[1].constant; Value *idx = emit_array_nd_index(ctx, ary, ary_ex, nd, &argv[3], nargs - 2, boundscheck); if (!isboxed && jl_is_datatype(ety) && jl_datatype_size(ety) == 0) { assert(((jl_datatype_t*)ety)->instance != NULL); *ret = ghostValue(ety); } else if (!isboxed && jl_is_uniontype(ety)) { Type *AT = ArrayType::get(IntegerType::get(jl_LLVMContext, 8 * al), (elsz + al - 1) / al); Value *data = emit_bitcast(ctx, emit_arrayptr(ctx, ary, ary_ex), AT->getPointerTo()); // isbits union selector bytes are stored after a->maxsize Value *ndims = (nd == -1 ? emit_arrayndims(ctx, ary) : ConstantInt::get(T_int16, nd)); Value *is_vector = ctx.builder.CreateICmpEQ(ndims, ConstantInt::get(T_int16, 1)); Value *offset = emit_arrayoffset(ctx, ary, nd); Value *selidx_v = ctx.builder.CreateSub(emit_vectormaxsize(ctx, ary), ctx.builder.CreateZExt(offset, T_size)); Value *selidx_m = emit_arraylen(ctx, ary); Value *selidx = ctx.builder.CreateSelect(is_vector, selidx_v, selidx_m); Value *ptindex = ctx.builder.CreateInBoundsGEP(AT, data, selidx); ptindex = emit_bitcast(ctx, ptindex, T_pint8); ptindex = ctx.builder.CreateInBoundsGEP(T_int8, ptindex, offset); ptindex = ctx.builder.CreateInBoundsGEP(T_int8, ptindex, idx); Instruction *tindex = tbaa_decorate(tbaa_arrayselbyte, ctx.builder.CreateAlignedLoad(T_int8, ptindex, Align(1))); tindex->setMetadata(LLVMContext::MD_range, MDNode::get(jl_LLVMContext, { ConstantAsMetadata::get(ConstantInt::get(T_int8, 0)), ConstantAsMetadata::get(ConstantInt::get(T_int8, union_max)) })); AllocaInst *lv = emit_static_alloca(ctx, AT); if (al > 1) lv->setAlignment(Align(al)); emit_memcpy(ctx, lv, tbaa_arraybuf, ctx.builder.CreateInBoundsGEP(AT, data, idx), tbaa_arraybuf, elsz, al, false); *ret = mark_julia_slot(lv, ety, ctx.builder.CreateNUWAdd(ConstantInt::get(T_int8, 1), tindex), tbaa_arraybuf); } else { MDNode *aliasscope = (f == jl_builtin_const_arrayref) ? ctx.aliasscope : nullptr; *ret = typed_load(ctx, emit_arrayptr(ctx, ary, ary_ex), idx, ety, !isboxed ? tbaa_arraybuf : tbaa_ptrarraybuf, aliasscope); } return true; } } } else if (f == jl_builtin_arrayset && nargs >= 4) { const jl_cgval_t &ary = argv[2]; const jl_cgval_t &val = argv[3]; bool indices_ok = true; for (size_t i = 4; i <= nargs; i++) { if (argv[i].typ != (jl_value_t*)jl_long_type) { indices_ok = false; break; } } jl_value_t *aty_dt = jl_unwrap_unionall(ary.typ); if (jl_is_array_type(aty_dt) && indices_ok) { jl_value_t *ety = jl_tparam0(aty_dt); jl_value_t *ndp = jl_tparam1(aty_dt); if (!jl_has_free_typevars(ety) && (jl_is_long(ndp) || nargs == 4)) { if (jl_subtype(val.typ, ety)) { // TODO: probably should just convert this to a type-assert size_t elsz = 0, al = 0; int union_max = jl_islayout_inline(ety, &elsz, &al); bool isboxed = (union_max == 0); if (isboxed) ety = (jl_value_t*)jl_any_type; jl_value_t *ary_ex = jl_exprarg(ex, 2); ssize_t nd = jl_is_long(ndp) ? jl_unbox_long(ndp) : -1; jl_value_t *boundscheck = argv[1].constant; Value *idx = emit_array_nd_index(ctx, ary, ary_ex, nd, &argv[4], nargs - 3, boundscheck); if (!isboxed && jl_is_datatype(ety) && jl_datatype_size(ety) == 0) { // no-op } else { PHINode *data_owner = NULL; // owner object against which the write barrier must check if (isboxed || (jl_is_datatype(ety) && ((jl_datatype_t*)ety)->layout->npointers > 0)) { // if elements are just bits, don't need a write barrier Value *aryv = boxed(ctx, ary); Value *flags = emit_arrayflags(ctx, ary); // the owner of the data is ary itself except if ary->how == 3 flags = ctx.builder.CreateAnd(flags, 3); Value *is_owned = ctx.builder.CreateICmpEQ(flags, ConstantInt::get(T_int16, 3)); BasicBlock *curBB = ctx.builder.GetInsertBlock(); BasicBlock *ownedBB = BasicBlock::Create(jl_LLVMContext, "array_owned", ctx.f); BasicBlock *mergeBB = BasicBlock::Create(jl_LLVMContext, "merge_own", ctx.f); ctx.builder.CreateCondBr(is_owned, ownedBB, mergeBB); ctx.builder.SetInsertPoint(ownedBB); // load owner pointer Instruction *own_ptr; if (jl_is_long(ndp)) { own_ptr = ctx.builder.CreateAlignedLoad(T_prjlvalue, ctx.builder.CreateConstInBoundsGEP1_32(T_prjlvalue, emit_bitcast(ctx, decay_derived(ctx, aryv), T_pprjlvalue), jl_array_data_owner_offset(nd) / sizeof(jl_value_t*)), Align(sizeof(void*))); tbaa_decorate(tbaa_const, maybe_mark_load_dereferenceable(own_ptr, false, (jl_value_t*)jl_array_any_type)); } else { own_ptr = ctx.builder.CreateCall( prepare_call(jlarray_data_owner_func), {aryv}); } ctx.builder.CreateBr(mergeBB); ctx.builder.SetInsertPoint(mergeBB); data_owner = ctx.builder.CreatePHI(T_prjlvalue, 2); data_owner->addIncoming(aryv, curBB); data_owner->addIncoming(own_ptr, ownedBB); } if (jl_is_uniontype(ety)) { Type *AT = ArrayType::get(IntegerType::get(jl_LLVMContext, 8 * al), (elsz + al - 1) / al); Value *data = emit_bitcast(ctx, emit_arrayptr(ctx, ary, ary_ex), AT->getPointerTo()); // compute tindex from val jl_cgval_t rhs_union = convert_julia_type(ctx, val, ety); Value *tindex = compute_tindex_unboxed(ctx, rhs_union, ety); tindex = ctx.builder.CreateNUWSub(tindex, ConstantInt::get(T_int8, 1)); Value *ndims = (nd == -1 ? emit_arrayndims(ctx, ary) : ConstantInt::get(T_int16, nd)); Value *is_vector = ctx.builder.CreateICmpEQ(ndims, ConstantInt::get(T_int16, 1)); Value *offset = emit_arrayoffset(ctx, ary, nd); Value *selidx_v = ctx.builder.CreateSub(emit_vectormaxsize(ctx, ary), ctx.builder.CreateZExt(offset, T_size)); Value *selidx_m = emit_arraylen(ctx, ary); Value *selidx = ctx.builder.CreateSelect(is_vector, selidx_v, selidx_m); Value *ptindex = ctx.builder.CreateInBoundsGEP(AT, data, selidx); ptindex = emit_bitcast(ctx, ptindex, T_pint8); ptindex = ctx.builder.CreateInBoundsGEP(T_int8, ptindex, offset); ptindex = ctx.builder.CreateInBoundsGEP(T_int8, ptindex, idx); tbaa_decorate(tbaa_arrayselbyte, ctx.builder.CreateStore(tindex, ptindex)); if (jl_is_datatype(val.typ) && jl_datatype_size(val.typ) == 0) { // no-op } else { // copy data Value *addr = ctx.builder.CreateInBoundsGEP(AT, data, idx); emit_unionmove(ctx, addr, tbaa_arraybuf, val, nullptr); } } else { typed_store(ctx, emit_arrayptr(ctx, ary, ary_ex, isboxed), idx, val, ety, !isboxed ? tbaa_arraybuf : tbaa_ptrarraybuf, ctx.aliasscope, data_owner, 0); } } *ret = ary; return true; } } } } else if (f == jl_builtin_getfield && (nargs == 2 || nargs == 3)) { const jl_cgval_t &obj = argv[1]; const jl_cgval_t &fld = argv[2]; if (fld.constant && fld.typ == (jl_value_t*)jl_symbol_type) { *ret = emit_getfield(ctx, argv[1], (jl_sym_t*)fld.constant); return true; } if (fld.typ == (jl_value_t*)jl_long_type) { if (ctx.vaSlot > 0) { // optimize VA tuple if (LoadInst *load = dyn_cast_or_null(obj.V)) { if (load->getPointerOperand() == ctx.slots[ctx.vaSlot].boxroot && ctx.argArray) { Value *valen = emit_n_varargs(ctx); jl_cgval_t va_ary( // fake instantiation of a cgval, in order to call emit_bounds_check ctx.builder.CreateInBoundsGEP(T_prjlvalue, ctx.argArray, ConstantInt::get(T_size, ctx.nReqArgs)), NULL, false, NULL, NULL); Value *idx = emit_unbox(ctx, T_size, fld, (jl_value_t*)jl_long_type); jl_value_t *boundscheck = (nargs == 3 ? argv[3].constant : jl_true); idx = emit_bounds_check(ctx, va_ary, NULL, idx, valen, boundscheck); idx = ctx.builder.CreateAdd(idx, ConstantInt::get(T_size, ctx.nReqArgs)); Instruction *v = ctx.builder.CreateAlignedLoad(T_prjlvalue, ctx.builder.CreateInBoundsGEP(ctx.argArray, idx), Align(sizeof(void*))); // if we know the result type of this load, we will mark that information here too tbaa_decorate(tbaa_value, maybe_mark_load_dereferenceable(v, false, rt)); *ret = mark_julia_type(ctx, v, /*boxed*/ true, rt); return true; } } } jl_datatype_t *utt = (jl_datatype_t*)jl_unwrap_unionall(obj.typ); if (jl_is_datatype(utt) && utt->layout) { if ((jl_is_structtype(utt) || jl_is_tuple_type(utt)) && !jl_subtype((jl_value_t*)jl_module_type, obj.typ)) { size_t nfields = jl_datatype_nfields(utt); // integer index size_t idx; if (fld.constant && (idx = jl_unbox_long(fld.constant) - 1) < nfields) { // known index *ret = emit_getfield_knownidx(ctx, obj, idx, utt); return true; } else { // unknown index Value *vidx = emit_unbox(ctx, T_size, fld, (jl_value_t*)jl_long_type); jl_value_t *boundscheck = (nargs == 3 ? argv[3].constant : jl_true); if (emit_getfield_unknownidx(ctx, ret, obj, vidx, utt, boundscheck)) { return true; } } } } else { if (jl_is_tuple_type(utt) && is_tupletype_homogeneous(utt->types, true)) { // For tuples, we can emit code even if we don't know the exact // type (e.g. because we don't know the length). This is possible // as long as we know that all elements are of the same (leaf) type. if (obj.ispointer()) { // Determine which was the type that was homogenous jl_value_t *jt = jl_tparam0(utt); if (jl_is_vararg(jt)) jt = jl_unwrap_vararg(jt); Value *vidx = emit_unbox(ctx, T_size, fld, (jl_value_t*)jl_long_type); // This is not necessary for correctness, but allows to omit // the extra code for getting the length of the tuple jl_value_t *boundscheck = (nargs == 3 ? argv[3].constant : jl_true); if (!bounds_check_enabled(ctx, boundscheck)) { vidx = ctx.builder.CreateSub(vidx, ConstantInt::get(T_size, 1)); } else { vidx = emit_bounds_check(ctx, obj, (jl_value_t*)obj.typ, vidx, emit_datatype_nfields(ctx, emit_typeof_boxed(ctx, obj)), jl_true); } bool isboxed = !jl_datatype_isinlinealloc(jt); Value *ptr = maybe_decay_tracked(ctx, data_pointer(ctx, obj)); *ret = typed_load(ctx, ptr, vidx, isboxed ? (jl_value_t*)jl_any_type : jt, obj.tbaa, nullptr, false); return true; } } } } } else if (f == jl_builtin_setfield && nargs == 3) { const jl_cgval_t &obj = argv[1]; const jl_cgval_t &fld = argv[2]; const jl_cgval_t &val = argv[3]; jl_datatype_t *uty = (jl_datatype_t*)jl_unwrap_unionall(obj.typ); if (jl_is_structtype(uty) && uty != jl_module_type && uty->layout) { size_t idx = (size_t)-1; if (fld.constant && fld.typ == (jl_value_t*)jl_symbol_type) { idx = jl_field_index(uty, (jl_sym_t*)fld.constant, 0); } else if (fld.constant && fld.typ == (jl_value_t*)jl_long_type) { ssize_t i = jl_unbox_long(fld.constant); if (i > 0 && i <= jl_datatype_nfields(uty)) idx = i - 1; } if (idx != (size_t)-1) { jl_value_t *ft = jl_svecref(uty->types, idx); if (jl_subtype(val.typ, ft)) { // TODO: attempt better codegen for approximate types emit_setfield(ctx, uty, obj, idx, val, true, true); *ret = val; return true; } } } } else if (f == jl_builtin_nfields && nargs == 1) { const jl_cgval_t &obj = argv[1]; if (ctx.vaSlot > 0) { // optimize VA tuple if (LoadInst *load = dyn_cast_or_null(obj.V)) { if (load->getPointerOperand() == ctx.slots[ctx.vaSlot].boxroot) { *ret = mark_julia_type(ctx, emit_n_varargs(ctx), false, jl_long_type); return true; } } } ssize_t nf = -1; if (obj.constant) { nf = jl_datatype_nfields(jl_typeof(obj.constant)); } else if (jl_is_type_type(obj.typ)) { jl_value_t *tp0 = jl_tparam0(obj.typ); if (jl_is_datatype(tp0) && jl_is_datatype_singleton((jl_datatype_t*)tp0)) nf = jl_datatype_nfields((jl_value_t*)jl_datatype_type); } else if (jl_is_concrete_type(obj.typ)) { nf = jl_datatype_nfields(obj.typ); } Value *sz; if (nf != -1) sz = ConstantInt::get(T_size, nf); else sz = emit_datatype_nfields(ctx, emit_typeof_boxed(ctx, obj)); *ret = mark_julia_type(ctx, sz, false, jl_long_type); return true; } else if (f == jl_builtin_fieldtype && (nargs == 2 || nargs == 3)) { const jl_cgval_t &typ = argv[1]; const jl_cgval_t &fld = argv[2]; if ((jl_is_type_type(typ.typ) && jl_is_concrete_type(jl_tparam0(typ.typ))) || (typ.constant && jl_is_concrete_type(typ.constant))) { if (fld.typ == (jl_value_t*)jl_long_type) { assert(typ.isboxed); Value *tyv = boxed(ctx, typ); Value *types_svec = emit_datatype_types(ctx, tyv); Value *types_len = emit_datatype_nfields(ctx, tyv); Value *idx = emit_unbox(ctx, T_size, fld, (jl_value_t*)jl_long_type); jl_value_t *boundscheck = (nargs == 3 ? argv[3].constant : jl_true); emit_bounds_check(ctx, typ, (jl_value_t*)jl_datatype_type, idx, types_len, boundscheck); Value *fieldtyp_p = ctx.builder.CreateInBoundsGEP(T_prjlvalue, decay_derived(ctx, emit_bitcast(ctx, types_svec, T_pprjlvalue)), idx); Value *fieldtyp = tbaa_decorate(tbaa_const, ctx.builder.CreateAlignedLoad(T_prjlvalue, fieldtyp_p, Align(sizeof(void*)))); *ret = mark_julia_type(ctx, fieldtyp, true, (jl_value_t*)jl_type_type); return true; } } } else if (f == jl_builtin_sizeof && nargs == 1) { const jl_cgval_t &obj = argv[1]; jl_datatype_t *sty = (jl_datatype_t*)jl_unwrap_unionall(obj.typ); assert(jl_string_type->mutabl); if (sty == jl_string_type || sty == jl_simplevector_type) { if (obj.constant) { size_t sz; if (sty == jl_string_type) { sz = jl_string_len(obj.constant); } else { sz = (1 + jl_svec_len(obj.constant)) * sizeof(void*); } *ret = mark_julia_type(ctx, ConstantInt::get(T_size, sz), false, jl_long_type); return true; } // String and SimpleVector's length fields have the same layout auto ptr = emit_bitcast(ctx, boxed(ctx, obj), T_psize); Value *len = tbaa_decorate(tbaa_const, ctx.builder.CreateAlignedLoad(T_size, ptr, Align(sizeof(size_t)))); MDBuilder MDB(jl_LLVMContext); if (sty == jl_simplevector_type) { auto rng = MDB.createRange( V_size0, ConstantInt::get(T_size, INTPTR_MAX / sizeof(void*) - 1)); cast(len)->setMetadata(LLVMContext::MD_range, rng); len = ctx.builder.CreateMul(len, ConstantInt::get(T_size, sizeof(void*))); len = ctx.builder.CreateAdd(len, ConstantInt::get(T_size, sizeof(void*))); } else { auto rng = MDB.createRange(V_size0, ConstantInt::get(T_size, INTPTR_MAX)); cast(len)->setMetadata(LLVMContext::MD_range, rng); } *ret = mark_julia_type(ctx, len, false, jl_long_type); return true; } else if (jl_is_array_type(sty)) { auto len = emit_arraylen(ctx, obj); Value *elsize; size_t elsz; if (arraytype_constelsize(sty, &elsz)) { elsize = ConstantInt::get(T_size, elsz); } else { elsize = ctx.builder.CreateZExt(emit_arrayelsize(ctx, obj), T_size); } *ret = mark_julia_type(ctx, ctx.builder.CreateMul(len, elsize), false, jl_long_type); return true; } } else if (f == jl_builtin_apply_type && nargs > 0) { if (jl_is_method(ctx.linfo->def.method)) { // don't bother codegen constant-folding for toplevel. jl_value_t *ty = static_apply_type(ctx, argv, nargs + 1); if (ty != NULL) { jl_add_method_root(ctx, ty); *ret = mark_julia_const(ty); return true; } } } else if (f == jl_builtin_isdefined && nargs == 2) { const jl_cgval_t &obj = argv[1]; const jl_cgval_t &fld = argv[2]; jl_datatype_t *stt = (jl_datatype_t*)obj.typ; if (jl_is_type_type((jl_value_t*)stt)) { // the representation type of Type{T} is either typeof(T), or unknown // TODO: could use `issingletontype` predicate here, providing better type knowledge // than only handling DataType if (jl_is_concrete_type(jl_tparam0(stt))) stt = (jl_datatype_t*)jl_typeof(jl_tparam0(stt)); else return false; } if (!jl_is_concrete_type((jl_value_t*)stt) || jl_is_array_type(stt) || stt == jl_module_type) { // TODO: use ->layout here instead of concrete_type return false; } assert(jl_is_datatype(stt)); ssize_t fieldidx = -1; if (fld.constant && fld.typ == (jl_value_t*)jl_symbol_type) { jl_sym_t *sym = (jl_sym_t*)fld.constant; fieldidx = jl_field_index(stt, sym, 0); } else if (fld.constant && fld.typ == (jl_value_t*)jl_long_type) { fieldidx = jl_unbox_long(fld.constant) - 1; } else { return false; } if (fieldidx < 0 || fieldidx >= jl_datatype_nfields(stt)) { *ret = mark_julia_const(jl_false); } else if (fieldidx < stt->ninitialized) { *ret = mark_julia_const(jl_true); } else if (jl_field_isptr(stt, fieldidx) || jl_type_hasptr(jl_field_type(stt, fieldidx))) { Value *fldv; size_t offs = jl_field_offset(stt, fieldidx) / sizeof(jl_value_t*); auto tbaa = obj.tbaa; if (tbaa == tbaa_datatype && offs != offsetof(jl_datatype_t, types)) tbaa = tbaa_const; if (obj.ispointer()) { if (!jl_field_isptr(stt, fieldidx)) offs += ((jl_datatype_t*)jl_field_type(stt, fieldidx))->layout->first_ptr; Value *ptr = emit_bitcast(ctx, maybe_decay_tracked(ctx, data_pointer(ctx, obj)), T_pprjlvalue); Value *addr = ctx.builder.CreateConstInBoundsGEP1_32(T_prjlvalue, ptr, offs); // emit this using the same type as emit_getfield_knownidx // so that LLVM may be able to load-load forward them and fold the result fldv = tbaa_decorate(tbaa, ctx.builder.CreateAlignedLoad(T_prjlvalue, addr, Align(sizeof(size_t)))); cast(fldv)->setOrdering(AtomicOrdering::Unordered); } else { fldv = ctx.builder.CreateExtractValue(obj.V, offs); if (!jl_field_isptr(stt, fieldidx)) { fldv = extract_first_ptr(ctx, fldv); assert(fldv); } } Value *isdef = ctx.builder.CreateIsNotNull(fldv); *ret = mark_julia_type(ctx, isdef, false, jl_bool_type); } else { *ret = mark_julia_const(jl_true); } return true; } return false; } // Returns T_prjlvalue static CallInst *emit_jlcall(jl_codectx_t &ctx, Function *theFptr, Value *theF, jl_cgval_t *argv, size_t nargs, CallingConv::ID cc) { // emit arguments SmallVector theArgs; SmallVector argsT; if (theF) { theArgs.push_back(theF); argsT.push_back(T_prjlvalue); } for (size_t i = 0; i < nargs; i++) { Value *arg = boxed(ctx, argv[i]); theArgs.push_back(arg); argsT.push_back(T_prjlvalue); } FunctionType *FTy = FunctionType::get(T_prjlvalue, argsT, false); CallInst *result = ctx.builder.CreateCall(FTy, ctx.builder.CreateBitCast(theFptr, FTy->getPointerTo()), theArgs); add_return_attr(result, Attribute::NonNull); result->setCallingConv(cc); return result; } // Returns T_prjlvalue static CallInst *emit_jlcall(jl_codectx_t &ctx, JuliaFunction *theFptr, Value *theF, jl_cgval_t *argv, size_t nargs, CallingConv::ID cc) { return emit_jlcall(ctx, prepare_call(theFptr), theF, argv, nargs, cc); } static jl_cgval_t emit_call_specfun_other(jl_codectx_t &ctx, jl_method_instance_t *mi, jl_value_t *jlretty, StringRef specFunctionObject, jl_cgval_t *argv, size_t nargs, jl_returninfo_t::CallingConv *cc, unsigned *return_roots, jl_value_t *inferred_retty) { // emit specialized call site jl_returninfo_t returninfo = get_specsig_function(ctx, jl_Module, specFunctionObject, mi->specTypes, jlretty); FunctionType *cft = returninfo.decl->getFunctionType(); *cc = returninfo.cc; *return_roots = returninfo.return_roots; size_t nfargs = cft->getNumParams(); Value **argvals = (Value**)alloca(nfargs * sizeof(Value*)); unsigned idx = 0; AllocaInst *result; switch (returninfo.cc) { case jl_returninfo_t::Boxed: case jl_returninfo_t::Register: case jl_returninfo_t::Ghosts: break; case jl_returninfo_t::SRet: result = emit_static_alloca(ctx, cft->getParamType(0)->getPointerElementType()); argvals[idx] = result; idx++; break; case jl_returninfo_t::Union: result = emit_static_alloca(ctx, ArrayType::get(T_int8, returninfo.union_bytes)); if (returninfo.union_align > 1) result->setAlignment(Align(returninfo.union_align)); argvals[idx] = result; idx++; break; } if (returninfo.return_roots) { AllocaInst *return_roots = emit_static_alloca(ctx, T_prjlvalue); return_roots->setOperand(0, ConstantInt::get(T_int32, returninfo.return_roots)); argvals[idx] = return_roots; idx++; } for (size_t i = 0; i < nargs; i++) { jl_value_t *jt = jl_nth_slot_type(mi->specTypes, i); if (is_uniquerep_Type(jt)) continue; bool isboxed = deserves_argbox(jt); Type *et = isboxed ? T_prjlvalue : julia_type_to_llvm(ctx, jt); if (type_is_ghost(et)) continue; assert(idx < nfargs); Type *at = cft->getParamType(idx); jl_cgval_t arg = argv[i]; if (isboxed) { assert(at == T_prjlvalue && et == T_prjlvalue); argvals[idx] = boxed(ctx, arg); } else if (et->isAggregateType()) { if (!arg.ispointer()) arg = value_to_pointer(ctx, arg); // can lazy load on demand, no copy needed assert(at == PointerType::get(et, AddressSpace::Derived)); argvals[idx] = decay_derived(ctx, maybe_bitcast(ctx, data_pointer(ctx, arg), at)); } else { assert(at == et); Value *val = emit_unbox(ctx, et, arg, jt); if (!val) { // There was a type mismatch of some sort - exit early CreateTrap(ctx.builder); return jl_cgval_t(); } argvals[idx] = val; } idx++; } assert(idx == nfargs); CallInst *call = ctx.builder.CreateCall(returninfo.decl, ArrayRef(&argvals[0], nfargs)); call->setAttributes(returninfo.decl->getAttributes()); jl_cgval_t retval; switch (returninfo.cc) { case jl_returninfo_t::Boxed: retval = mark_julia_type(ctx, call, true, inferred_retty); break; case jl_returninfo_t::Register: retval = mark_julia_type(ctx, call, false, jlretty); break; case jl_returninfo_t::SRet: retval = mark_julia_slot(result, jlretty, NULL, tbaa_stack); break; case jl_returninfo_t::Union: { Value *box = ctx.builder.CreateExtractValue(call, 0); Value *tindex = ctx.builder.CreateExtractValue(call, 1); Value *derived = ctx.builder.CreateSelect( ctx.builder.CreateICmpEQ( ctx.builder.CreateAnd(tindex, ConstantInt::get(T_int8, 0x80)), ConstantInt::get(T_int8, 0)), decay_derived(ctx, ctx.builder.CreateBitCast(argvals[0], T_pjlvalue)), decay_derived(ctx, box) ); retval = mark_julia_slot(derived, jlretty, tindex, tbaa_stack); retval.Vboxed = box; break; } case jl_returninfo_t::Ghosts: retval = mark_julia_slot(NULL, jlretty, call, tbaa_stack); break; } // see if inference has a different / better type for the call than the lambda if (inferred_retty != retval.typ) retval = update_julia_type(ctx, retval, inferred_retty); return retval; } static jl_cgval_t emit_call_specfun_boxed(jl_codectx_t &ctx, StringRef specFunctionObject, jl_cgval_t *argv, size_t nargs, jl_value_t *inferred_retty) { auto theFptr = cast( jl_Module->getOrInsertFunction(specFunctionObject, jl_func_sig).getCallee()); add_return_attr(theFptr, Attribute::NonNull); theFptr->addFnAttr(Thunk); Value *ret = emit_jlcall(ctx, theFptr, nullptr, argv, nargs, JLCALL_F_CC); return mark_julia_type(ctx, ret, true, inferred_retty); } static jl_cgval_t emit_invoke(jl_codectx_t &ctx, jl_expr_t *ex, jl_value_t *rt) { jl_value_t **args = (jl_value_t**)jl_array_data(ex->args); size_t arglen = jl_array_dim0(ex->args); size_t nargs = arglen - 1; assert(arglen >= 2); jl_cgval_t lival = emit_expr(ctx, args[0]); jl_cgval_t *argv = (jl_cgval_t*)alloca(sizeof(jl_cgval_t) * nargs); for (size_t i = 0; i < nargs; ++i) { argv[i] = emit_expr(ctx, args[i + 1]); if (argv[i].typ == jl_bottom_type) return jl_cgval_t(); } bool handled = false; jl_cgval_t result; if (lival.constant) { jl_method_instance_t *mi = (jl_method_instance_t*)lival.constant; assert(jl_is_method_instance(mi)); if (mi == ctx.linfo) { // handle self-recursion specially jl_returninfo_t::CallingConv cc = jl_returninfo_t::CallingConv::Boxed; FunctionType *ft = ctx.f->getFunctionType(); StringRef protoname = ctx.f->getName(); if (ft == jl_func_sig) { result = emit_call_specfun_boxed(ctx, protoname, argv, nargs, rt); handled = true; } else if (ft != jl_func_sig_sparams) { unsigned return_roots = 0; result = emit_call_specfun_other(ctx, mi, ctx.rettype, protoname, argv, nargs, &cc, &return_roots, rt); handled = true; } } else { jl_value_t *ci = ctx.params->lookup(mi, ctx.world, ctx.world); // TODO: need to use the right pair world here jl_code_instance_t *codeinst = (jl_code_instance_t*)ci; if (ci != jl_nothing && codeinst->invoke != jl_fptr_sparam) { // check if we know we definitely can't handle this specptr if (codeinst->invoke == jl_fptr_const_return) { result = mark_julia_const(codeinst->rettype_const); handled = true; } else { bool specsig, needsparams; std::tie(specsig, needsparams) = uses_specsig(mi, codeinst->rettype, ctx.params->prefer_specsig); std::string name; StringRef protoname; bool need_to_emit = true; if (ctx.use_cache) { // optimization: emit the correct name immediately, if we know it // TODO: use `emitted` map here too to try to consolidate names? if (codeinst->specptr.fptr) { if (specsig ? codeinst->isspecsig : codeinst->invoke == jl_fptr_args) { protoname = jl_ExecutionEngine->getFunctionAtAddress((uintptr_t)codeinst->specptr.fptr, codeinst); need_to_emit = false; } } } if (need_to_emit) { raw_string_ostream(name) << (specsig ? "j_" : "j1_") << name_from_method_instance(mi) << "_" << globalUnique++; protoname = StringRef(name); } jl_returninfo_t::CallingConv cc = jl_returninfo_t::CallingConv::Boxed; unsigned return_roots = 0; if (specsig) result = emit_call_specfun_other(ctx, mi, codeinst->rettype, protoname, argv, nargs, &cc, &return_roots, rt); else result = emit_call_specfun_boxed(ctx, protoname, argv, nargs, rt); handled = true; if (need_to_emit) { Function *trampoline_decl = cast(jl_Module->getNamedValue(protoname)); ctx.call_targets.push_back(std::make_tuple(codeinst, cc, return_roots, trampoline_decl, specsig)); } } } } } if (!handled) { Value *r = emit_jlcall(ctx, jlinvoke_func, boxed(ctx, lival), argv, nargs, JLCALL_F2_CC); result = mark_julia_type(ctx, r, true, rt); } if (result.typ == jl_bottom_type) CreateTrap(ctx.builder); return result; } static jl_cgval_t emit_call(jl_codectx_t &ctx, jl_expr_t *ex, jl_value_t *rt) { jl_value_t **args = (jl_value_t**)jl_array_data(ex->args); size_t nargs = jl_array_dim0(ex->args); assert(nargs >= 1); jl_cgval_t f = emit_expr(ctx, args[0]); if (f.constant && jl_typeis(f.constant, jl_intrinsic_type)) { JL_I::intrinsic fi = (intrinsic)*(uint32_t*)jl_data_ptr(f.constant); return emit_intrinsic(ctx, fi, args, nargs - 1); } jl_value_t *context = ctx.params->generic_context == jl_nothing ? nullptr : ctx.params->generic_context; size_t n_generic_args = nargs + (context ? 1 : 0); jl_cgval_t *generic_argv = (jl_cgval_t*)alloca(sizeof(jl_cgval_t) * n_generic_args); jl_cgval_t *argv = generic_argv; if (context) { generic_argv[0] = mark_julia_const(context); argv = &generic_argv[1]; } argv[0] = f; for (size_t i = 1; i < nargs; ++i) { argv[i] = emit_expr(ctx, args[i]); if (argv[i].typ == jl_bottom_type) return jl_cgval_t(); // anything past here is unreachable } if (f.constant && jl_isa(f.constant, (jl_value_t*)jl_builtin_type)) { if (f.constant == jl_builtin_ifelse && nargs == 4) return emit_ifelse(ctx, argv[1], argv[2], argv[3], rt); jl_cgval_t result; bool handled = emit_builtin_call(ctx, &result, f.constant, argv, nargs - 1, rt, ex); if (handled) { return result; } // special case for known builtin not handled by emit_builtin_call auto it = builtin_func_map.find(jl_get_builtin_fptr(f.constant)); if (it != builtin_func_map.end()) { Value *ret = emit_jlcall(ctx, it->second, V_rnull, &argv[1], nargs - 1, JLCALL_F_CC); return mark_julia_type(ctx, ret, true, rt); } } // emit function and arguments Value *callval = emit_jlcall(ctx, jlapplygeneric_func, nullptr, generic_argv, n_generic_args, JLCALL_F_CC); return mark_julia_type(ctx, callval, true, rt); } // --- accessing and assigning variables --- static void undef_var_error_ifnot(jl_codectx_t &ctx, Value *ok, jl_sym_t *name) { BasicBlock *err = BasicBlock::Create(jl_LLVMContext, "err", ctx.f); BasicBlock *ifok = BasicBlock::Create(jl_LLVMContext, "ok"); ctx.builder.CreateCondBr(ok, ifok, err); ctx.builder.SetInsertPoint(err); ctx.builder.CreateCall(prepare_call(jlundefvarerror_func), mark_callee_rooted(ctx, literal_pointer_val(ctx, (jl_value_t*)name))); ctx.builder.CreateUnreachable(); ctx.f->getBasicBlockList().push_back(ifok); ctx.builder.SetInsertPoint(ifok); } // returns a jl_ppvalue_t location for the global variable m.s // if the reference currently bound or assign == true, // pbnd will also be assigned with the binding address static Value *global_binding_pointer(jl_codectx_t &ctx, jl_module_t *m, jl_sym_t *s, jl_binding_t **pbnd, bool assign) { jl_binding_t *b = NULL; if (assign) { b = jl_get_binding_wr(m, s, 0); assert(b != NULL); if (b->owner != m) { char *msg; (void)asprintf(&msg, "cannot assign a value to variable %s.%s from module %s", jl_symbol_name(b->owner->name), jl_symbol_name(s), jl_symbol_name(m->name)); emit_error(ctx, msg); free(msg); } } else { b = jl_get_binding(m, s); if (b == NULL) { // var not found. switch to delayed lookup. Constant *initnul = V_null; GlobalVariable *bindinggv = new GlobalVariable(*ctx.f->getParent(), T_pjlvalue, false, GlobalVariable::PrivateLinkage, initnul); LoadInst *cachedval = ctx.builder.CreateAlignedLoad(T_pjlvalue, bindinggv, Align(sizeof(void*))); cachedval->setOrdering(AtomicOrdering::Unordered); BasicBlock *have_val = BasicBlock::Create(jl_LLVMContext, "found"); BasicBlock *not_found = BasicBlock::Create(jl_LLVMContext, "notfound"); BasicBlock *currentbb = ctx.builder.GetInsertBlock(); ctx.builder.CreateCondBr(ctx.builder.CreateICmpNE(cachedval, initnul), have_val, not_found); ctx.f->getBasicBlockList().push_back(not_found); ctx.builder.SetInsertPoint(not_found); Value *bval = ctx.builder.CreateCall(prepare_call(jlgetbindingorerror_func), { literal_pointer_val(ctx, (jl_value_t*)m), literal_pointer_val(ctx, (jl_value_t*)s) }); ctx.builder.CreateAlignedStore(bval, bindinggv, Align(sizeof(void*)))->setOrdering(AtomicOrdering::Release); ctx.builder.CreateBr(have_val); ctx.f->getBasicBlockList().push_back(have_val); ctx.builder.SetInsertPoint(have_val); PHINode *p = ctx.builder.CreatePHI(T_pjlvalue, 2); p->addIncoming(cachedval, currentbb); p->addIncoming(bval, not_found); return julia_binding_gv(ctx, emit_bitcast(ctx, p, T_pprjlvalue)); } if (b->deprecated) cg_bdw(ctx, b); } if (pbnd) *pbnd = b; return julia_binding_gv(ctx, b); } static jl_cgval_t emit_checked_var(jl_codectx_t &ctx, Value *bp, jl_sym_t *name, bool isvol, MDNode *tbaa) { LoadInst *v = ctx.builder.CreateAlignedLoad(T_prjlvalue, bp, Align(sizeof(void*))); if (isvol) v->setVolatile(true); v->setOrdering(AtomicOrdering::Unordered); if (tbaa) tbaa_decorate(tbaa, v); undef_var_error_ifnot(ctx, ctx.builder.CreateIsNotNull(v), name); return mark_julia_type(ctx, v, true, jl_any_type); } static jl_cgval_t emit_sparam(jl_codectx_t &ctx, size_t i) { if (jl_svec_len(ctx.linfo->sparam_vals) > 0) { jl_value_t *e = jl_svecref(ctx.linfo->sparam_vals, i); if (!jl_is_typevar(e)) { return mark_julia_const(e); } } assert(ctx.spvals_ptr != NULL); Value *bp = ctx.builder.CreateConstInBoundsGEP1_32( T_prjlvalue, ctx.spvals_ptr, i + sizeof(jl_svec_t) / sizeof(jl_value_t*)); Value *sp = tbaa_decorate(tbaa_const, ctx.builder.CreateAlignedLoad(T_prjlvalue, bp, Align(sizeof(void*)))); Value *isnull = ctx.builder.CreateICmpNE(emit_typeof(ctx, sp), track_pjlvalue(ctx, literal_pointer_val(ctx, (jl_value_t*)jl_tvar_type))); jl_unionall_t *sparam = (jl_unionall_t*)ctx.linfo->def.method->sig; for (size_t j = 0; j < i; j++) { sparam = (jl_unionall_t*)sparam->body; assert(jl_is_unionall(sparam)); } undef_var_error_ifnot(ctx, isnull, sparam->var->name); return mark_julia_type(ctx, sp, true, jl_any_type); } static jl_cgval_t emit_global(jl_codectx_t &ctx, jl_sym_t *sym) { jl_binding_t *jbp = NULL; Value *bp = global_binding_pointer(ctx, ctx.module, sym, &jbp, false); assert(bp != NULL); if (jbp && jbp->value != NULL) { if (jbp->constp) return mark_julia_const(jbp->value); // double-check that a global variable is actually defined. this // can be a problem in parallel when a definition is missing on // one machine. LoadInst *v = ctx.builder.CreateAlignedLoad(T_prjlvalue, bp, Align(sizeof(void*))); v->setOrdering(AtomicOrdering::Unordered); tbaa_decorate(tbaa_binding, v); return mark_julia_type(ctx, v, true, jl_any_type); } return emit_checked_var(ctx, bp, sym, false, tbaa_binding); } static jl_cgval_t emit_isdefined(jl_codectx_t &ctx, jl_value_t *sym) { Value *isnull = NULL; if (jl_is_slot(sym) || jl_is_argument(sym)) { size_t sl = jl_slot_number(sym) - 1; jl_varinfo_t &vi = ctx.slots[sl]; if (!vi.usedUndef) return mark_julia_const(jl_true); if (vi.boxroot == NULL || vi.pTIndex != NULL) { assert(vi.defFlag); isnull = ctx.builder.CreateAlignedLoad(T_int1, vi.defFlag, Align(1), vi.isVolatile); } if (vi.boxroot != NULL) { Value *boxed = ctx.builder.CreateAlignedLoad(T_prjlvalue, vi.boxroot, Align(sizeof(void*)), vi.isVolatile); Value *box_isnull = ctx.builder.CreateICmpNE(boxed, V_rnull); if (vi.pTIndex) { // value is either boxed in the stack slot, or unboxed in value // as indicated by testing (pTIndex & 0x80) Value *tindex = ctx.builder.CreateAlignedLoad(T_int8, vi.pTIndex, Align(sizeof(void*)), vi.isVolatile); Value *load_unbox = ctx.builder.CreateICmpEQ( ctx.builder.CreateAnd(tindex, ConstantInt::get(T_int8, 0x80)), ConstantInt::get(T_int8, 0)); isnull = ctx.builder.CreateSelect(load_unbox, isnull, box_isnull); } else { isnull = box_isnull; } } } else if (jl_is_expr(sym)) { assert(((jl_expr_t*)sym)->head == static_parameter_sym && "malformed isdefined expression"); size_t i = jl_unbox_long(jl_exprarg(sym, 0)) - 1; if (jl_svec_len(ctx.linfo->sparam_vals) > 0) { jl_value_t *e = jl_svecref(ctx.linfo->sparam_vals, i); if (!jl_is_typevar(e)) { return mark_julia_const(jl_true); } } assert(ctx.spvals_ptr != NULL); Value *bp = ctx.builder.CreateConstInBoundsGEP1_32( T_prjlvalue, ctx.spvals_ptr, i + sizeof(jl_svec_t) / sizeof(jl_value_t*)); Value *sp = tbaa_decorate(tbaa_const, ctx.builder.CreateAlignedLoad(T_prjlvalue, bp, Align(sizeof(void*)))); isnull = ctx.builder.CreateICmpNE(emit_typeof(ctx, sp), track_pjlvalue(ctx, literal_pointer_val(ctx, (jl_value_t*)jl_tvar_type))); } else { jl_module_t *modu; jl_sym_t *name; if (jl_is_globalref(sym)) { modu = jl_globalref_mod(sym); name = jl_globalref_name(sym); } else { assert(jl_is_symbol(sym) && "malformed isdefined expression"); modu = ctx.module; name = (jl_sym_t*)sym; } jl_binding_t *bnd = jl_get_binding(modu, name); if (bnd) { if (bnd->value != NULL) return mark_julia_const(jl_true); Value *bp = julia_binding_gv(ctx, bnd); LoadInst *v = ctx.builder.CreateAlignedLoad(T_prjlvalue, bp, Align(sizeof(void*))); tbaa_decorate(tbaa_binding, v); v->setOrdering(AtomicOrdering::Unordered); isnull = ctx.builder.CreateICmpNE(v, V_rnull); } else { Value *v = ctx.builder.CreateCall(prepare_call(jlboundp_func), { literal_pointer_val(ctx, (jl_value_t*)modu), literal_pointer_val(ctx, (jl_value_t*)name) }); isnull = ctx.builder.CreateICmpNE(v, ConstantInt::get(T_int32, 0)); } } return mark_julia_type(ctx, isnull, false, jl_bool_type); } static jl_cgval_t emit_varinfo(jl_codectx_t &ctx, jl_varinfo_t &vi, jl_sym_t *varname, jl_value_t *better_typ=NULL) { jl_value_t *typ = better_typ ? better_typ : vi.value.typ; jl_cgval_t v; Value *isnull = NULL; if (vi.boxroot == NULL || vi.pTIndex != NULL) { if ((!vi.isVolatile && vi.isSA) || vi.isArgument || vi.value.constant || !vi.value.V) { v = vi.value; if (vi.pTIndex) v.TIndex = ctx.builder.CreateAlignedLoad(T_int8, vi.pTIndex, Align(1)); } else { // copy value to a non-mutable (non-volatile SSA) location AllocaInst *varslot = cast(vi.value.V); Type *T = varslot->getAllocatedType(); assert(!varslot->isArrayAllocation() && "variables not expected to be VLA"); AllocaInst *ssaslot = cast(varslot->clone()); ssaslot->insertAfter(varslot); if (vi.isVolatile) { Value *unbox = ctx.builder.CreateAlignedLoad(ssaslot->getAllocatedType(), varslot, #if JL_LLVM_VERSION >= 110000 varslot->getAlign(), #else varslot->getAlignment(), #endif true); ctx.builder.CreateAlignedStore(unbox, ssaslot, #if JL_LLVM_VERSION >= 110000 ssaslot->getAlign() #else ssaslot->getAlignment() #endif ); } else { const DataLayout &DL = jl_data_layout; uint64_t sz = DL.getTypeStoreSize(T); emit_memcpy(ctx, ssaslot, tbaa_stack, vi.value, sz, #if JL_LLVM_VERSION >= 110000 ssaslot->getAlign().value() #else ssaslot->getAlignment() #endif ); } Value *tindex = NULL; if (vi.pTIndex) tindex = ctx.builder.CreateAlignedLoad(T_int8, vi.pTIndex, Align(1), vi.isVolatile); v = mark_julia_slot(ssaslot, vi.value.typ, tindex, tbaa_stack); } if (vi.boxroot == NULL) v = update_julia_type(ctx, v, typ); if (vi.usedUndef) { assert(vi.defFlag); isnull = ctx.builder.CreateAlignedLoad(T_int1, vi.defFlag, Align(1), vi.isVolatile); } } if (vi.boxroot != NULL) { Instruction *boxed = ctx.builder.CreateAlignedLoad(T_prjlvalue, vi.boxroot, Align(sizeof(void*)), vi.isVolatile); Value *box_isnull = NULL; if (vi.usedUndef) box_isnull = ctx.builder.CreateICmpNE(boxed, V_rnull); maybe_mark_load_dereferenceable(boxed, vi.usedUndef || vi.pTIndex, typ); if (vi.pTIndex) { // value is either boxed in the stack slot, or unboxed in value // as indicated by testing (pTIndex & 0x80) Value *load_unbox = ctx.builder.CreateICmpEQ( ctx.builder.CreateAnd(v.TIndex, ConstantInt::get(T_int8, 0x80)), ConstantInt::get(T_int8, 0)); if (vi.usedUndef) isnull = ctx.builder.CreateSelect(load_unbox, isnull, box_isnull); if (v.V) { // v.V will be null if it is a union of all ghost values v.V = ctx.builder.CreateSelect(load_unbox, emit_bitcast(ctx, decay_derived(ctx, v.V), boxed->getType()), decay_derived(ctx, boxed)); } else v.V = boxed; v.Vboxed = boxed; v = update_julia_type(ctx, v, typ); } else { v = mark_julia_type(ctx, boxed, true, typ); if (vi.usedUndef) isnull = box_isnull; } } if (isnull) undef_var_error_ifnot(ctx, isnull, varname); return v; } static jl_cgval_t emit_local(jl_codectx_t &ctx, jl_value_t *slotload) { size_t sl = jl_slot_number(slotload) - 1; jl_varinfo_t &vi = ctx.slots[sl]; jl_sym_t *sym = slot_symbol(ctx, sl); jl_value_t *typ = NULL; if (jl_typeis(slotload, jl_typedslot_type)) { // use the better type from inference for this load typ = jl_typedslot_get_type(slotload); if (jl_is_typevar(typ)) typ = ((jl_tvar_t*)typ)->ub; } return emit_varinfo(ctx, vi, sym, typ); } static void emit_vi_assignment_unboxed(jl_codectx_t &ctx, jl_varinfo_t &vi, Value *isboxed, jl_cgval_t rval_info) { if (vi.usedUndef) store_def_flag(ctx, vi, true); if (!vi.value.constant) { // check that this is not a virtual store assert(vi.value.ispointer() || (vi.pTIndex && vi.value.V == NULL)); // store value if (vi.value.V == NULL) { // all ghost values in destination - nothing to copy or store } else if (rval_info.constant || !rval_info.ispointer()) { if (rval_info.isghost) { // all ghost values in source - nothing to copy or store } else { if (rval_info.typ != vi.value.typ && !vi.pTIndex && !rval_info.TIndex) { // isbits cast-on-assignment is invalid. this branch should be dead-code. CreateTrap(ctx.builder); } else { Value *dest = vi.value.V; if (vi.pTIndex) ctx.builder.CreateStore(UndefValue::get(cast(vi.value.V)->getAllocatedType()), vi.value.V); Type *store_ty = julia_type_to_llvm(ctx, rval_info.constant ? jl_typeof(rval_info.constant) : rval_info.typ); Type *dest_ty = store_ty->getPointerTo(); if (dest_ty != dest->getType()) dest = emit_bitcast(ctx, dest, dest_ty); tbaa_decorate(tbaa_stack, ctx.builder.CreateStore( emit_unbox(ctx, store_ty, rval_info, rval_info.typ), dest, vi.isVolatile)); } } } else { if (vi.pTIndex == NULL) { assert(jl_is_concrete_type(vi.value.typ)); // Sometimes we can get into situations where the LHS and RHS // are the same slot. We're not allowed to memcpy in that case // due to LLVM bugs. // This check should probably mostly catch the relevant situations. if (vi.value.V != rval_info.V) { Value *copy_bytes = ConstantInt::get(T_int32, jl_datatype_size(vi.value.typ)); emit_memcpy(ctx, vi.value.V, tbaa_stack, rval_info, copy_bytes, julia_alignment(rval_info.typ), vi.isVolatile); } } else { emit_unionmove(ctx, vi.value.V, tbaa_stack, rval_info, isboxed, vi.isVolatile); } } } else { assert(vi.pTIndex == NULL); } } static void emit_phinode_assign(jl_codectx_t &ctx, ssize_t idx, jl_value_t *r) { jl_value_t *ssavalue_types = (jl_value_t*)ctx.source->ssavaluetypes; assert(jl_is_array(ssavalue_types)); jl_array_t *edges = (jl_array_t*)jl_fieldref_noalloc(r, 0); jl_value_t *phiType = jl_array_ptr_ref(ssavalue_types, idx); BasicBlock *BB = ctx.builder.GetInsertBlock(); auto InsertPt = BB->getFirstInsertionPt(); if (phiType == jl_bottom_type) { return; } AllocaInst *dest = nullptr; // N.B.: For any memory space, used as a phi, // we need to emit space twice here. The reason for this is that // phi nodes may be arguments of other phi nodes, so if we don't // have two buffers, one may be overwritten before its value is // used. Hopefully LLVM will be able to fold this back where legal. if (jl_is_uniontype(phiType)) { bool allunbox; size_t min_align, nbytes; dest = try_emit_union_alloca(ctx, ((jl_uniontype_t*)phiType), allunbox, min_align, nbytes); if (dest) { Instruction *phi = dest->clone(); phi->insertAfter(dest); PHINode *Tindex_phi = PHINode::Create(T_int8, jl_array_len(edges), "tindex_phi"); BB->getInstList().insert(InsertPt, Tindex_phi); PHINode *ptr_phi = PHINode::Create(T_prjlvalue, jl_array_len(edges), "ptr_phi"); BB->getInstList().insert(InsertPt, ptr_phi); Value *isboxed = ctx.builder.CreateICmpNE( ctx.builder.CreateAnd(Tindex_phi, ConstantInt::get(T_int8, 0x80)), ConstantInt::get(T_int8, 0)); #if JL_LLVM_VERSION >= 100000 ctx.builder.CreateMemCpy(phi, MaybeAlign(min_align), dest, MaybeAlign(0), nbytes, false); #else ctx.builder.CreateMemCpy(phi, min_align, dest, 0, nbytes, false); #endif ctx.builder.CreateLifetimeEnd(dest); Value *ptr = ctx.builder.CreateSelect(isboxed, maybe_bitcast(ctx, decay_derived(ctx, ptr_phi), T_pint8), maybe_bitcast(ctx, decay_derived(ctx, phi), T_pint8)); jl_cgval_t val = mark_julia_slot(ptr, phiType, Tindex_phi, tbaa_stack); // XXX: this TBAA is wrong for ptr_phi val.Vboxed = ptr_phi; ctx.PhiNodes.push_back(std::make_tuple(val, BB, dest, ptr_phi, r)); ctx.SAvalues.at(idx) = val; ctx.ssavalue_assigned.at(idx) = true; return; } else if (allunbox) { PHINode *Tindex_phi = PHINode::Create(T_int8, jl_array_len(edges), "tindex_phi"); BB->getInstList().insert(InsertPt, Tindex_phi); jl_cgval_t val = mark_julia_slot(NULL, phiType, Tindex_phi, tbaa_stack); ctx.PhiNodes.push_back(std::make_tuple(val, BB, dest, (PHINode*)NULL, r)); ctx.SAvalues.at(idx) = val; ctx.ssavalue_assigned.at(idx) = true; return; } } bool isboxed = !deserves_stack(phiType); Type *vtype = isboxed ? T_prjlvalue : julia_type_to_llvm(ctx, phiType); // The frontend should really not emit this, but we allow it // for convenience. if (type_is_ghost(vtype)) { assert(jl_is_datatype(phiType) && ((jl_datatype_t*)phiType)->instance); // Skip adding it to the PhiNodes list, since we didn't create one. ctx.SAvalues.at(idx) = mark_julia_const(((jl_datatype_t*)phiType)->instance); ctx.ssavalue_assigned.at(idx) = true; return; } jl_cgval_t slot; PHINode *value_phi = NULL; if (vtype->isAggregateType() && CountTrackedPointers(vtype).count == 0) { // the value will be moved into dest in the predecessor critical block. // here it's moved into phi in the successor (from dest) dest = emit_static_alloca(ctx, vtype); Value *phi = emit_static_alloca(ctx, vtype); #if JL_LLVM_VERSION >= 100000 ctx.builder.CreateMemCpy(phi, MaybeAlign(julia_alignment(phiType)), dest, MaybeAlign(0), jl_datatype_size(phiType), false); #else ctx.builder.CreateMemCpy(phi, julia_alignment(phiType), dest, 0, jl_datatype_size(phiType), false); #endif ctx.builder.CreateLifetimeEnd(dest); slot = mark_julia_slot(phi, phiType, NULL, tbaa_stack); } else { value_phi = PHINode::Create(vtype, jl_array_len(edges), "value_phi"); BB->getInstList().insert(InsertPt, value_phi); slot = mark_julia_type(ctx, value_phi, isboxed, phiType); } ctx.PhiNodes.push_back(std::make_tuple(slot, BB, dest, value_phi, r)); ctx.SAvalues.at(idx) = slot; ctx.ssavalue_assigned.at(idx) = true; return; } static void emit_ssaval_assign(jl_codectx_t &ctx, ssize_t idx, jl_value_t *r) { assert(!ctx.ssavalue_assigned.at(idx)); if (jl_is_phinode(r)) { return emit_phinode_assign(ctx, idx, r); } jl_cgval_t slot; if (jl_is_phicnode(r)) { jl_varinfo_t &vi = ctx.phic_slots[idx]; slot = emit_varinfo(ctx, vi, jl_symbol("phic")); } else { slot = emit_expr(ctx, r, idx); // slot could be a jl_value_t (unboxed) or jl_value_t* (ispointer) } if (slot.isboxed || slot.TIndex) { // see if inference suggested a different type for the ssavalue than the expression // e.g. sometimes the information is inconsistent after inlining getfield on a Tuple jl_value_t *ssavalue_types = (jl_value_t*)ctx.source->ssavaluetypes; if (jl_is_array(ssavalue_types)) { jl_value_t *declType = jl_array_ptr_ref(ssavalue_types, idx); if (declType != slot.typ) { slot = update_julia_type(ctx, slot, declType); } } } ctx.SAvalues.at(idx) = slot; // now SAvalues[idx] contains the SAvalue ctx.ssavalue_assigned.at(idx) = true; } static void emit_varinfo_assign(jl_codectx_t &ctx, jl_varinfo_t &vi, jl_cgval_t rval_info, jl_value_t *l=NULL) { if (!vi.used || vi.value.typ == jl_bottom_type) return; // convert rval-type to lval-type jl_value_t *slot_type = vi.value.typ; rval_info = convert_julia_type(ctx, rval_info, slot_type); if (rval_info.typ == jl_bottom_type) return; // compute / store tindex info if (vi.pTIndex) { Value *tindex; if (rval_info.TIndex) { tindex = rval_info.TIndex; if (!vi.boxroot) tindex = ctx.builder.CreateAnd(tindex, ConstantInt::get(T_int8, 0x7f)); } else { assert(rval_info.isboxed || rval_info.constant); tindex = compute_tindex_unboxed(ctx, rval_info, vi.value.typ); if (vi.boxroot) tindex = ctx.builder.CreateOr(tindex, ConstantInt::get(T_int8, 0x80)); else rval_info.TIndex = tindex; } ctx.builder.CreateStore(tindex, vi.pTIndex, vi.isVolatile); } // store boxed variables Value *isboxed = NULL; if (vi.boxroot) { Value *rval; if (vi.pTIndex && rval_info.TIndex) { ctx.builder.CreateStore(rval_info.TIndex, vi.pTIndex, vi.isVolatile); isboxed = ctx.builder.CreateICmpNE( ctx.builder.CreateAnd(rval_info.TIndex, ConstantInt::get(T_int8, 0x80)), ConstantInt::get(T_int8, 0)); rval = rval_info.Vboxed ? rval_info.Vboxed : V_rnull; assert(rval->getType() == T_prjlvalue); assert(!vi.value.constant); } else { assert(!vi.pTIndex || rval_info.isboxed || rval_info.constant); rval = boxed(ctx, rval_info); } ctx.builder.CreateStore(rval, vi.boxroot, vi.isVolatile); } // store unboxed variables if (!vi.boxroot || (vi.pTIndex && rval_info.TIndex)) { emit_vi_assignment_unboxed(ctx, vi, isboxed, rval_info); } } static void emit_assignment(jl_codectx_t &ctx, jl_value_t *l, jl_value_t *r, ssize_t ssaval) { assert(!jl_is_ssavalue(l)); jl_sym_t *s = NULL; jl_binding_t *bnd = NULL; Value *bp = NULL; if (jl_is_symbol(l)) s = (jl_sym_t*)l; else if (jl_is_globalref(l)) bp = global_binding_pointer(ctx, jl_globalref_mod(l), jl_globalref_name(l), &bnd, true); // now bp != NULL else assert(jl_is_slot(l)); if (bp == NULL && s != NULL) bp = global_binding_pointer(ctx, ctx.module, s, &bnd, true); if (bp != NULL) { // it's a global assert(bnd); Value *rval = mark_callee_rooted(ctx, boxed(ctx, emit_expr(ctx, r, ssaval))); ctx.builder.CreateCall(prepare_call(jlcheckassign_func), { literal_pointer_val(ctx, bnd), rval }); // Global variable. Does not need debug info because the debugger knows about // its memory location. return; } int sl = jl_slot_number(l) - 1; // it's a local variable jl_varinfo_t &vi = ctx.slots[sl]; jl_cgval_t rval_info = emit_expr(ctx, r, ssaval); emit_varinfo_assign(ctx, vi, rval_info, l); } static void emit_upsilonnode(jl_codectx_t &ctx, ssize_t phic, jl_value_t *val) { jl_varinfo_t &vi = ctx.phic_slots[phic]; // If the val is null, we can ignore the store. // The middle end guarantees that the value from this // upsilon node is not dynamically observed. if (val) { jl_cgval_t rval_info = emit_expr(ctx, val); if (rval_info.typ == jl_bottom_type) // as a special case, PhiC nodes are allowed to use undefined // values, since they are just copy operations, so we need to // ignore the store (it will not by dynamically observed), while // normally, for any other operation result, we'd assume this store // was unreachable and dead val = NULL; else emit_varinfo_assign(ctx, vi, rval_info); } if (!val) { if (vi.boxroot) { // memory optimization: eagerly clear this gc-root now ctx.builder.CreateAlignedStore(V_rnull, vi.boxroot, Align(sizeof(void*)), true); } if (vi.pTIndex) { // We don't care what the contents of the variable are, but it // does need to satisfy the union invariants (i.e. inbounds // tindex). ctx.builder.CreateAlignedStore( vi.boxroot ? ConstantInt::get(T_int8, 0x80) : ConstantInt::get(T_int8, 0x01), vi.pTIndex, Align(1), true); } else if (vi.value.V && !vi.value.constant && vi.value.typ != jl_bottom_type) { assert(vi.value.ispointer()); Type *T = cast(vi.value.V)->getAllocatedType(); if (CountTrackedPointers(T).count) { // make sure gc pointers (including ptr_phi of union-split) are initialized to NULL ctx.builder.CreateStore(Constant::getNullValue(T), vi.value.V, true); } } } } // --- convert expression to code --- static jl_cgval_t emit_cfunction(jl_codectx_t &ctx, jl_value_t *output_type, const jl_cgval_t &fexpr, jl_value_t *rt, jl_svec_t *argt); static Value *emit_condition(jl_codectx_t &ctx, const jl_cgval_t &condV, const std::string &msg) { bool isbool = (condV.typ == (jl_value_t*)jl_bool_type); if (!isbool) { if (condV.TIndex) { // check whether this might be bool isbool = jl_subtype((jl_value_t*)jl_bool_type, condV.typ); } emit_typecheck(ctx, condV, (jl_value_t*)jl_bool_type, msg); } if (isbool) { Value *cond = emit_unbox(ctx, T_int8, condV, (jl_value_t*)jl_bool_type); assert(cond->getType() == T_int8); return ctx.builder.CreateXor(ctx.builder.CreateTrunc(cond, T_int1), ConstantInt::get(T_int1, 1)); } if (condV.isboxed) { return ctx.builder.CreateICmpEQ(boxed(ctx, condV), track_pjlvalue(ctx, literal_pointer_val(ctx, jl_false))); } // not a boolean return ConstantInt::get(T_int1, 0); // TODO: replace with Undef } static Value *emit_condition(jl_codectx_t &ctx, jl_value_t *cond, const std::string &msg) { return emit_condition(ctx, emit_expr(ctx, cond), msg); } static void emit_stmtpos(jl_codectx_t &ctx, jl_value_t *expr, int ssaval_result) { if (jl_is_ssavalue(expr) && ssaval_result == -1) return; // value not used, no point in attempting codegen for it if (jl_is_slot(expr) && ssaval_result == -1) { size_t sl = jl_slot_number(expr) - 1; jl_varinfo_t &vi = ctx.slots[sl]; if (vi.usedUndef) (void)emit_expr(ctx, expr); return; } if (jl_is_argument(expr) && ssaval_result == -1) { return; } if (jl_is_newvarnode(expr)) { jl_value_t *var = jl_fieldref(expr, 0); assert(jl_is_slot(var)); jl_varinfo_t &vi = ctx.slots[jl_slot_number(var)-1]; if (vi.usedUndef) { // create a new uninitialized variable Value *lv = vi.boxroot; if (lv != NULL) ctx.builder.CreateStore(V_rnull, lv); if (lv == NULL || vi.pTIndex != NULL) store_def_flag(ctx, vi, false); } return; } if (!jl_is_expr(expr)) { assert(ssaval_result != -1); emit_ssaval_assign(ctx, ssaval_result, expr); return; } jl_expr_t *ex = (jl_expr_t*)expr; jl_value_t **args = (jl_value_t**)jl_array_data(ex->args); jl_sym_t *head = ex->head; if (head == meta_sym || head == inbounds_sym || head == coverageeffect_sym || head == aliasscope_sym || head == popaliasscope_sym) { // some expression types are metadata and can be ignored // in statement position return; } else if (head == leave_sym) { assert(jl_is_long(args[0])); ctx.builder.CreateCall(prepare_call(jlleave_func), ConstantInt::get(T_int32, jl_unbox_long(args[0]))); } else if (head == pop_exception_sym) { jl_cgval_t excstack_state = emit_expr(ctx, jl_exprarg(expr, 0)); assert(excstack_state.V && excstack_state.V->getType() == T_size); ctx.builder.CreateCall(prepare_call(jl_restore_excstack_func), excstack_state.V); return; } else { if (!jl_is_method(ctx.linfo->def.method) && !ctx.is_opaque_closure) { // TODO: inference is invalid if this has any effect (which it often does) Value *world = ctx.builder.CreateAlignedLoad(prepare_global_in(jl_Module, jlgetworld_global), Align(sizeof(size_t))); // TODO: world->setOrdering(AtomicOrdering::Monotonic); ctx.builder.CreateAlignedStore(world, ctx.world_age_field, Align(sizeof(size_t))); } assert(ssaval_result != -1); emit_ssaval_assign(ctx, ssaval_result, expr); } } // `expr` is not clobbered in JL_TRY JL_GCC_IGNORE_START("-Wclobbered") static jl_cgval_t emit_expr(jl_codectx_t &ctx, jl_value_t *expr, ssize_t ssaval) { if (jl_is_symbol(expr)) { jl_sym_t *sym = (jl_sym_t*)expr; return emit_global(ctx, sym); } if (jl_is_slot(expr) || jl_is_argument(expr)) { return emit_local(ctx, expr); } if (jl_is_ssavalue(expr)) { ssize_t idx = ((jl_ssavalue_t*)expr)->id - 1; assert(idx >= 0); if (!ctx.ssavalue_assigned.at(idx)) { ctx.ssavalue_assigned.at(idx) = true; // (assignment, not comparison test) return jl_cgval_t(); // dead code branch } else { return ctx.SAvalues.at(idx); // at this point, SAvalues[idx] actually contains the SAvalue } } if (jl_is_globalref(expr)) { return emit_globalref(ctx, jl_globalref_mod(expr), jl_globalref_name(expr)); } if (jl_is_linenode(expr)) { jl_error("LineNumberNode in value position"); } if (jl_is_gotonode(expr)) { jl_error("GotoNode in value position"); } if (jl_is_gotoifnot(expr)) { jl_error("GotoIfNot in value position"); } if (jl_is_pinode(expr)) { return convert_julia_type(ctx, emit_expr(ctx, jl_fieldref_noalloc(expr, 0)), jl_fieldref_noalloc(expr, 1)); } if (!jl_is_expr(expr)) { int needroot = true; if (jl_is_quotenode(expr)) { expr = jl_fieldref_noalloc(expr,0); } // numeric literals if (jl_is_int32(expr)) { int32_t val = jl_unbox_int32(expr); if ((uint32_t)(val+512) < 1024) { // this can be gotten from the box cache needroot = false; expr = jl_box_int32(val); } } else if (jl_is_int64(expr)) { uint64_t val = jl_unbox_uint64(expr); if ((uint64_t)(val+512) < 1024) { // this can be gotten from the box cache needroot = false; expr = jl_box_int64(val); } } else if (jl_is_uint8(expr)) { expr = jl_box_uint8(jl_unbox_uint8(expr)); needroot = false; } if (needroot && jl_is_method(ctx.linfo->def.method)) { // toplevel exprs and some integers are already rooted jl_add_method_root(ctx, expr); } return mark_julia_const(expr); } jl_expr_t *ex = (jl_expr_t*)expr; jl_value_t **args = (jl_value_t**)jl_array_data(ex->args); jl_sym_t *head = ex->head; // this is object-disoriented. // however, this is a good way to do it because it should *not* be easy // to add new node types. if (head == isdefined_sym) { return emit_isdefined(ctx, args[0]); } else if (head == throw_undef_if_not_sym) { jl_sym_t *var = (jl_sym_t*)args[0]; Value *cond = ctx.builder.CreateTrunc(emit_unbox(ctx, T_int8, emit_expr(ctx, args[1]), (jl_value_t*)jl_bool_type), T_int1); if (var == getfield_undefref_sym) { raise_exception_unless(ctx, cond, literal_pointer_val(ctx, jl_undefref_exception)); } else { undef_var_error_ifnot(ctx, cond, var); } return ghostValue(jl_nothing_type); } else if (head == invoke_sym) { assert(ssaval >= 0); jl_value_t *expr_t = jl_is_long(ctx.source->ssavaluetypes) ? (jl_value_t*)jl_any_type : jl_array_ptr_ref(ctx.source->ssavaluetypes, ssaval); return emit_invoke(ctx, ex, expr_t); } else if (head == call_sym) { jl_value_t *expr_t; if (ssaval < 0) // TODO: this case is needed for the call to emit_expr in emit_llvmcall expr_t = (jl_value_t*)jl_any_type; else expr_t = jl_is_long(ctx.source->ssavaluetypes) ? (jl_value_t*)jl_any_type : jl_array_ptr_ref(ctx.source->ssavaluetypes, ssaval); jl_cgval_t res = emit_call(ctx, ex, expr_t); // some intrinsics (e.g. typeassert) can return a wider type // than what's actually possible res = update_julia_type(ctx, res, expr_t); if (res.typ == jl_bottom_type || expr_t == jl_bottom_type) { CreateTrap(ctx.builder); } return res; } else if (head == foreigncall_sym) { return emit_ccall(ctx, args, jl_array_dim0(ex->args)); } else if (head == cfunction_sym) { jl_cgval_t fexpr_rt = emit_expr(ctx, args[1]); return emit_cfunction(ctx, args[0], fexpr_rt, args[2], (jl_svec_t*)args[3]); } else if (head == assign_sym) { emit_assignment(ctx, args[0], args[1], ssaval); return ghostValue(jl_nothing_type); } else if (head == static_parameter_sym) { return emit_sparam(ctx, jl_unbox_long(args[0]) - 1); } else if (head == method_sym) { jl_value_t *mn = args[0]; assert(jl_expr_nargs(ex) != 1 || jl_is_symbol(mn) || jl_is_slot(mn)); Value *bp = NULL, *name, *bp_owner = V_null; jl_binding_t *bnd = NULL; bool issym = jl_is_symbol(mn); bool isglobalref = !issym && jl_is_globalref(mn); jl_module_t *mod = ctx.module; if (issym || isglobalref) { if (isglobalref) { mod = jl_globalref_mod(mn); mn = (jl_value_t*)jl_globalref_name(mn); } JL_TRY { if (jl_symbol_name((jl_sym_t*)mn)[0] == '@') jl_errorf("macro definition not allowed inside a local scope"); name = literal_pointer_val(ctx, mn); bnd = jl_get_binding_for_method_def(mod, (jl_sym_t*)mn); } JL_CATCH { jl_value_t *e = jl_current_exception(); // errors. boo. root it somehow :( bnd = jl_get_binding_wr(ctx.module, (jl_sym_t*)jl_gensym(), 1); bnd->value = e; bnd->constp = 1; raise_exception(ctx, literal_pointer_val(ctx, e)); return ghostValue(jl_nothing_type); } bp = julia_binding_gv(ctx, bnd); bp_owner = literal_pointer_val(ctx, (jl_value_t*)mod); } else if (jl_is_slot(mn) || jl_is_argument(mn)) { int sl = jl_slot_number(mn)-1; jl_varinfo_t &vi = ctx.slots[sl]; bp = vi.boxroot; name = literal_pointer_val(ctx, (jl_value_t*)slot_symbol(ctx, sl)); } if (bp) { Value *mdargs[5] = { name, literal_pointer_val(ctx, (jl_value_t*)mod), bp, bp_owner, literal_pointer_val(ctx, bnd) }; jl_cgval_t gf = mark_julia_type( ctx, ctx.builder.CreateCall(prepare_call(jlgenericfunction_func), makeArrayRef(mdargs)), true, jl_function_type); if (jl_expr_nargs(ex) == 1) return gf; } Value *a1 = boxed(ctx, emit_expr(ctx, args[1])); Value *a2 = boxed(ctx, emit_expr(ctx, args[2])); Value *mdargs[3] = { /*argdata*/a1, /*code*/a2, /*module*/literal_pointer_val(ctx, (jl_value_t*)ctx.module) }; jl_cgval_t meth = mark_julia_type( ctx, ctx.builder.CreateCall(prepare_call(jlmethod_func), makeArrayRef(mdargs)), true, jl_method_type); return meth; } else if (head == const_sym) { jl_sym_t *sym = (jl_sym_t*)args[0]; jl_module_t *mod = ctx.module; if (jl_is_globalref(sym)) { mod = jl_globalref_mod(sym); sym = jl_globalref_name(sym); } if (jl_is_symbol(sym)) { jl_binding_t *bnd = NULL; (void)global_binding_pointer(ctx, mod, sym, &bnd, true); assert(bnd); ctx.builder.CreateCall(prepare_call(jldeclareconst_func), literal_pointer_val(ctx, bnd)); } } else if (head == new_sym) { size_t nargs = jl_array_len(ex->args); jl_cgval_t *argv = (jl_cgval_t*)alloca(sizeof(jl_cgval_t) * nargs); for (size_t i = 0; i < nargs; ++i) { argv[i] = emit_expr(ctx, args[i]); } jl_value_t *ty = argv[0].typ; if (jl_is_type_type(ty) && jl_is_datatype(jl_tparam0(ty)) && jl_is_concrete_type(jl_tparam0(ty))) { assert(nargs <= jl_datatype_nfields(jl_tparam0(ty)) + 1); return emit_new_struct(ctx, jl_tparam0(ty), nargs - 1, &argv[1]); } Value *val = emit_jlcall(ctx, jlnew_func, nullptr, argv, nargs, JLCALL_F_CC); // temporarily mark as `Any`, expecting `emit_ssaval_assign` to update // it to the inferred type. return mark_julia_type(ctx, val, true, (jl_value_t*)jl_any_type); } else if (head == splatnew_sym) { jl_cgval_t argv[2]; argv[0] = emit_expr(ctx, args[0]); argv[1] = emit_expr(ctx, args[1]); Value *typ = boxed(ctx, argv[0]); Value *tup = boxed(ctx, argv[1]); Value *val = ctx.builder.CreateCall(prepare_call(jlsplatnew_func), { typ, tup }); // temporarily mark as `Any`, expecting `emit_ssaval_assign` to update // it to the inferred type. return mark_julia_type(ctx, val, true, (jl_value_t*)jl_any_type); } else if (head == new_opaque_closure_sym) { size_t nargs = jl_array_len(ex->args); assert(nargs >= 5 && "Not enough arguments in new_opaque_closure"); SmallVector argv(nargs); for (size_t i = 0; i < nargs; ++i) { argv[i] = emit_expr(ctx, args[i]); } const jl_cgval_t &argt = argv[0]; const jl_cgval_t &isva = argv[1]; const jl_cgval_t &lb = argv[2]; const jl_cgval_t &ub = argv[3]; const jl_cgval_t &source = argv[4]; if (source.constant == NULL) { // For now, we require non-constant source to be handled by using // eval. This should probably be a verifier error and an abort here. emit_error(ctx, "(internal error) invalid IR: opaque closure source be constant"); return jl_cgval_t(); } bool can_optimize = argt.constant != NULL && lb.constant != NULL && ub.constant != NULL && isva.constant != NULL && jl_is_tuple_type(argt.constant) && jl_is_bool(isva.constant) && jl_is_type(lb.constant) && jl_is_type(ub.constant) && jl_is_method(source.constant); if (can_optimize) { can_optimize &= ((jl_method_t*)source.constant)->nargs > 0 || !jl_unbox_bool(isva.constant); } if (can_optimize) { // TODO: Emit this inline and outline it late using LLVM's coroutine // support. jl_method_t *closure_method = (jl_method_t *)source.constant; jl_code_info_t *closure_src = jl_uncompress_ir(closure_method, NULL, (jl_array_t*)closure_method->source); std::unique_ptr closure_m; jl_llvm_functions_t closure_decls; jl_method_instance_t *li; jl_value_t *closure_t; jl_tupletype_t *env_t; jl_svec_t *sig_args; JL_GC_PUSH5(&li, &closure_src, &closure_t, &env_t, &sig_args); li = jl_new_method_instance_uninit(); li->def.method = closure_method; jl_tupletype_t *argt_typ = (jl_tupletype_t *)argt.constant; closure_t = jl_apply_type2((jl_value_t*)jl_opaque_closure_type, (jl_value_t*)argt_typ, ub.constant); size_t nsig = 1 + jl_svec_len(argt_typ->parameters); sig_args = jl_alloc_svec_uninit(nsig); jl_svecset(sig_args, 0, closure_t); for (size_t i = 0; i < jl_svec_len(argt_typ->parameters); ++i) { jl_svecset(sig_args, 1+i, jl_svecref(argt_typ->parameters, i)); } li->specTypes = (jl_value_t*)jl_apply_tuple_type_v(jl_svec_data(sig_args), nsig); jl_gc_wb(li, li->specTypes); std::tie(closure_m, closure_decls) = emit_function(li, closure_src, ub.constant, ctx.emission_context, jl_unbox_bool(isva.constant)); jl_value_t **env_component_ts = (jl_value_t**)alloca(sizeof(jl_value_t*) * (nargs-5)); for (size_t i = 0; i < nargs - 5; ++i) { env_component_ts[i] = argv[5+i].typ; } env_t = jl_apply_tuple_type_v(env_component_ts, nargs-5); jl_cgval_t env; // TODO: Inline the env at the end of the opaque closure and generate a descriptor for GC if (jl_is_concrete_type((jl_value_t*)env_t)) { env = emit_new_struct(ctx, (jl_value_t*)env_t, nargs-5, &argv.data()[5]); } else { Value *env_val = emit_jlcall(ctx, jltuple_func, V_rnull, &argv[5], nargs-5, JLCALL_F_CC); env = mark_julia_type(ctx, env_val, true, env_t); } assert(closure_decls.functionObject != "jl_fptr_sparam"); bool isspecsig = closure_decls.functionObject != "jl_fptr_args"; Function *F = NULL; std::string fname = isspecsig ? closure_decls.functionObject : closure_decls.specFunctionObject; if (GlobalValue *V = jl_Module->getNamedValue(fname)) { F = cast(V); } else { F = Function::Create(get_func_sig(jl_LLVMContext), Function::ExternalLinkage, fname, jl_Module); F->setAttributes(get_func_attrs(jl_LLVMContext)); } jl_cgval_t jlcall_ptr = mark_julia_type(ctx, F, false, jl_voidpointer_type); jl_cgval_t fptr; if (!isspecsig) { fptr = jlcall_ptr; } else { Function *specptr = closure_m->getFunction(closure_decls.specFunctionObject); if (specptr) { jl_returninfo_t returninfo = get_specsig_function(ctx, jl_Module, closure_decls.specFunctionObject, li->specTypes, ub.constant); fptr = mark_julia_type(ctx, returninfo.decl, false, jl_voidpointer_type); } else { fptr = mark_julia_type(ctx, (llvm::Value*)Constant::getNullValue(T_size), false, jl_voidpointer_type); } } jl_cgval_t world_age = mark_julia_type(ctx, tbaa_decorate(tbaa_gcframe, ctx.builder.CreateAlignedLoad(ctx.world_age_field, Align(sizeof(size_t)))), false, jl_long_type); jl_cgval_t closure_fields[6] = { env, isva, world_age, source, jlcall_ptr, fptr }; jl_cgval_t ret = emit_new_struct(ctx, closure_t, 6, closure_fields); ctx.oc_modules.push_back(std::move(closure_m)); JL_GC_POP(); return ret; } return mark_julia_type(ctx, emit_jlcall(ctx, jl_new_opaque_closure_jlcall_func, V_rnull, argv.data(), nargs, JLCALL_F_CC), true, jl_any_type); } else if (head == exc_sym) { return mark_julia_type(ctx, ctx.builder.CreateCall(prepare_call(jl_current_exception_func)), true, jl_any_type); } else if (head == copyast_sym) { jl_cgval_t ast = emit_expr(ctx, args[0]); if (ast.typ != (jl_value_t*)jl_expr_type && ast.typ != (jl_value_t*)jl_any_type) { // elide call to jl_copy_ast when possible return ast; } return mark_julia_type(ctx, ctx.builder.CreateCall(prepare_call(jlcopyast_func), boxed(ctx, ast)), true, jl_expr_type); } else if (head == loopinfo_sym) { // parse Expr(:loopinfo, "julia.simdloop", ("llvm.loop.vectorize.width", 4)) SmallVector MDs; for (int i = 0, ie = jl_expr_nargs(ex); i < ie; ++i) { Metadata *MD = to_md_tree(args[i]); if (MD) MDs.push_back(MD); } MDNode* MD = MDNode::get(jl_LLVMContext, MDs); CallInst *I = ctx.builder.CreateCall(prepare_call(jl_loopinfo_marker_func)); I->setMetadata("julia.loopinfo", MD); return jl_cgval_t(); } else if (head == leave_sym || head == coverageeffect_sym || head == pop_exception_sym || head == enter_sym || head == inbounds_sym || head == aliasscope_sym || head == popaliasscope_sym) { jl_errorf("Expr(:%s) in value position", jl_symbol_name(head)); } else if (head == boundscheck_sym) { return mark_julia_const(bounds_check_enabled(ctx, jl_true) ? jl_true : jl_false); } else if (head == gc_preserve_begin_sym) { size_t nargs = jl_array_len(ex->args); jl_cgval_t *argv = (jl_cgval_t*)alloca(sizeof(jl_cgval_t) * nargs); for (size_t i = 0; i < nargs; ++i) { argv[i] = emit_expr(ctx, args[i]); } std::vector vals; for (size_t i = 0; i < nargs; ++i) { const jl_cgval_t &ai = argv[i]; if (ai.constant || ai.typ == jl_bottom_type) continue; if (ai.isboxed) { vals.push_back(ai.Vboxed); } else if (jl_is_concrete_immutable(ai.typ) && !jl_is_pointerfree(ai.typ)) { Type *at = julia_type_to_llvm(ctx, ai.typ); vals.push_back(emit_unbox(ctx, at, ai, ai.typ)); } } Value *token = vals.empty() ? (Value*)ConstantTokenNone::get(jl_LLVMContext) : ctx.builder.CreateCall(prepare_call(gc_preserve_begin_func), vals); jl_cgval_t tok(token, NULL, false, (jl_value_t*)jl_nothing_type, NULL); return tok; } else if (head == gc_preserve_end_sym) { // We only support ssa values as the argument. Everything else will // fall back to the default behavior of preserving the argument value // until the end of the scope, which is correct, but not optimal. if (!jl_is_ssavalue(args[0])) { return jl_cgval_t((jl_value_t*)jl_nothing_type); } jl_cgval_t token = emit_expr(ctx, args[0]); assert(token.V->getType()->isTokenTy()); if (!isa(token.V)) ctx.builder.CreateCall(prepare_call(gc_preserve_end_func), {token.V}); return jl_cgval_t((jl_value_t*)jl_nothing_type); } else { if (jl_is_toplevel_only_expr(expr) && !jl_is_method(ctx.linfo->def.method)) { // call interpreter to run a toplevel expr from inside a // compiled toplevel thunk. Value *args[2] = { literal_pointer_val(ctx, (jl_value_t*)ctx.module), literal_pointer_val(ctx, expr) }; ctx.builder.CreateCall(prepare_call(jltopeval_func), args); return ghostValue(jl_nothing_type); } jl_errorf("unsupported or misplaced expression \"%s\" in function %s", jl_symbol_name(head), ctx.name); } return jl_cgval_t(); } JL_GCC_IGNORE_STOP // --- generate function bodies --- // gc frame emission static void allocate_gc_frame(jl_codectx_t &ctx, BasicBlock *b0) { // TODO: requires the runtime, but is generated unconditionally // allocate a placeholder gc instruction ctx.ptlsStates = ctx.builder.CreateCall(prepare_call(jltls_states_func)); int nthfield = offsetof(jl_tls_states_t, safepoint) / sizeof(void*); ctx.signalPage = emit_nthptr_recast(ctx, ctx.ptlsStates, nthfield, tbaa_const, PointerType::get(T_psize, 0)); } static void emit_last_age_field(jl_codectx_t &ctx) { ctx.world_age_field = ctx.builder.CreateInBoundsGEP( T_size, ctx.builder.CreateBitCast(ctx.ptlsStates, T_psize), ConstantInt::get(T_size, offsetof(jl_tls_states_t, world_age) / sizeof(size_t))); } static Function *emit_tojlinvoke(jl_code_instance_t *codeinst, Module *M, jl_codegen_params_t ¶ms) { jl_codectx_t ctx(jl_LLVMContext, params); std::string name; raw_string_ostream(name) << "tojlinvoke" << globalUnique++; Function *f = Function::Create(jl_func_sig, GlobalVariable::PrivateLinkage, name, M); jl_init_function(f); f->addFnAttr(Thunk); //f->setAlwaysInline(); ctx.f = f; // for jl_Module BasicBlock *b0 = BasicBlock::Create(jl_LLVMContext, "top", f); ctx.builder.SetInsertPoint(b0); Function *theFunc; Value *theFarg; if (params.cache && codeinst->invoke != NULL) { StringRef theFptrName = jl_ExecutionEngine->getFunctionAtAddress((uintptr_t)codeinst->invoke, codeinst); theFunc = cast( M->getOrInsertFunction(theFptrName, jlinvoke_func->_type(jl_LLVMContext)).getCallee()); theFarg = literal_pointer_val(ctx, (jl_value_t*)codeinst); } else { theFunc = prepare_call(jlinvoke_func); theFarg = literal_pointer_val(ctx, (jl_value_t*)codeinst->def); } theFarg = track_pjlvalue(ctx, theFarg); auto args = f->arg_begin(); CallInst *r = ctx.builder.CreateCall(theFunc, { &*args, &*++args, &*++args, theFarg }); r->setAttributes(theFunc->getAttributes()); ctx.builder.CreateRet(r); return f; } static void emit_cfunc_invalidate( Function *gf_thunk, jl_returninfo_t::CallingConv cc, unsigned return_roots, jl_value_t *calltype, jl_value_t *rettype, size_t nargs, jl_codegen_params_t ¶ms, Function *target) { jl_codectx_t ctx(jl_LLVMContext, params); ctx.f = gf_thunk; BasicBlock *b0 = BasicBlock::Create(jl_LLVMContext, "top", gf_thunk); ctx.builder.SetInsertPoint(b0); DebugLoc noDbg; ctx.builder.SetCurrentDebugLocation(noDbg); allocate_gc_frame(ctx, b0); Function::arg_iterator AI = gf_thunk->arg_begin(); jl_cgval_t *myargs = (jl_cgval_t*)alloca(sizeof(jl_cgval_t) * nargs); if (cc == jl_returninfo_t::SRet || cc == jl_returninfo_t::Union) ++AI; if (return_roots) ++AI; for (size_t i = 0; i < nargs; i++) { jl_value_t *jt = jl_nth_slot_type(calltype, i); bool isboxed = deserves_argbox(jt); Type *et = isboxed ? T_prjlvalue : julia_type_to_llvm(ctx, jt); if (is_uniquerep_Type(jt)) { myargs[i] = mark_julia_const(jl_tparam0(jt)); } else if (type_is_ghost(et)) { assert(jl_is_datatype(jt) && ((jl_datatype_t*)jt)->instance); myargs[i] = mark_julia_const(((jl_datatype_t*)jt)->instance); } else { Value *arg_v = &*AI; ++AI; Type *at = arg_v->getType(); if (!isboxed && et->isAggregateType()) { myargs[i] = mark_julia_slot(arg_v, jt, NULL, tbaa_const); } else { assert(at == et); myargs[i] = mark_julia_type(ctx, arg_v, isboxed, jt); } (void)at; } } assert(AI == gf_thunk->arg_end()); Value *gf_ret = emit_jlcall(ctx, target, nullptr, myargs, nargs, JLCALL_F_CC); jl_cgval_t gf_retbox = mark_julia_type(ctx, gf_ret, true, jl_any_type); if (cc != jl_returninfo_t::Boxed) { emit_typecheck(ctx, gf_retbox, rettype, "cfunction"); } switch (cc) { case jl_returninfo_t::Boxed: ctx.builder.CreateRet(gf_ret); break; case jl_returninfo_t::Register: { Type *gfrt = gf_thunk->getReturnType(); if (gfrt->isVoidTy()) { ctx.builder.CreateRetVoid(); } else { gf_ret = emit_bitcast(ctx, gf_ret, gfrt->getPointerTo()); ctx.builder.CreateRet(ctx.builder.CreateAlignedLoad(gf_ret, Align(julia_alignment(rettype)))); } break; } case jl_returninfo_t::SRet: { if (return_roots) ctx.builder.CreateStore(gf_ret, gf_thunk->arg_begin() + 1); emit_memcpy(ctx, &*gf_thunk->arg_begin(), nullptr, gf_ret, nullptr, jl_datatype_size(rettype), julia_alignment(rettype)); ctx.builder.CreateRetVoid(); break; } case jl_returninfo_t::Union: { Type *retty = gf_thunk->getReturnType(); Value *gf_retval = UndefValue::get(retty); Value *tindex = compute_box_tindex(ctx, emit_typeof_boxed(ctx, gf_retbox), (jl_value_t*)jl_any_type, rettype); tindex = ctx.builder.CreateOr(tindex, ConstantInt::get(T_int8, 0x80)); gf_retval = ctx.builder.CreateInsertValue(gf_retval, gf_ret, 0); gf_retval = ctx.builder.CreateInsertValue(gf_retval, tindex, 1); ctx.builder.CreateRet(gf_retval); break; } case jl_returninfo_t::Ghosts: { Value *gf_retval = compute_tindex_unboxed(ctx, gf_retbox, rettype); ctx.builder.CreateRet(gf_retval); break; } } } static void emit_cfunc_invalidate( Function *gf_thunk, jl_returninfo_t::CallingConv cc, unsigned return_roots, jl_value_t *calltype, jl_value_t *rettype, size_t nargs, jl_codegen_params_t ¶ms) { emit_cfunc_invalidate(gf_thunk, cc, return_roots, calltype, rettype, nargs, params, prepare_call_in(gf_thunk->getParent(), jlapplygeneric_func)); } static Function* gen_cfun_wrapper( Module *into, jl_codegen_params_t ¶ms, const function_sig_t &sig, jl_value_t *ff, const char *aliasname, jl_value_t *declrt, jl_method_instance_t *lam, jl_unionall_t *unionall_env, jl_svec_t *sparam_vals, jl_array_t **closure_types) { // Generate a c-callable wrapper assert(into); size_t nargs = sig.nccallargs; const char *name = "cfunction"; size_t world = jl_world_counter; jl_code_instance_t *codeinst = NULL; bool nest = (!ff || unionall_env); jl_value_t *astrt = (jl_value_t*)jl_any_type; void *callptr = NULL; int calltype = 0; if (aliasname) name = aliasname; else if (lam) name = jl_symbol_name(lam->def.method->name); if (lam && params.cache) { // TODO: this isn't ideal to be unconditionally calling type inference (and compile) from here codeinst = jl_compile_method_internal(lam, world); assert(codeinst->invoke); if (codeinst->invoke == jl_fptr_args) { callptr = codeinst->specptr.fptr; calltype = 1; } else if (codeinst->invoke == jl_fptr_const_return) { // don't need the fptr callptr = (void*)codeinst->rettype_const; calltype = 2; } else if (codeinst->isspecsig) { callptr = codeinst->specptr.fptr; calltype = 3; } astrt = codeinst->rettype; if (astrt != (jl_value_t*)jl_bottom_type && jl_type_intersection(astrt, declrt) == jl_bottom_type) { // Do not warn if the function never returns since it is // occasionally required by the C API (typically error callbacks) // even though we're likely to encounter memory errors in that case jl_printf(JL_STDERR, "WARNING: cfunction: return type of %s does not match\n", name); } } std::string funcName; raw_string_ostream(funcName) << "jlcapi_" << name << "_" << globalUnique++; Module *M = into; AttributeList attributes = sig.attributes; FunctionType *functype; if (nest) { // add nest parameter (pointer to jl_value_t* data array) after sret arg assert(closure_types); std::vector fargt_sig(sig.fargt_sig); fargt_sig.insert(fargt_sig.begin() + sig.sret, T_pprjlvalue); functype = FunctionType::get(sig.sret ? T_void : sig.prt, fargt_sig, /*isVa*/false); attributes = attributes.addAttribute(jl_LLVMContext, 1 + sig.sret, Attribute::Nest); } else { functype = sig.functype(); } Function *cw = Function::Create(functype, GlobalVariable::ExternalLinkage, funcName, M); cw->setAttributes(attributes); jl_init_function(cw); jl_codectx_t ctx(jl_LLVMContext, params); ctx.f = cw; ctx.world = world; ctx.name = name; ctx.funcName = name; BasicBlock *b0 = BasicBlock::Create(jl_LLVMContext, "top", cw); ctx.builder.SetInsertPoint(b0); DebugLoc noDbg; ctx.builder.SetCurrentDebugLocation(noDbg); allocate_gc_frame(ctx, b0); emit_last_age_field(ctx); Value *dummy_world = ctx.builder.CreateAlloca(T_size); Value *have_tls = ctx.builder.CreateIsNotNull(ctx.ptlsStates); // TODO: in the future, try to initialize a full TLS context here // for now, just use a dummy field to avoid a branch in this function ctx.world_age_field = ctx.builder.CreateSelect(have_tls, ctx.world_age_field, dummy_world); Value *last_age = tbaa_decorate(tbaa_gcframe, ctx.builder.CreateAlignedLoad(ctx.world_age_field, Align(sizeof(size_t)))); Value *valid_tls = ctx.builder.CreateIsNotNull(last_age); have_tls = ctx.builder.CreateAnd(have_tls, valid_tls); ctx.world_age_field = ctx.builder.CreateSelect(valid_tls, ctx.world_age_field, dummy_world); Value *world_v = ctx.builder.CreateAlignedLoad(prepare_global_in(jl_Module, jlgetworld_global), Align(sizeof(size_t))); // TODO: cast(world_v)->setOrdering(AtomicOrdering::Monotonic); Value *age_ok = NULL; if (calltype) { LoadInst *lam_max = ctx.builder.CreateAlignedLoad( T_size, ctx.builder.CreateConstInBoundsGEP1_32( T_size, emit_bitcast(ctx, literal_pointer_val(ctx, (jl_value_t*)codeinst), T_psize), offsetof(jl_code_instance_t, max_world) / sizeof(size_t)), Align(sizeof(size_t))); // XXX: age is always OK if we don't have a TLS. This is a hack required due to `@threadcall` abuse. // and adds quite a bit of complexity here, even though it's still wrong // (anything that tries to interact with the runtime will fault) age_ok = ctx.builder.CreateICmpUGE(lam_max, world_v); world_v = ctx.builder.CreateSelect(ctx.builder.CreateOr(have_tls, age_ok), world_v, lam_max); age_ok = ctx.builder.CreateOr(ctx.builder.CreateNot(have_tls), age_ok); } ctx.builder.CreateStore(world_v, ctx.world_age_field); // first emit code to record the arguments Function::arg_iterator AI = cw->arg_begin(); Value *sretPtr = sig.sret ? &*AI++ : NULL; Value *nestPtr = nest ? &*AI++ : NULL; jl_cgval_t *inputargs = (jl_cgval_t*)alloca(sizeof(jl_cgval_t) * (nargs + 1)); if (ff) { // we need to pass the function object even if (even though) it is a singleton inputargs[0] = mark_julia_const(ff); } else { assert(nest && nestPtr); Value *ff = ctx.builder.CreateAlignedLoad(T_prjlvalue, nestPtr, Align(sizeof(void*))); inputargs[0] = mark_julia_type(ctx, ff, true, jl_any_type); } // XXX: these values may need to be rooted until the end of the function jl_value_t *rt1 = NULL; jl_value_t *rt2 = NULL; JL_GC_PUSH2(&rt1, &rt2); for (size_t i = 0; i < nargs; ++i, ++AI) { // figure out how to unpack this argument type Value *val = &*AI; assert(sig.fargt_sig.at(i + sig.sret) == val->getType()); jl_cgval_t &inputarg = inputargs[i + 1]; jl_value_t *jargty = jl_svecref(sig.at, i); bool aref = jl_is_abstract_ref_type(jargty); if (aref) // a pointer to a value jargty = jl_tparam0(jargty); // if we know the outer function sparams, try to fill those in now // so that the julia_to_native type checks are more likely to be doable (e.g. concrete types) at compile-time jl_value_t *jargty_proper = jargty; bool static_at = !(unionall_env && jl_has_typevar_from_unionall(jargty, unionall_env)); if (!static_at) { if (sparam_vals) { jargty_proper = rt1 = jl_instantiate_type_in_env(jargty, unionall_env, jl_svec_data(sparam_vals)); assert(jargty_proper != jargty); jargty = jargty_proper; static_at = true; } else { jargty_proper = rt1 = jl_rewrap_unionall(jargty, (jl_value_t*)unionall_env); } } if (aref) { if (jargty == (jl_value_t*)jl_any_type) { inputarg = mark_julia_type(ctx, ctx.builder.CreateAlignedLoad(T_prjlvalue, emit_bitcast(ctx, val, T_pprjlvalue), Align(sizeof(void*))), true, jl_any_type); } else if (static_at && jl_is_concrete_immutable(jargty)) { // anything that could be stored unboxed bool isboxed; Type *T = julia_type_to_llvm(ctx, jargty, &isboxed); assert(!isboxed); // a T* (of unknown origin) if (type_is_ghost(T)) { inputarg = ghostValue(jargty); } else { val = emit_bitcast(ctx, val, T->getPointerTo()); val = ctx.builder.CreateAlignedLoad(val, Align(1)); // make no alignment assumption about pointer from C inputarg = mark_julia_type(ctx, val, false, jargty); } } else if (static_at || (!jl_is_typevar(jargty) && !jl_is_immutable_datatype(jargty))) { // must be a jl_value_t* (because it's mutable or contains gc roots) inputarg = mark_julia_type(ctx, maybe_decay_untracked(ctx, emit_bitcast(ctx, val, T_prjlvalue)), true, jargty_proper); } else { // allocate val into a new box, if it might not be boxed // otherwise preserve / reuse the existing box identity // TODO: could inspect `jargty` and eliminate some of these cases if (!*closure_types) *closure_types = jl_alloc_vec_any(0); jl_array_ptr_1d_push(*closure_types, jargty); Value *runtime_dt = ctx.builder.CreateAlignedLoad(T_prjlvalue, ctx.builder.CreateConstInBoundsGEP1_32(T_prjlvalue, nestPtr, jl_array_len(*closure_types)), Align(sizeof(void*))); BasicBlock *boxedBB = BasicBlock::Create(jl_LLVMContext, "isboxed", cw); BasicBlock *loadBB = BasicBlock::Create(jl_LLVMContext, "need-load", cw); BasicBlock *unboxedBB = BasicBlock::Create(jl_LLVMContext, "maybe-unboxed", cw); BasicBlock *isanyBB = BasicBlock::Create(jl_LLVMContext, "any", cw); BasicBlock *afterBB = BasicBlock::Create(jl_LLVMContext, "after", cw); Value *isrtboxed = ctx.builder.CreateIsNull(val); ctx.builder.CreateCondBr(isrtboxed, boxedBB, loadBB); ctx.builder.SetInsertPoint(boxedBB); Value *p1 = ctx.builder.CreateBitCast(val, T_pjlvalue); p1 = track_pjlvalue(ctx, p1); ctx.builder.CreateBr(afterBB); ctx.builder.SetInsertPoint(loadBB); Value *isrtany = ctx.builder.CreateICmpEQ( literal_pointer_val(ctx, (jl_value_t*)jl_any_type), ctx.builder.CreateBitCast(val, T_pjlvalue)); ctx.builder.CreateCondBr(isrtany, isanyBB, unboxedBB); ctx.builder.SetInsertPoint(isanyBB); Value *p2 = ctx.builder.CreateAlignedLoad(T_prjlvalue, ctx.builder.CreateBitCast(val, T_pprjlvalue), Align(sizeof(void*))); ctx.builder.CreateBr(afterBB); ctx.builder.SetInsertPoint(unboxedBB); Value *p3 = emit_new_bits(ctx, runtime_dt, val); unboxedBB = ctx.builder.GetInsertBlock(); // could have changed ctx.builder.CreateBr(afterBB); ctx.builder.SetInsertPoint(afterBB); PHINode *p = ctx.builder.CreatePHI(T_prjlvalue, 3); p->addIncoming(p1, boxedBB); p->addIncoming(p2, isanyBB); p->addIncoming(p3, unboxedBB); inputarg = mark_julia_type(ctx, p, true, jargty_proper); } } else { bool argboxed = sig.fargt_isboxed.at(i); if (argboxed) { // a jl_value_t*, even when represented as a struct inputarg = mark_julia_type(ctx, val, true, jargty_proper); } else { // something of type T // undo whatever we might have done to this poor argument assert(jl_is_datatype(jargty)); if (sig.byRefList.at(i)) { assert(cast(val->getType())->getElementType() == sig.fargt[i]); val = ctx.builder.CreateAlignedLoad(val, Align(1)); // unknown alignment from C } else { bool issigned = jl_signed_type && jl_subtype(jargty_proper, (jl_value_t*)jl_signed_type); val = llvm_type_rewrite(ctx, val, sig.fargt[i], issigned); } // passed an unboxed T, but may need something boxed (not valid to be unboxed) if (static_at) { bool isboxed; assert(jargty == jargty_proper); (void)julia_type_to_llvm(ctx, jargty, &isboxed); if (isboxed) inputarg = mark_julia_type(ctx, box_ccall_result(ctx, val, literal_pointer_val(ctx, jargty), jargty), true, jargty_proper); else inputarg = mark_julia_type(ctx, val, false, jargty); } else { if (!*closure_types) *closure_types = jl_alloc_vec_any(0); jl_array_ptr_1d_push(*closure_types, jargty); Value *runtime_dt = ctx.builder.CreateAlignedLoad(T_prjlvalue, ctx.builder.CreateConstInBoundsGEP1_32(T_prjlvalue, nestPtr, jl_array_len(*closure_types)), Align(sizeof(void*))); Value *strct = box_ccall_result(ctx, val, runtime_dt, jargty); inputarg = mark_julia_type(ctx, strct, true, jargty_proper); } } } } JL_GC_POP(); assert(AI == cw->arg_end()); // Create the call bool jlfunc_sret; jl_cgval_t retval; if (calltype == 2) { nargs = 0; // arguments not needed -- TODO: not really true, should emit an age_ok test and jlcall jlfunc_sret = false; retval = mark_julia_const((jl_value_t*)callptr); } else if (calltype == 0 || calltype == 1) { // emit a jlcall jlfunc_sret = false; Function *theFptr = NULL; if (calltype == 1) { StringRef fname = jl_ExecutionEngine->getFunctionAtAddress((uintptr_t)callptr, codeinst); theFptr = cast_or_null(jl_Module->getNamedValue(fname)); if (!theFptr) { theFptr = Function::Create(jl_func_sig, GlobalVariable::ExternalLinkage, fname, jl_Module); jl_init_function(theFptr); } else { assert(theFptr->getFunctionType() == jl_func_sig); } add_return_attr(theFptr, Attribute::NonNull); theFptr->addFnAttr(Thunk); } BasicBlock *b_generic, *b_jlcall, *b_after; Value *ret_jlcall; if (age_ok) { assert(theFptr); b_generic = BasicBlock::Create(jl_LLVMContext, "generic", cw); b_jlcall = BasicBlock::Create(jl_LLVMContext, "apply", cw); b_after = BasicBlock::Create(jl_LLVMContext, "after", cw); ctx.builder.CreateCondBr(age_ok, b_jlcall, b_generic); ctx.builder.SetInsertPoint(b_jlcall); // for jlcall, we need to pass the function object even if it is a ghost. Value *theF = boxed(ctx, inputargs[0]); assert(theF); ret_jlcall = emit_jlcall(ctx, theFptr, theF, &inputargs[1], nargs, JLCALL_F_CC); ctx.builder.CreateBr(b_after); ctx.builder.SetInsertPoint(b_generic); } Value *ret = emit_jlcall(ctx, jlapplygeneric_func, NULL, inputargs, nargs + 1, JLCALL_F_CC); if (age_ok) { ctx.builder.CreateBr(b_after); ctx.builder.SetInsertPoint(b_after); PHINode *retphi = ctx.builder.CreatePHI(T_prjlvalue, 2); retphi->addIncoming(ret_jlcall, b_jlcall); retphi->addIncoming(ret, b_generic); ret = retphi; } retval = mark_julia_type(ctx, ret, true, astrt); } else { assert(calltype == 3); // emit a specsig call StringRef protoname = jl_ExecutionEngine->getFunctionAtAddress((uintptr_t)callptr, codeinst); jl_returninfo_t returninfo = get_specsig_function(ctx, M, protoname, lam->specTypes, astrt); FunctionType *cft = returninfo.decl->getFunctionType(); jlfunc_sret = (returninfo.cc == jl_returninfo_t::SRet); // TODO: Can use use emit_call_specfun_other here? std::vector args; Value *result; if (jlfunc_sret || returninfo.cc == jl_returninfo_t::Union) { // fuse the two sret together, or emit an alloca to hold it if (sig.sret && jlfunc_sret) { result = emit_bitcast(ctx, sretPtr, cft->getParamType(0)); } else { result = emit_static_alloca(ctx, cft->getParamType(0)->getPointerElementType()); } args.push_back(result); } if (returninfo.return_roots) { AllocaInst *return_roots = emit_static_alloca(ctx, T_prjlvalue); return_roots->setOperand(0, ConstantInt::get(T_int32, returninfo.return_roots)); args.push_back(return_roots); } for (size_t i = 0; i < nargs + 1; i++) { // figure out how to repack the arguments jl_cgval_t &inputarg = inputargs[i]; Value *arg; jl_value_t *spect = jl_nth_slot_type(lam->specTypes, i); bool isboxed = deserves_argbox(spect); Type *T = isboxed ? T_prjlvalue : julia_type_to_llvm(ctx, spect); if (is_uniquerep_Type(spect)) { continue; } else if (isboxed) { arg = boxed(ctx, inputarg); } else if (type_is_ghost(T)) { continue; // ghost types are skipped by the specsig method signature } else if (T->isAggregateType()) { // aggregate types are passed by pointer if (!inputarg.ispointer()) inputarg = value_to_pointer(ctx, inputarg); arg = maybe_bitcast(ctx, decay_derived(ctx, data_pointer(ctx, inputarg)), T->getPointerTo()); } else { arg = emit_unbox(ctx, T, inputarg, spect); assert(!isa(arg)); } // add to argument list args.push_back(arg); } Value *theFptr = returninfo.decl; assert(theFptr); if (age_ok) { funcName += "_gfthunk"; Function *gf_thunk = Function::Create(returninfo.decl->getFunctionType(), GlobalVariable::InternalLinkage, funcName, M); gf_thunk->setAttributes(returninfo.decl->getAttributes()); jl_init_function(gf_thunk); // build a specsig -> jl_apply_generic converter thunk // this builds a method that calls jl_apply_generic (as a closure over a singleton function pointer), // but which has the signature of a specsig emit_cfunc_invalidate(gf_thunk, returninfo.cc, returninfo.return_roots, lam->specTypes, codeinst->rettype, nargs + 1, ctx.emission_context); theFptr = ctx.builder.CreateSelect(age_ok, theFptr, gf_thunk); } CallInst *call = ctx.builder.CreateCall( cast(theFptr->getType()->getPointerElementType()), theFptr, ArrayRef(args)); call->setAttributes(returninfo.decl->getAttributes()); switch (returninfo.cc) { case jl_returninfo_t::Boxed: retval = mark_julia_type(ctx, call, true, astrt); break; case jl_returninfo_t::Register: retval = mark_julia_type(ctx, call, false, astrt); break; case jl_returninfo_t::SRet: retval = mark_julia_slot(result, astrt, NULL, tbaa_stack); break; case jl_returninfo_t::Union: { Value *box = ctx.builder.CreateExtractValue(call, 0); Value *tindex = ctx.builder.CreateExtractValue(call, 1); Value *derived = ctx.builder.CreateSelect( ctx.builder.CreateICmpEQ( ctx.builder.CreateAnd(tindex, ConstantInt::get(T_int8, 0x80)), ConstantInt::get(T_int8, 0)), decay_derived(ctx, ctx.builder.CreateBitCast(result, T_pjlvalue)), decay_derived(ctx, box)); retval = mark_julia_slot(derived, astrt, tindex, tbaa_stack); assert(box->getType() == T_prjlvalue); retval.Vboxed = box; break; } case jl_returninfo_t::Ghosts: retval = mark_julia_slot(NULL, astrt, call, tbaa_stack); break; } } // inline a call to typeassert here, if required emit_typecheck(ctx, retval, declrt, "cfunction"); retval = update_julia_type(ctx, retval, declrt); // Prepare the return value Value *r; if (sig.retboxed) { assert(!sig.sret); // return a jl_value_t* r = boxed(ctx, retval); } else if (sig.sret && jlfunc_sret) { // nothing to do r = NULL; } else if (!type_is_ghost(sig.lrt)) { Type *prt = sig.prt; if (sig.sret) prt = sig.fargt_sig[0]->getContainedType(0); // sret is a PointerType bool issigned = jl_signed_type && jl_subtype(declrt, (jl_value_t*)jl_signed_type); Value *v = emit_unbox(ctx, sig.lrt, retval, retval.typ); r = llvm_type_rewrite(ctx, v, prt, issigned); if (sig.sret) { ctx.builder.CreateStore(r, sretPtr); r = NULL; } } else { r = NULL; } ctx.builder.CreateStore(last_age, ctx.world_age_field); ctx.builder.CreateRet(r); ctx.builder.SetCurrentDebugLocation(noDbg); ctx.builder.ClearInsertionPoint(); if (aliasname) { GlobalAlias::create(cw->getType()->getElementType(), cw->getType()->getAddressSpace(), GlobalValue::ExternalLinkage, aliasname, cw, M); } if (nest) { funcName += "make"; Function *cw_make = Function::Create( FunctionType::get(T_pint8, { T_pint8, T_ppjlvalue }, false), GlobalVariable::ExternalLinkage, funcName, M); jl_init_function(cw_make); BasicBlock *b0 = BasicBlock::Create(jl_LLVMContext, "top", cw_make); IRBuilder<> cwbuilder(b0); Function::arg_iterator AI = cw_make->arg_begin(); Argument *Tramp = &*AI; ++AI; Argument *NVal = &*AI; ++AI; Function *init_trampoline = Intrinsic::getDeclaration(cw_make->getParent(), Intrinsic::init_trampoline); Function *adjust_trampoline = Intrinsic::getDeclaration(cw_make->getParent(), Intrinsic::adjust_trampoline); cwbuilder.CreateCall(init_trampoline, { Tramp, cwbuilder.CreateBitCast(cw, T_pint8), cwbuilder.CreateBitCast(NVal, T_pint8) }); cwbuilder.CreateRet(cwbuilder.CreateCall(adjust_trampoline, { Tramp })); cw = cw_make; } return cw; } // Get the LLVM Function* for the C-callable entry point for a certain function // and argument types. // here argt does not include the leading function type argument static jl_cgval_t emit_cfunction(jl_codectx_t &ctx, jl_value_t *output_type, const jl_cgval_t &fexpr_rt, jl_value_t *declrt, jl_svec_t *argt) { jl_unionall_t *unionall_env = (jl_is_method(ctx.linfo->def.method) && jl_is_unionall(ctx.linfo->def.method->sig)) ? (jl_unionall_t*)ctx.linfo->def.method->sig : NULL; jl_svec_t *sparam_vals = NULL; if (ctx.spvals_ptr == NULL && jl_svec_len(ctx.linfo->sparam_vals) > 0) sparam_vals = ctx.linfo->sparam_vals; jl_value_t *rt = declrt; if (jl_is_abstract_ref_type(declrt)) { declrt = jl_tparam0(declrt); if (!verify_ref_type(ctx, declrt, unionall_env, 0, "cfunction")) { return jl_cgval_t(); } if (unionall_env) declrt = jl_rewrap_unionall(declrt, (jl_value_t*)unionall_env); rt = (jl_value_t*)jl_any_type; // convert return type to jl_value_t* } // some sanity checking and check whether there's a vararg size_t nargt = jl_svec_len(argt); bool isVa = (nargt > 0 && jl_is_vararg(jl_svecref(argt, nargt - 1))); if (isVa) { emit_error(ctx, "cfunction: Vararg syntax not allowed for argument list"); return jl_cgval_t(); } jl_array_t *closure_types = NULL; jl_value_t *sigt = NULL; // dispatch-sig = type signature with Ref{} annotations removed and applied to the env JL_GC_PUSH4(&declrt, &sigt, &rt, &closure_types); Type *lrt; bool retboxed; bool static_rt; const std::string err = verify_ccall_sig( /* inputs: */ rt, (jl_value_t*)argt, unionall_env, sparam_vals, &ctx.emission_context, /* outputs: */ lrt, retboxed, static_rt); if (!err.empty()) { emit_error(ctx, "cfunction " + err); JL_GC_POP(); return jl_cgval_t(); } if (rt != declrt && rt != (jl_value_t*)jl_any_type) jl_add_method_root(ctx, rt); function_sig_t sig("cfunction", lrt, rt, retboxed, argt, unionall_env, false, CallingConv::C, false, &ctx.emission_context); assert(sig.fargt.size() + sig.sret == sig.fargt_sig.size()); if (!sig.err_msg.empty()) { emit_error(ctx, sig.err_msg); JL_GC_POP(); return jl_cgval_t(); } // compute+verify the dispatch signature, and see if it depends on the environment sparams bool approx = false; sigt = (jl_value_t*)jl_alloc_svec(nargt + 1); jl_svecset(sigt, 0, fexpr_rt.typ); if (!fexpr_rt.constant && (!jl_is_concrete_type(fexpr_rt.typ) || jl_is_kind(fexpr_rt.typ))) approx = true; for (size_t i = 0; i < nargt; i++) { jl_value_t *jargty = jl_svecref(argt, i); if (jl_is_abstract_ref_type(jargty)) { jargty = jl_tparam0(jargty); if (!verify_ref_type(ctx, jargty, unionall_env, i + 1, "cfunction")) { JL_GC_POP(); return jl_cgval_t(); } } if (unionall_env && jl_has_typevar_from_unionall(jargty, unionall_env)) { if (sparam_vals) jargty = jl_instantiate_type_in_env(jargty, unionall_env, jl_svec_data(sparam_vals)); else approx = true; } jl_svecset(sigt, i + 1, jargty); } if (approx) { sigt = NULL; } else { sigt = (jl_value_t*)jl_apply_tuple_type((jl_svec_t*)sigt); } if (sigt && !(unionall_env && jl_has_typevar_from_unionall(rt, unionall_env))) { unionall_env = NULL; } bool nest = (!fexpr_rt.constant || unionall_env); #if defined(_CPU_AARCH64_) || defined(_CPU_ARM_) || defined(_CPU_PPC64_) if (nest) { emit_error(ctx, "cfunction: closures are not supported on this platform"); return jl_cgval_t(); } #endif size_t world = jl_world_counter; size_t min_valid = 0; size_t max_valid = ~(size_t)0; // try to look up this function for direct invoking jl_method_instance_t *lam = sigt ? jl_get_specialization1((jl_tupletype_t*)sigt, world, &min_valid, &max_valid, 0) : NULL; Value *F = gen_cfun_wrapper( jl_Module, ctx.emission_context, sig, fexpr_rt.constant, NULL, declrt, lam, unionall_env, sparam_vals, &closure_types); bool outboxed; if (nest) { // F is actually an init_trampoline function that returns the real address // Now fill in the nest parameters Value *fobj = boxed(ctx, fexpr_rt); jl_svec_t *fill = jl_emptysvec; if (closure_types) { assert(ctx.spvals_ptr); size_t n = jl_array_len(closure_types); jl_svec_t *fill = jl_alloc_svec_uninit(n); for (size_t i = 0; i < n; i++) { jl_svecset(fill, i, jl_array_ptr_ref(closure_types, i)); } jl_add_method_root(ctx, (jl_value_t*)fill); } Type *T_htable = ArrayType::get(T_size, sizeof(htable_t) / sizeof(void*)); Value *cache = new GlobalVariable(*jl_Module, T_htable, false, GlobalVariable::PrivateLinkage, ConstantAggregateZero::get(T_htable)); F = ctx.builder.CreateCall(prepare_call(jlgetcfunctiontrampoline_func), { fobj, literal_pointer_val(ctx, output_type), ctx.builder.CreateBitCast(cache, T_pint8), literal_pointer_val(ctx, (jl_value_t*)fill), F, closure_types ? literal_pointer_val(ctx, (jl_value_t*)unionall_env) : V_null, closure_types ? ctx.spvals_ptr : ConstantPointerNull::get(cast(T_pprjlvalue)) }); outboxed = true; } else { F = ctx.builder.CreatePtrToInt(F, T_size); outboxed = (output_type != (jl_value_t*)jl_voidpointer_type); if (outboxed) { assert(jl_datatype_size(output_type) == sizeof(void*) * 4); Value *strct = emit_allocobj(ctx, jl_datatype_size(output_type), literal_pointer_val(ctx, (jl_value_t*)output_type)); Value *derived_strct = emit_bitcast(ctx, decay_derived(ctx, strct), T_psize); MDNode *tbaa = best_tbaa(output_type); tbaa_decorate(tbaa, ctx.builder.CreateStore(F, derived_strct)); tbaa_decorate(tbaa, ctx.builder.CreateStore( ctx.builder.CreatePtrToInt(literal_pointer_val(ctx, fexpr_rt.constant), T_size), ctx.builder.CreateConstInBoundsGEP1_32(T_size, derived_strct, 1))); tbaa_decorate(tbaa, ctx.builder.CreateStore(V_size0, ctx.builder.CreateConstInBoundsGEP1_32(T_size, derived_strct, 2))); tbaa_decorate(tbaa, ctx.builder.CreateStore(V_size0, ctx.builder.CreateConstInBoundsGEP1_32(T_size, derived_strct, 3))); F = strct; } } JL_GC_POP(); return mark_julia_type(ctx, F, outboxed, output_type); } // do codegen to create a C-callable alias/wrapper, or if sysimg_handle is set, // restore one from a loaded system image. const char *jl_generate_ccallable(void *llvmmod, void *sysimg_handle, jl_value_t *declrt, jl_value_t *sigt, jl_codegen_params_t ¶ms) { jl_datatype_t *ft = (jl_datatype_t*)jl_tparam0(sigt); jl_value_t *ff = ft->instance; assert(ff); const char *name = jl_symbol_name(ft->name->mt->name); jl_value_t *crt = declrt; if (jl_is_abstract_ref_type(declrt)) { declrt = jl_tparam0(declrt); crt = (jl_value_t*)jl_any_type; } bool toboxed; Type *lcrt = _julia_struct_to_llvm(¶ms, crt, NULL, &toboxed); if (toboxed) lcrt = T_prjlvalue; size_t nargs = jl_nparams(sigt)-1; jl_svec_t *argtypes = NULL; JL_GC_PUSH1(&argtypes); argtypes = jl_alloc_svec(nargs); for (size_t i = 0; i < nargs; i++) { jl_svecset(argtypes, i, jl_tparam(sigt, i+1)); } jl_value_t *err; { // scope block for sig function_sig_t sig("cfunction", lcrt, crt, toboxed, argtypes, NULL, false, CallingConv::C, false, ¶ms); if (sig.err_msg.empty()) { size_t world = jl_world_counter; size_t min_valid = 0; size_t max_valid = ~(size_t)0; if (sysimg_handle) { // restore a ccallable from the system image void *addr; int found = jl_dlsym(sysimg_handle, name, &addr, 0); if (found) add_named_global(name, addr); } else { jl_method_instance_t *lam = jl_get_specialization1((jl_tupletype_t*)sigt, world, &min_valid, &max_valid, 0); gen_cfun_wrapper((Module*)llvmmod, params, sig, ff, name, declrt, lam, NULL, NULL, NULL); } JL_GC_POP(); return name; } err = jl_get_exceptionf(jl_errorexception_type, "%s", sig.err_msg.c_str()); } jl_throw(err); } // generate a julia-callable function that calls f (AKA lam) static Function *gen_invoke_wrapper(jl_method_instance_t *lam, jl_value_t *jlretty, const jl_returninfo_t &f, int retarg, StringRef funcName, Module *M, jl_codegen_params_t ¶ms) { Function *w = Function::Create(jl_func_sig, GlobalVariable::ExternalLinkage, funcName, M); add_return_attr(w, Attribute::NonNull); w->addFnAttr(Thunk); jl_init_function(w); Function::arg_iterator AI = w->arg_begin(); Value *funcArg = &*AI++; Value *argArray = &*AI++; Value *argCount = &*AI++; (void)argCount; // unused //Value *mfunc = &*AI++; (void)mfunc; // unused assert(AI == w->arg_end()); jl_codectx_t ctx(jl_LLVMContext, params); ctx.f = w; ctx.linfo = lam; ctx.rettype = jlretty; ctx.world = 0; BasicBlock *b0 = BasicBlock::Create(jl_LLVMContext, "top", w); ctx.builder.SetInsertPoint(b0); DebugLoc noDbg; ctx.builder.SetCurrentDebugLocation(noDbg); allocate_gc_frame(ctx, b0); // TODO: replace this with emit_call_specfun_other? FunctionType *ftype = f.decl->getFunctionType(); size_t nfargs = ftype->getNumParams(); Value **args = (Value**) alloca(nfargs * sizeof(Value*)); unsigned idx = 0; AllocaInst *result = NULL; switch (f.cc) { case jl_returninfo_t::Boxed: case jl_returninfo_t::Register: case jl_returninfo_t::Ghosts: break; case jl_returninfo_t::SRet: result = ctx.builder.CreateAlloca(ftype->getParamType(0)->getPointerElementType()); args[idx] = result; idx++; break; case jl_returninfo_t::Union: result = ctx.builder.CreateAlloca(ArrayType::get(T_int8, f.union_bytes)); if (f.union_align > 1) result->setAlignment(Align(f.union_align)); args[idx] = result; idx++; break; } if (f.return_roots) { AllocaInst *return_roots = emit_static_alloca(ctx, T_prjlvalue); return_roots->setOperand(0, ConstantInt::get(T_int32, f.return_roots)); args[idx] = return_roots; idx++; } for (size_t i = 0; i < jl_nparams(lam->specTypes) && idx < nfargs; ++i) { jl_value_t *ty = jl_nth_slot_type(lam->specTypes, i); bool isboxed = deserves_argbox(ty); Type *lty = isboxed ? T_prjlvalue : julia_type_to_llvm(ctx, ty); if (type_is_ghost(lty) || is_uniquerep_Type(ty)) continue; Value *theArg; if (i == 0) { theArg = funcArg; } else { Value *argPtr = ctx.builder.CreateConstInBoundsGEP1_32(T_prjlvalue, argArray, i - 1); theArg = maybe_mark_load_dereferenceable( ctx.builder.CreateAlignedLoad(T_prjlvalue, argPtr, Align(sizeof(void*))), false, ty); } if (!isboxed) { theArg = decay_derived(ctx, emit_bitcast(ctx, theArg, PointerType::get(lty, 0))); if (!lty->isAggregateType()) // keep "aggregate" type values in place as pointers theArg = ctx.builder.CreateAlignedLoad(theArg, Align(julia_alignment(ty))); } assert(dyn_cast(theArg) == NULL); args[idx] = theArg; idx++; } CallInst *call = ctx.builder.CreateCall(f.decl, ArrayRef(&args[0], nfargs)); call->setAttributes(f.decl->getAttributes()); jl_cgval_t retval; if (retarg != -1) { Value *theArg; if (retarg == 0) theArg = funcArg; else theArg = ctx.builder.CreateAlignedLoad(T_prjlvalue, ctx.builder.CreateConstInBoundsGEP1_32(T_prjlvalue, argArray, retarg - 1), Align(sizeof(void*))); retval = mark_julia_type(ctx, theArg, true, jl_any_type); } else { switch (f.cc) { case jl_returninfo_t::Boxed: retval = mark_julia_type(ctx, call, true, jlretty); break; case jl_returninfo_t::Register: retval = mark_julia_type(ctx, call, false, jlretty); break; case jl_returninfo_t::SRet: retval = mark_julia_slot(result, jlretty, NULL, tbaa_stack); break; case jl_returninfo_t::Union: // result is technically not right here, but `boxed` will only look at it // for the unboxed values, so it's ok. retval = mark_julia_slot(result, jlretty, ctx.builder.CreateExtractValue(call, 1), tbaa_stack); retval.Vboxed = ctx.builder.CreateExtractValue(call, 0); assert(retval.Vboxed->getType() == T_prjlvalue); break; case jl_returninfo_t::Ghosts: retval = mark_julia_slot(NULL, jlretty, call, tbaa_stack); break; } } ctx.builder.CreateRet(boxed(ctx, retval)); assert(!ctx.roots); return w; } static jl_returninfo_t get_specsig_function(jl_codectx_t &ctx, Module *M, StringRef name, jl_value_t *sig, jl_value_t *jlrettype) { jl_returninfo_t props = {}; SmallVector fsig; Type *rt; Type *srt; if (jl_is_structtype(jlrettype) && jl_is_datatype_singleton((jl_datatype_t*)jlrettype)) { rt = T_void; props.cc = jl_returninfo_t::Register; } else if (jl_is_uniontype(jlrettype)) { bool allunbox; union_alloca_type((jl_uniontype_t*)jlrettype, allunbox, props.union_bytes, props.union_align, props.union_minalign); if (props.union_bytes) { props.cc = jl_returninfo_t::Union; Type *AT = ArrayType::get(T_int8, props.union_bytes); fsig.push_back(AT->getPointerTo()); Type *pair[] = { T_prjlvalue, T_int8 }; rt = StructType::get(jl_LLVMContext, makeArrayRef(pair)); } else if (allunbox) { props.cc = jl_returninfo_t::Ghosts; rt = T_int8; } else { rt = T_prjlvalue; } } else if (!deserves_retbox(jlrettype)) { bool retboxed; rt = julia_type_to_llvm(ctx, jlrettype, &retboxed); assert(!retboxed); if (rt != T_void && deserves_sret(jlrettype, rt)) { auto tracked = CountTrackedPointers(rt); assert(!tracked.derived); if (tracked.count && !tracked.all) props.return_roots = tracked.count; props.cc = jl_returninfo_t::SRet; fsig.push_back(rt->getPointerTo()); srt = rt; rt = T_void; } else { props.cc = jl_returninfo_t::Register; } } else { rt = T_prjlvalue; } AttributeList attributes; // function declaration attributes if (props.cc == jl_returninfo_t::SRet) { assert(srt); unsigned argno = 1; #if JL_LLVM_VERSION < 120000 attributes = attributes.addAttribute(jl_LLVMContext, argno, Attribute::StructRet); (void)srt; // silence unused variable error #else Attribute sret = Attribute::getWithStructRetType(jl_LLVMContext, srt); attributes = attributes.addAttribute(jl_LLVMContext, argno, sret); #endif attributes = attributes.addAttribute(jl_LLVMContext, argno, Attribute::NoAlias); attributes = attributes.addAttribute(jl_LLVMContext, argno, Attribute::NoCapture); } if (props.cc == jl_returninfo_t::Union) { unsigned argno = 1; attributes = attributes.addAttribute(jl_LLVMContext, argno, Attribute::NoAlias); attributes = attributes.addAttribute(jl_LLVMContext, argno, Attribute::NoCapture); } if (props.return_roots) { fsig.push_back(T_pprjlvalue); unsigned argno = fsig.size(); attributes = attributes.addAttribute(jl_LLVMContext, argno, Attribute::NoAlias); attributes = attributes.addAttribute(jl_LLVMContext, argno, Attribute::NoCapture); } for (size_t i = 0; i < jl_nparams(sig); i++) { jl_value_t *jt = jl_tparam(sig, i); if (is_uniquerep_Type(jt)) continue; bool isboxed = deserves_argbox(jt); Type *ty = isboxed ? T_prjlvalue : julia_type_to_llvm(ctx, jt); if (type_is_ghost(ty)) continue; unsigned argno = fsig.size(); if (ty->isAggregateType()) { // aggregate types are passed by pointer attributes = attributes.addParamAttribute(jl_LLVMContext, argno, Attribute::NoCapture); attributes = attributes.addParamAttribute(jl_LLVMContext, argno, Attribute::ReadOnly); ty = PointerType::get(ty, AddressSpace::Derived); } else if (isboxed && jl_is_immutable_datatype(jt)) { attributes = attributes.addParamAttribute(jl_LLVMContext, argno, Attribute::ReadOnly); } else if (jl_is_primitivetype(jt) && ty->isIntegerTy()) { bool issigned = jl_signed_type && jl_subtype(jt, (jl_value_t*)jl_signed_type); Attribute::AttrKind attr = issigned ? Attribute::SExt : Attribute::ZExt; attributes = attributes.addParamAttribute(jl_LLVMContext, argno, attr); } fsig.push_back(ty); } FunctionType *ftype = FunctionType::get(rt, fsig, false); Function *f = M ? cast_or_null(M->getNamedValue(name)) : NULL; if (f == NULL) { f = Function::Create(ftype, GlobalVariable::ExternalLinkage, name, M); f->setAttributes(attributes); jl_init_function(f); } else { assert(f->getFunctionType() == ftype); } if (rt == T_prjlvalue) add_return_attr(f, Attribute::NonNull); props.decl = f; return props; } static void emit_sret_roots(jl_codectx_t &ctx, bool isptr, Value *Src, Type *T, Value *Shadow, unsigned count) { if (isptr) Src = maybe_decay_tracked(ctx, Src); if (isptr && Src->getType()->getPointerElementType() != T) Src = ctx.builder.CreateBitCast(Src, T->getPointerTo(Src->getType()->getPointerAddressSpace())); unsigned emitted = TrackWithShadow(Src, T, isptr, Shadow, ctx.builder); assert(emitted == count); (void)emitted; (void)count; } static DISubroutineType * get_specsig_di(jl_codectx_t &ctx, jl_value_t *rt, jl_value_t *sig, DIBuilder &dbuilder) { size_t nargs = jl_nparams(sig); // TODO: if this is a Varargs function, our debug info for the `...` var may be misleading std::vector ditypes(nargs + 1); ditypes[0] = julia_type_to_di(ctx, rt, &dbuilder, false); for (size_t i = 0; i < nargs; i++) { jl_value_t *jt = jl_tparam(sig, i); ditypes[i + 1] = julia_type_to_di(ctx, jt, &dbuilder, false); } return dbuilder.createSubroutineType(dbuilder.getOrCreateTypeArray(ditypes)); } static jl_datatype_t *compute_va_type(jl_method_instance_t *lam, size_t nreq) { size_t nvargs = jl_nparams(lam->specTypes)-nreq; jl_svec_t *tupargs = jl_alloc_svec(nvargs); JL_GC_PUSH1(&tupargs); for (size_t i = nreq; i < jl_nparams(lam->specTypes); ++i) { jl_value_t *argType = jl_nth_slot_type(lam->specTypes, i); jl_svecset(tupargs, i-nreq, argType); } jl_datatype_t *typ = jl_apply_tuple_type(tupargs); JL_GC_POP(); return typ; } // Compile to LLVM IR, using a specialized signature if applicable. static std::pair, jl_llvm_functions_t> emit_function( jl_method_instance_t *lam, jl_code_info_t *src, jl_value_t *jlrettype, jl_codegen_params_t ¶ms, bool vaOverride) { // step 1. unpack AST and allocate codegen context for this function jl_llvm_functions_t declarations; jl_codectx_t ctx(jl_LLVMContext, params); JL_GC_PUSH2(&ctx.code, &ctx.roots); ctx.code = src->code; std::map labels; bool toplevel = false; ctx.module = jl_is_method(lam->def.method) ? lam->def.method->module : lam->def.module; ctx.linfo = lam; ctx.name = name_from_method_instance(lam); size_t nreq = 0; int va = 0; if (jl_is_method(lam->def.method)) { ctx.nargs = nreq = lam->def.method->nargs; ctx.is_opaque_closure = lam->def.method->is_for_opaque_closure; if (vaOverride || (nreq > 0 && jl_is_method(lam->def.value) && lam->def.method->isva)) { assert(nreq > 0 && (ctx.is_opaque_closure || !vaOverride)); nreq--; va = 1; } } else { ctx.nargs = 0; } ctx.nReqArgs = nreq; if (va) { jl_sym_t *vn = (jl_sym_t*)jl_array_ptr_ref(src->slotnames, ctx.nargs - 1); if (vn != unused_sym) ctx.vaSlot = ctx.nargs - 1; } toplevel = !jl_is_method(lam->def.method); ctx.rettype = jlrettype; ctx.source = src; ctx.funcName = ctx.name; ctx.spvals_ptr = NULL; jl_array_t *stmts = ctx.code; size_t stmtslen = jl_array_dim0(stmts); // step 1b. unpack debug information int coverage_mode = jl_options.code_coverage; int malloc_log_mode = jl_options.malloc_log; if (!JL_FEAT_TEST(ctx, code_coverage)) coverage_mode = JL_LOG_NONE; if (!JL_FEAT_TEST(ctx, track_allocations)) malloc_log_mode = JL_LOG_NONE; StringRef dbgFuncName = ctx.name; int toplineno = -1; if (lam && jl_is_method(lam->def.method)) { toplineno = lam->def.method->line; ctx.file = jl_symbol_name(lam->def.method->file); } else if (jl_array_len(src->linetable) > 0) { jl_value_t *locinfo = jl_array_ptr_ref(src->linetable, 0); ctx.file = jl_symbol_name((jl_sym_t*)jl_fieldref_noalloc(locinfo, 2)); toplineno = jl_unbox_long(jl_fieldref(locinfo, 3)); } if (ctx.file.empty()) ctx.file = ""; // jl_printf(JL_STDERR, "\n*** compiling %s at %s:%d\n\n", // jl_symbol_name(ctx.name), ctx.file.str().c_str(), toplineno); ctx.debug_enabled = true; if (dbgFuncName.empty()) // Should never happen anymore? ctx.debug_enabled = 0; if (jl_options.debug_level == 0) ctx.debug_enabled = 0; // step 2. process var-info lists to see what vars need boxing int n_ssavalues = jl_is_long(src->ssavaluetypes) ? jl_unbox_long(src->ssavaluetypes) : jl_array_len(src->ssavaluetypes); size_t vinfoslen = jl_array_dim0(src->slotflags); ctx.slots.resize(vinfoslen); assert(lam->specTypes); // the specTypes field should always be assigned // create SAvalue locations for SSAValue objects ctx.ssavalue_assigned.assign(n_ssavalues, false); ctx.SAvalues.assign(n_ssavalues, jl_cgval_t()); bool specsig, needsparams; std::tie(specsig, needsparams) = uses_specsig(lam, jlrettype, params.params->prefer_specsig); if (!src->inferred) specsig = false; // step 3. some variable analysis size_t i; for (i = 0; i < nreq; i++) { jl_varinfo_t &varinfo = ctx.slots[i]; varinfo.isArgument = true; jl_sym_t *argname = (jl_sym_t*)jl_array_ptr_ref(src->slotnames, i); if (argname == unused_sym) continue; jl_value_t *ty = jl_nth_slot_type(lam->specTypes, i); // OpaqueClosure implicitly loads the env if (i == 0 && ctx.is_opaque_closure) { if (jl_is_array(src->slottypes)) { ty = jl_arrayref((jl_array_t*)src->slottypes, i); } else { ty = (jl_value_t*)jl_any_type; } } varinfo.value = mark_julia_type(ctx, (Value*)NULL, false, ty); } if (va && ctx.vaSlot != -1) { jl_varinfo_t &varinfo = ctx.slots[ctx.vaSlot]; varinfo.isArgument = true; jl_datatype_t *vatyp = specsig ? compute_va_type(lam, nreq) : (jl_tuple_type); varinfo.value = mark_julia_type(ctx, (Value*)NULL, false, vatyp); } for (i = 0; i < vinfoslen; i++) { jl_varinfo_t &varinfo = ctx.slots[i]; uint8_t flags = jl_array_uint8_ref(src->slotflags, i); varinfo.isSA = (jl_vinfo_sa(flags) != 0) || varinfo.isArgument; varinfo.usedUndef = (jl_vinfo_usedundef(flags) != 0) || (!varinfo.isArgument && !src->inferred); if (!varinfo.isArgument) { varinfo.value = mark_julia_type(ctx, (Value*)NULL, false, (jl_value_t*)jl_any_type); } } // finish recording variable use info for (i = 0; i < stmtslen; i++) simple_use_analysis(ctx, jl_array_ptr_ref(stmts, i)); // determine which vars need to be volatile mark_volatile_vars(stmts, ctx.slots); // step 4. determine function signature if (!specsig) ctx.nReqArgs--; // function not part of argArray in jlcall std::string _funcName; raw_string_ostream funcName(_funcName); // try to avoid conflicts in the global symbol table if (specsig) funcName << "julia_"; // api 5 else if (needsparams) funcName << "japi3_"; else funcName << "japi1_"; const char* unadorned_name = ctx.name; #if defined(_OS_LINUX_) if (unadorned_name[0] == '@') unadorned_name++; #endif funcName << unadorned_name << "_" << globalUnique++; declarations.specFunctionObject = funcName.str(); // allocate Function declarations and wrapper objects Module *M = new Module(ctx.name, jl_LLVMContext); jl_setup_module(M, ctx.params); jl_returninfo_t returninfo = {}; Function *f = NULL; bool has_sret = false; if (specsig) { // assumes !va and !needsparams returninfo = get_specsig_function(ctx, M, declarations.specFunctionObject, lam->specTypes, jlrettype); f = returninfo.decl; has_sret = (returninfo.cc == jl_returninfo_t::SRet || returninfo.cc == jl_returninfo_t::Union); jl_init_function(f); // common pattern: see if all return statements are an argument in that // case the apply-generic call can re-use the original box for the return int retarg = [stmts, nreq]() { int retarg = -1; for (size_t i = 0; i < jl_array_len(stmts); ++i) { jl_value_t *stmt = jl_array_ptr_ref(stmts, i); if (jl_is_returnnode(stmt)) { stmt = jl_returnnode_value(stmt); if (stmt == NULL) continue; if (!jl_is_argument(stmt)) return -1; unsigned sl = jl_slot_number(stmt) - 1; if (sl >= nreq) return -1; if (retarg == -1) retarg = sl; else if ((unsigned)retarg != sl) return -1; } } return retarg; }(); std::string wrapName; raw_string_ostream(wrapName) << "jfptr_" << unadorned_name << "_" << globalUnique++; declarations.functionObject = wrapName; (void)gen_invoke_wrapper(lam, jlrettype, returninfo, retarg, declarations.functionObject, M, ctx.emission_context); } else { f = Function::Create(needsparams ? jl_func_sig_sparams : jl_func_sig, GlobalVariable::ExternalLinkage, declarations.specFunctionObject, M); jl_init_function(f); add_return_attr(f, Attribute::NonNull); f->addFnAttr(Thunk); // TODO: (if needsparams) add attributes: dereferenceable, readonly, nocapture // TODO: add attributes: dereferenceable, readonly, nocapture - e.g. maybe_mark_argument_dereferenceable(Arg, argType); // TODO: add attributes: dereferenceable, readonly, nocapture returninfo.decl = f; declarations.functionObject = needsparams ? "jl_fptr_sparam" : "jl_fptr_args"; } if (jlrettype == (jl_value_t*)jl_bottom_type) f->setDoesNotReturn(); #ifdef USE_POLLY if (!jl_has_meta(stmts, polly_sym) || jl_options.polly == JL_OPTIONS_POLLY_OFF) { f->addFnAttr(polly::PollySkipFnAttr); } #endif if (jl_has_meta(stmts, noinline_sym)) { f->addFnAttr(Attribute::NoInline); } if (returninfo.cc == jl_returninfo_t::Union) { f->addAttribute(1, Attribute::getWithDereferenceableBytes(jl_LLVMContext, returninfo.union_bytes)); f->addAttribute(1, Attribute::getWithAlignment(jl_LLVMContext, Align(returninfo.union_align))); } #ifdef JL_DEBUG_BUILD f->addFnAttr(Attribute::StackProtectStrong); #endif #ifdef JL_TSAN_ENABLED // TODO: enable this only when a argument like `-race` is passed to Julia // add a macro for no_sanitize_thread f->addFnAttr(llvm::Attribute::SanitizeThread); #endif // add the optimization level specified for this module, if any int optlevel = jl_get_module_optlevel(ctx.module); if (optlevel >= 0 && optlevel <= 3) { static const char* const optLevelStrings[] = { "0", "1", "2", "3" }; f->addFnAttr("julia-optimization-level", optLevelStrings[optlevel]); } ctx.f = f; // Step 4b. determine debug info signature and other type info for locals DIBuilder dbuilder(*M); DIFile *topfile = NULL; DISubprogram *SP = NULL; DebugLoc noDbg, topdebugloc; if (ctx.debug_enabled) { DICompileUnit::DebugEmissionKind emissionKind = (DICompileUnit::DebugEmissionKind) ctx.params->debug_info_kind; DICompileUnit::DebugNameTableKind tableKind; if (JL_FEAT_TEST(ctx, gnu_pubnames)) { tableKind = DICompileUnit::DebugNameTableKind::GNU; } else { tableKind = DICompileUnit::DebugNameTableKind::None; } topfile = dbuilder.createFile(ctx.file, "."); DICompileUnit *CU = dbuilder.createCompileUnit(llvm::dwarf::DW_LANG_Julia ,topfile // File ,"julia" // Producer ,true // isOptimized ,"" // Flags ,0 // RuntimeVersion ,"" // SplitName ,emissionKind // Kind ,0 // DWOId ,true // SplitDebugInlining ,false // DebugInfoForProfiling ,tableKind // NameTableKind ); DISubroutineType *subrty; if (jl_options.debug_level <= 1) { subrty = jl_di_func_null_sig; } else if (!specsig) { subrty = jl_di_func_sig; } else { subrty = get_specsig_di(ctx, jlrettype, lam->specTypes, dbuilder); } SP = dbuilder.createFunction(CU ,dbgFuncName // Name ,f->getName() // LinkageName ,topfile // File ,toplineno // LineNo ,subrty // Ty ,toplineno // ScopeLine ,DINode::FlagZero // Flags ,DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized // SPFlags ,nullptr // Template Parameters ,nullptr // Template Declaration ,nullptr // ThrownTypes ); topdebugloc = DILocation::get(jl_LLVMContext, toplineno, 0, SP, NULL); f->setSubprogram(SP); if (jl_options.debug_level >= 2) { const bool AlwaysPreserve = true; // Go over all arguments and local variables and initialize their debug information for (i = 0; i < nreq; i++) { jl_sym_t *argname = (jl_sym_t*)jl_array_ptr_ref(src->slotnames, i); if (argname == unused_sym) continue; jl_varinfo_t &varinfo = ctx.slots[i]; varinfo.dinfo = dbuilder.createParameterVariable( SP, // Scope (current function will be fill in later) jl_symbol_name(argname), // Variable name has_sret + i + 1, // Argument number (1-based) topfile, // File toplineno == -1 ? 0 : toplineno, // Line // Variable type julia_type_to_di(ctx, varinfo.value.typ, &dbuilder, false), AlwaysPreserve, // May be deleted if optimized out DINode::FlagZero); // Flags (TODO: Do we need any) } if (va && ctx.vaSlot != -1) { ctx.slots[ctx.vaSlot].dinfo = dbuilder.createParameterVariable( SP, // Scope (current function will be fill in later) std::string(jl_symbol_name(slot_symbol(ctx, ctx.vaSlot))) + "...", // Variable name has_sret + nreq + 1, // Argument number (1-based) topfile, // File toplineno == -1 ? 0 : toplineno, // Line (for now, use lineno of the function) julia_type_to_di(ctx, ctx.slots[ctx.vaSlot].value.typ, &dbuilder, false), AlwaysPreserve, // May be deleted if optimized out DINode::FlagZero); // Flags (TODO: Do we need any) } for (i = 0; i < vinfoslen; i++) { jl_sym_t *s = (jl_sym_t*)jl_array_ptr_ref(src->slotnames, i); jl_varinfo_t &varinfo = ctx.slots[i]; if (varinfo.isArgument || s == empty_sym || s == unused_sym) continue; // LLVM 4.0: Assume the variable has default alignment varinfo.dinfo = dbuilder.createAutoVariable( SP, // Scope (current function will be fill in later) jl_symbol_name(s), // Variable name topfile, // File toplineno == -1 ? 0 : toplineno, // Line (for now, use lineno of the function) julia_type_to_di(ctx, varinfo.value.typ, &dbuilder, false), // Variable type AlwaysPreserve, // May be deleted if optimized out DINode::FlagZero // Flags (TODO: Do we need any) ); } } } // step 5. create first basic block BasicBlock *b0 = BasicBlock::Create(jl_LLVMContext, "top", f); ctx.builder.SetInsertPoint(b0); ctx.builder.SetCurrentDebugLocation(noDbg); // spill arguments into stack slots // so it is more likely to be possible to find them when debugging Value *fArg=NULL, *argArray=NULL, *pargArray=NULL, *argCount=NULL; if (!specsig) { Function::arg_iterator AI = f->arg_begin(); fArg = &*AI++; argArray = &*AI++; pargArray = ctx.builder.CreateAlloca(argArray->getType()); ctx.builder.CreateStore(argArray, pargArray, true/*volatile store to prevent removal of this alloca*/); argCount = &*AI++; ctx.argArray = argArray; ctx.argCount = argCount; if (needsparams) { ctx.spvals_ptr = &*AI++; } } /* // step 6. (optional) check for stack overflow (the slower way) Value *cur_sp = ctx.builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::frameaddress), ConstantInt::get(T_int32, 0)); Value *sp_ok = ctx.builder.CreateICmpUGT(cur_sp, ConstantInt::get(T_size, (uptrint_t)jl_stack_lo)); error_unless(ctx, sp_ok, "stack overflow"); */ // step 7. set up GC frame allocate_gc_frame(ctx, b0); Value *last_age = NULL; emit_last_age_field(ctx); if (toplevel || ctx.is_opaque_closure) { last_age = tbaa_decorate(tbaa_gcframe, ctx.builder.CreateAlignedLoad(ctx.world_age_field, Align(sizeof(size_t)))); } // step 8. allocate local variables slots // must be in the first basic block for the llvm mem2reg pass to work auto allocate_local = [&](jl_varinfo_t &varinfo, jl_sym_t *s) { jl_value_t *jt = varinfo.value.typ; assert(!varinfo.boxroot); // variables shouldn't have memory locs already if (varinfo.value.constant) { // no need to explicitly load/store a constant/ghost value alloc_def_flag(ctx, varinfo); return; } else if (varinfo.isArgument && !(specsig && i == (size_t)ctx.vaSlot)) { // if we can unbox it, just use the input pointer if (i != (size_t)ctx.vaSlot && jl_is_concrete_immutable(jt)) return; } else if (jl_is_uniontype(jt)) { bool allunbox; size_t align, nbytes; Value *lv = try_emit_union_alloca(ctx, (jl_uniontype_t*)jt, allunbox, align, nbytes); if (lv) { lv->setName(jl_symbol_name(s)); varinfo.value = mark_julia_slot(lv, jt, NULL, tbaa_stack); varinfo.pTIndex = emit_static_alloca(ctx, T_int8); } else if (allunbox) { // all ghost values just need a selector allocated AllocaInst *lv = emit_static_alloca(ctx, T_int8); lv->setName(jl_symbol_name(s)); varinfo.pTIndex = lv; varinfo.value.tbaa = NULL; varinfo.value.isboxed = false; } if (lv || allunbox) alloc_def_flag(ctx, varinfo); if (allunbox) return; } else if (deserves_stack(jt, true)) { bool isboxed; Type *vtype = julia_type_to_llvm(ctx, jt, &isboxed); assert(!isboxed); assert(!type_is_ghost(vtype) && "constants should already be handled"); // CreateAlloca is OK during prologue setup Value *lv = ctx.builder.CreateAlloca(vtype, NULL, jl_symbol_name(s)); varinfo.value = mark_julia_slot(lv, jt, NULL, tbaa_stack); alloc_def_flag(ctx, varinfo); if (ctx.debug_enabled && varinfo.dinfo) { assert((Metadata*)varinfo.dinfo->getType() != jl_pvalue_dillvmt); dbuilder.insertDeclare(lv, varinfo.dinfo, dbuilder.createExpression(), topdebugloc, ctx.builder.GetInsertBlock()); } return; } if (!varinfo.isArgument || // always need a slot if the variable is assigned specsig || // for arguments, give them stack slots if they aren't in `argArray` (otherwise, will use that pointer) (va && (int)i == ctx.vaSlot) || // or it's the va arg tuple i == 0) { // or it is the first argument (which isn't in `argArray`) AllocaInst *av = new AllocaInst(T_prjlvalue, 0, jl_symbol_name(s), /*InsertBefore*/ctx.ptlsStates); StoreInst *SI = new StoreInst(V_rnull, av, false, Align(sizeof(void*))); SI->insertAfter(ctx.ptlsStates); varinfo.boxroot = av; if (ctx.debug_enabled && varinfo.dinfo) { DIExpression *expr; if ((Metadata*)varinfo.dinfo->getType() == jl_pvalue_dillvmt) { expr = dbuilder.createExpression(); } else { SmallVector addr; addr.push_back(llvm::dwarf::DW_OP_deref); expr = dbuilder.createExpression(addr); } dbuilder.insertDeclare(av, varinfo.dinfo, expr, topdebugloc, ctx.builder.GetInsertBlock()); } } }; // get pointers for locals stored in the gc frame array (argTemp) for (i = 0; i < vinfoslen; i++) { jl_sym_t *s = slot_symbol(ctx, i); if (s == unused_sym) continue; jl_varinfo_t &varinfo = ctx.slots[i]; if (!varinfo.used) { varinfo.usedUndef = false; continue; } allocate_local(varinfo, s); } std::map upsilon_to_phic; // Scan for PhiC nodes, emit their slots and record which upsilon nodes // yield to them. { for (size_t i = 0; i < jl_array_len(stmts); ++i) { jl_value_t *stmt = jl_array_ptr_ref(stmts, i); if (jl_is_phicnode(stmt)) { jl_array_t *values = (jl_array_t*)jl_fieldref_noalloc(stmt, 0); for (size_t j = 0; j < jl_array_len(values); ++j) { jl_value_t *val = jl_array_ptr_ref(values, j); assert(jl_is_ssavalue(val)); upsilon_to_phic[((jl_ssavalue_t*)val)->id] = i; } ctx.phic_slots[i] = jl_varinfo_t{}; jl_varinfo_t &vi = ctx.phic_slots[i]; jl_value_t *typ = jl_array_ptr_ref(src->ssavaluetypes, i); vi.used = true; vi.isVolatile = true; vi.value = mark_julia_type(ctx, (Value*)NULL, false, typ); allocate_local(vi, jl_symbol("phic")); } } } // step 9. move args into local variables Function::arg_iterator AI = f->arg_begin(); auto get_specsig_arg = [&](jl_value_t *argType, Type *llvmArgType, bool isboxed) { jl_cgval_t theArg; if (type_is_ghost(llvmArgType)) { // this argument is not actually passed theArg = ghostValue(argType); } else if (is_uniquerep_Type(argType)) { theArg = mark_julia_const(jl_tparam0(argType)); } else if (llvmArgType->isAggregateType()) { Argument *Arg = &*AI; ++AI; maybe_mark_argument_dereferenceable(Arg, argType); theArg = mark_julia_slot(Arg, argType, NULL, tbaa_const); // this argument is by-pointer } else { Argument *Arg = &*AI; ++AI; if (isboxed) // e.g. is-pointer maybe_mark_argument_dereferenceable(Arg, argType); theArg = mark_julia_type(ctx, Arg, isboxed, argType); if (theArg.tbaa == tbaa_immut) theArg.tbaa = tbaa_const; } return theArg; }; if (has_sret) AI++; // skip sret slot if (returninfo.return_roots) AI++; // skip return_roots slot for (i = 0; i < nreq; i++) { jl_sym_t *s = (jl_sym_t*)jl_array_ptr_ref(src->slotnames, i); jl_value_t *argType = jl_nth_slot_type(lam->specTypes, i); bool isboxed = deserves_argbox(argType); Type *llvmArgType = isboxed ? T_prjlvalue : julia_type_to_llvm(ctx, argType); if (s == unused_sym) { if (specsig && !type_is_ghost(llvmArgType) && !is_uniquerep_Type(argType)) ++AI; continue; } jl_varinfo_t &vi = ctx.slots[i]; jl_cgval_t theArg; if (s == unused_sym || vi.value.constant) { assert(vi.boxroot == NULL); if (specsig && !type_is_ghost(llvmArgType) && !is_uniquerep_Type(argType)) ++AI; } else { if (specsig) { theArg = get_specsig_arg(argType, llvmArgType, isboxed); } else { if (i == 0) { // first (function) arg is separate in jlcall theArg = mark_julia_type(ctx, fArg, true, ctx.is_opaque_closure ? argType : vi.value.typ); } else { Value *argPtr = ctx.builder.CreateInBoundsGEP(T_prjlvalue, argArray, ConstantInt::get(T_size, i-1)); Value *load = maybe_mark_load_dereferenceable( ctx.builder.CreateAlignedLoad(T_prjlvalue, argPtr, Align(sizeof(void*))), false, vi.value.typ); theArg = mark_julia_type(ctx, load, true, vi.value.typ); if (ctx.debug_enabled && vi.dinfo && !vi.boxroot && !vi.value.V) { SmallVector addr; addr.push_back(llvm::dwarf::DW_OP_deref); addr.push_back(llvm::dwarf::DW_OP_plus_uconst); addr.push_back((i - 1) * sizeof(void*)); if ((Metadata*)vi.dinfo->getType() != jl_pvalue_dillvmt) addr.push_back(llvm::dwarf::DW_OP_deref); dbuilder.insertDeclare(pargArray, vi.dinfo, dbuilder.createExpression(addr), topdebugloc, ctx.builder.GetInsertBlock()); } } } // If this is an opaque closure, implicitly load the env and switch // the world age. if (i == 0 && ctx.is_opaque_closure) { jl_cgval_t closure_world = emit_getfield_knownidx(ctx, theArg, 2, (jl_datatype_t*)argType); emit_unbox(ctx, T_size, closure_world, (jl_value_t*)jl_long_type, ctx.world_age_field, tbaa_gcframe); theArg = convert_julia_type(ctx, emit_getfield_knownidx(ctx, theArg, 0, (jl_datatype_t*)argType), vi.value.typ); } if (vi.boxroot == NULL) { assert(vi.value.V == NULL && "unexpected variable slot created for argument"); // keep track of original (possibly boxed) value to avoid re-boxing or moving vi.value = theArg; if (specsig && theArg.V && ctx.debug_enabled && vi.dinfo) { SmallVector addr; Value *parg; if (theArg.ispointer()) { parg = theArg.V; if ((Metadata*)vi.dinfo->getType() != jl_pvalue_dillvmt) addr.push_back(llvm::dwarf::DW_OP_deref); } else { parg = ctx.builder.CreateAlloca(theArg.V->getType(), NULL, jl_symbol_name(s)); ctx.builder.CreateStore(theArg.V, parg); } dbuilder.insertDeclare(parg, vi.dinfo, dbuilder.createExpression(addr), topdebugloc, ctx.builder.GetInsertBlock()); } } else { Value *argp = boxed(ctx, theArg); ctx.builder.CreateStore(argp, vi.boxroot); } } } // step 10. allocate rest argument CallInst *restTuple = NULL; if (va && ctx.vaSlot != -1) { jl_varinfo_t &vi = ctx.slots[ctx.vaSlot]; if (vi.value.constant || !vi.used) { assert(vi.boxroot == NULL); } else if (specsig) { ctx.nvargs = jl_nparams(lam->specTypes) - nreq; jl_cgval_t *vargs = (jl_cgval_t*)alloca(sizeof(jl_cgval_t) * ctx.nvargs); for (size_t i = nreq; i < jl_nparams(lam->specTypes); ++i) { jl_value_t *argType = jl_nth_slot_type(lam->specTypes, i); bool isboxed = deserves_argbox(argType); Type *llvmArgType = isboxed ? T_prjlvalue : julia_type_to_llvm(ctx, argType); vargs[i - nreq] = get_specsig_arg(argType, llvmArgType, isboxed); } if (jl_is_concrete_type(vi.value.typ)) { jl_cgval_t tuple = emit_new_struct(ctx, vi.value.typ, ctx.nvargs, vargs); emit_varinfo_assign(ctx, vi, tuple); } else { restTuple = emit_jlcall(ctx, jltuple_func, V_rnull, vargs, ctx.nvargs, JLCALL_F_CC); jl_cgval_t tuple = mark_julia_type(ctx, restTuple, true, vi.value.typ); emit_varinfo_assign(ctx, vi, tuple); } } else { // restarg = jl_f_tuple(NULL, &args[nreq], nargs - nreq) Function *F = prepare_call(jltuple_func); restTuple = ctx.builder.CreateCall(F, { V_rnull, ctx.builder.CreateInBoundsGEP(T_prjlvalue, argArray, ConstantInt::get(T_size, nreq - 1)), ctx.builder.CreateSub(argCount, ConstantInt::get(T_int32, nreq - 1)) }); restTuple->setAttributes(F->getAttributes()); ctx.builder.CreateStore(restTuple, vi.boxroot); } } // step 11. Compute properties for each statements // This needs to be computed by iterating in the IR order // instead of control flow order. auto in_user_mod = [] (jl_module_t *mod) { return (!jl_is_submodule(mod, jl_base_module) && !jl_is_submodule(mod, jl_core_module)); }; bool mod_is_user_mod = in_user_mod(ctx.module); struct DebugLineTable { DebugLoc loc; StringRef file; ssize_t line; bool is_user_code; unsigned inlined_at; bool operator ==(const DebugLineTable &other) const { return other.loc == loc && other.file == file && other.line == line && other.is_user_code == is_user_code && other.inlined_at == inlined_at; } }; std::vector linetable; { // populate the linetable data format assert(jl_is_array(src->linetable)); size_t nlocs = jl_array_len(src->linetable); std::map, DISubprogram*> subprograms; linetable.resize(nlocs + 1); DebugLineTable &topinfo = linetable[0]; topinfo.file = ctx.file; topinfo.line = toplineno; topinfo.is_user_code = mod_is_user_mod; topinfo.inlined_at = 0; topinfo.loc = topdebugloc; for (size_t i = 0; i < nlocs; i++) { // LineInfoNode(mod::Module, method::Any, file::Symbol, line::Int, inlined_at::Int) jl_value_t *locinfo = jl_array_ptr_ref(src->linetable, i); DebugLineTable &info = linetable[i + 1]; assert(jl_typeis(locinfo, jl_lineinfonode_type)); jl_module_t *module = (jl_module_t*)jl_fieldref_noalloc(locinfo, 0); jl_value_t *method = jl_fieldref_noalloc(locinfo, 1); jl_sym_t *filesym = (jl_sym_t*)jl_fieldref_noalloc(locinfo, 2); info.line = jl_unbox_long(jl_fieldref(locinfo, 3)); info.inlined_at = jl_unbox_long(jl_fieldref(locinfo, 4)); assert(info.inlined_at <= i); if (module == ctx.module) info.is_user_code = mod_is_user_mod; else info.is_user_code = in_user_mod(module); info.file = jl_symbol_name(filesym); if (info.file.empty()) info.file = ""; if (ctx.debug_enabled) { StringRef fname; if (jl_is_method_instance(method)) method = ((jl_method_instance_t*)method)->def.value; if (jl_is_method(method)) method = (jl_value_t*)((jl_method_t*)method)->name; if (jl_is_symbol(method)) fname = jl_symbol_name((jl_sym_t*)method); if (fname.empty()) fname = "macro expansion"; if (info.inlined_at == 0 && info.file == ctx.file) { // if everything matches, emit a toplevel line number info.loc = DILocation::get(jl_LLVMContext, info.line, 0, SP, NULL); } else { // otherwise, describe this as an inlining frame DISubprogram *&inl_SP = subprograms[std::make_tuple(fname, info.file)]; if (inl_SP == NULL) { DIFile *difile = dbuilder.createFile(info.file, "."); inl_SP = dbuilder.createFunction(difile ,std::string(fname) + ";" // Name ,fname // LinkageName ,difile // File ,0 // LineNo ,jl_di_func_null_sig // Ty ,0 // ScopeLine ,DINode::FlagZero // Flags ,DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized // SPFlags ,nullptr // Template Parameters ,nullptr // Template Declaration ,nullptr // ThrownTypes ); } DebugLoc inl_loc = (info.inlined_at == 0) ? DebugLoc(DILocation::get(jl_LLVMContext, 0, 0, SP, NULL)) : linetable.at(info.inlined_at).loc; info.loc = DILocation::get(jl_LLVMContext, info.line, 0, inl_SP, inl_loc); } } } } std::vector aliasscopes; MDNode* current_aliasscope = nullptr; std::vector scope_stack; std::vector scope_list_stack; { size_t nstmts = jl_array_len(stmts); aliasscopes.resize(nstmts + 1, nullptr); MDBuilder mbuilder(jl_LLVMContext); MDNode *alias_domain = mbuilder.createAliasScopeDomain(ctx.name); for (i = 0; i < nstmts; i++) { jl_value_t *stmt = jl_array_ptr_ref(stmts, i); jl_expr_t *expr = jl_is_expr(stmt) ? (jl_expr_t*)stmt : nullptr; if (expr) { if (expr->head == aliasscope_sym) { MDNode *scope = mbuilder.createAliasScope("aliasscope", alias_domain); scope_stack.push_back(scope); MDNode *scope_list = MDNode::get(jl_LLVMContext, ArrayRef(scope_stack)); scope_list_stack.push_back(scope_list); current_aliasscope = scope_list; } else if (expr->head == popaliasscope_sym) { scope_stack.pop_back(); scope_list_stack.pop_back(); if (scope_list_stack.empty()) { current_aliasscope = NULL; } else { current_aliasscope = scope_list_stack.back(); } } } aliasscopes[i+1] = current_aliasscope; } } Instruction &prologue_end = ctx.builder.GetInsertBlock()->back(); // step 12. Do codegen in control flow order std::vector workstack; std::map BB; std::map come_from_bb; int cursor = 0; auto find_next_stmt = [&] (int seq_next) { // new style ir is always in dominance order, but frontend IR might not be // `seq_next` is the next statement we want to emit // i.e. if it exists, it's the next one following control flow and // should be emitted into the current insert point. if (seq_next >= 0 && (unsigned)seq_next < stmtslen) { workstack.push_back(seq_next); } else if (!ctx.builder.GetInsertBlock()->getTerminator()) { ctx.builder.CreateUnreachable(); } while (!workstack.empty()) { int item = workstack.back(); workstack.pop_back(); auto nextbb = BB.find(item + 1); if (nextbb == BB.end()) { cursor = item; return; } if (seq_next != -1 && !ctx.builder.GetInsertBlock()->getTerminator()) { come_from_bb[cursor + 1] = ctx.builder.GetInsertBlock(); ctx.builder.CreateBr(nextbb->second); } seq_next = -1; // if this BB is non-empty, we've visited it before so skip it if (!nextbb->second->getTerminator()) { ctx.builder.SetInsertPoint(nextbb->second); cursor = item; return; } } cursor = -1; }; auto do_coverage = [&] (bool in_user_code) { return (coverage_mode == JL_LOG_ALL || (coverage_mode == JL_LOG_USER && in_user_code)); }; auto do_malloc_log = [&] (bool in_user_code) { return (malloc_log_mode == JL_LOG_ALL || (malloc_log_mode == JL_LOG_USER && in_user_code)); }; std::vector current_lineinfo, new_lineinfo; auto coverageVisitStmt = [&] (size_t dbg) { if (dbg == 0) return; // Compute inlining stack for current line, inner frame first while (dbg) { new_lineinfo.push_back(dbg); dbg = linetable.at(dbg).inlined_at; } // Visit frames which differ from previous statement as tracked in // current_lineinfo (tracked outer frame first). current_lineinfo.resize(new_lineinfo.size(), 0); for (dbg = 0; dbg < new_lineinfo.size(); dbg++) { unsigned newdbg = new_lineinfo[new_lineinfo.size() - dbg - 1]; if (newdbg != current_lineinfo[dbg]) { current_lineinfo[dbg] = newdbg; const auto &info = linetable.at(newdbg); if (do_coverage(info.is_user_code)) coverageVisitLine(ctx, info.file, info.line); } } new_lineinfo.clear(); }; auto mallocVisitStmt = [&] (unsigned dbg, Value *sync) { if (!do_malloc_log(mod_is_user_mod) || dbg == 0) { if (do_malloc_log(true) && sync) ctx.builder.CreateCall(prepare_call(sync_gc_total_bytes_func), {sync}); return; } while (linetable.at(dbg).inlined_at) dbg = linetable.at(dbg).inlined_at; mallocVisitLine(ctx, ctx.file, linetable.at(dbg).line, sync); }; if (coverage_mode != JL_LOG_NONE) { // record all lines that could be covered for (const auto &info : linetable) if (do_coverage(info.is_user_code)) coverageAllocLine(info.file, info.line); } come_from_bb[0] = ctx.builder.GetInsertBlock(); // First go through and collect all branch targets, so we know where to // split basic blocks. std::set branch_targets; // 1-indexed { for (size_t i = 0; i < stmtslen; ++i) { jl_value_t *stmt = jl_array_ptr_ref(stmts, i); if (jl_is_gotoifnot(stmt)) { int dest = jl_gotoifnot_label(stmt); branch_targets.insert(dest); // The next 1-indexed statement branch_targets.insert(i + 2); } else if (jl_is_returnnode(stmt)) { // We don't do dead branch elimination before codegen // so we need to make sure to start a BB after any // return node, even if they aren't otherwise branch // targets. if (i + 2 <= stmtslen) branch_targets.insert(i + 2); } else if (jl_is_expr(stmt)) { if (((jl_expr_t*)stmt)->head == enter_sym) { branch_targets.insert(i + 1); if (i + 2 <= stmtslen) branch_targets.insert(i + 2); int dest = jl_unbox_long(jl_array_ptr_ref(((jl_expr_t*)stmt)->args, 0)); branch_targets.insert(dest); } } else if (jl_is_gotonode(stmt)) { int dest = jl_gotonode_label(stmt); branch_targets.insert(dest); if (i + 2 <= stmtslen) branch_targets.insert(i + 2); } else if (jl_is_phinode(stmt)) { jl_array_t *edges = (jl_array_t*)jl_fieldref_noalloc(stmt, 0); for (size_t j = 0; j < jl_array_len(edges); ++j) { size_t edge = ((int32_t*)jl_array_data(edges))[j]; if (edge == i) branch_targets.insert(i + 1); } } } } for (int label : branch_targets) { BasicBlock *bb = BasicBlock::Create(jl_LLVMContext, "L" + std::to_string(label), f); BB[label] = bb; } Value *sync_bytes = nullptr; if (do_malloc_log(true)) sync_bytes = ctx.builder.CreateCall(prepare_call(diff_gc_total_bytes_func), {}); { // coverage for the function definition line number const auto &topinfo = linetable.at(0); if (topinfo == linetable.at(1)) current_lineinfo.push_back(1); if (do_coverage(topinfo.is_user_code)) coverageVisitLine(ctx, topinfo.file, topinfo.line); } find_next_stmt(0); while (cursor != -1) { int32_t debuginfoloc = ((int32_t*)jl_array_data(src->codelocs))[cursor]; if (debuginfoloc > 0) { if (ctx.debug_enabled) ctx.builder.SetCurrentDebugLocation(linetable.at(debuginfoloc).loc); coverageVisitStmt(debuginfoloc); } ctx.aliasscope = aliasscopes[cursor]; jl_value_t *stmt = jl_array_ptr_ref(stmts, cursor); jl_expr_t *expr = jl_is_expr(stmt) ? (jl_expr_t*)stmt : nullptr; if (jl_is_returnnode(stmt)) { jl_value_t *retexpr = jl_returnnode_value(stmt); if (retexpr == NULL) { ctx.builder.CreateUnreachable(); find_next_stmt(-1); continue; } // this is basically a copy of emit_assignment, // but where the assignment slot is the retval jl_cgval_t retvalinfo = emit_expr(ctx, retexpr); retvalinfo = convert_julia_type(ctx, retvalinfo, jlrettype); if (retvalinfo.typ == jl_bottom_type) { ctx.builder.CreateUnreachable(); find_next_stmt(-1); continue; } Value *isboxed_union = NULL; Value *retval = NULL; Value *sret = has_sret ? f->arg_begin() : NULL; Type *retty = f->getReturnType(); switch (returninfo.cc) { case jl_returninfo_t::Boxed: retval = boxed(ctx, retvalinfo); // skip the gcroot on the return path break; case jl_returninfo_t::Register: if (type_is_ghost(retty)) retval = NULL; else retval = emit_unbox(ctx, retty, retvalinfo, jlrettype); break; case jl_returninfo_t::SRet: retval = NULL; break; case jl_returninfo_t::Union: { Value *data, *tindex; if (retvalinfo.TIndex) { tindex = retvalinfo.TIndex; data = V_rnull; if (retvalinfo.V == NULL) { // treat this as a simple Ghosts sret = NULL; } else if (retvalinfo.Vboxed) { // also need to account for the possibility the return object is boxed // and avoid / skip copying it to the stack isboxed_union = ctx.builder.CreateICmpNE( ctx.builder.CreateAnd(tindex, ConstantInt::get(T_int8, 0x80)), ConstantInt::get(T_int8, 0)); data = ctx.builder.CreateSelect(isboxed_union, retvalinfo.Vboxed, data); } } else { // treat this as a simple boxed returninfo //assert(retvalinfo.isboxed); tindex = compute_tindex_unboxed(ctx, retvalinfo, jlrettype); tindex = ctx.builder.CreateOr(tindex, ConstantInt::get(T_int8, 0x80)); data = boxed(ctx, retvalinfo); sret = NULL; } retval = UndefValue::get(retty); retval = ctx.builder.CreateInsertValue(retval, data, 0); retval = ctx.builder.CreateInsertValue(retval, tindex, 1); break; } case jl_returninfo_t::Ghosts: retval = compute_tindex_unboxed(ctx, retvalinfo, jlrettype); break; } if (sret) { if (retvalinfo.ispointer()) { if (returninfo.return_roots) { Type *store_ty = julia_type_to_llvm(ctx, retvalinfo.typ); emit_sret_roots(ctx, true, data_pointer(ctx, retvalinfo), store_ty, f->arg_begin() + 1, returninfo.return_roots); } if (returninfo.cc == jl_returninfo_t::SRet) { assert(jl_is_concrete_type(jlrettype)); emit_memcpy(ctx, sret, nullptr, retvalinfo, jl_datatype_size(jlrettype), julia_alignment(jlrettype)); } else { // must be jl_returninfo_t::Union emit_unionmove(ctx, sret, nullptr, retvalinfo, /*skip*/isboxed_union); } } else { Type *store_ty = retvalinfo.V->getType(); Type *dest_ty = store_ty->getPointerTo(); Value *Val = retvalinfo.V; if (returninfo.return_roots) { assert(julia_type_to_llvm(ctx, retvalinfo.typ) == store_ty); emit_sret_roots(ctx, false, Val, store_ty, f->arg_begin() + 1, returninfo.return_roots); } if (dest_ty != sret->getType()) sret = emit_bitcast(ctx, sret, dest_ty); ctx.builder.CreateAlignedStore(Val, sret, Align(julia_alignment(retvalinfo.typ))); assert(retvalinfo.TIndex == NULL && "unreachable"); // unimplemented representation } } mallocVisitStmt(debuginfoloc, sync_bytes); if (toplevel || ctx.is_opaque_closure) ctx.builder.CreateStore(last_age, ctx.world_age_field); assert(type_is_ghost(retty) || returninfo.cc == jl_returninfo_t::SRet || retval->getType() == ctx.f->getReturnType()); ctx.builder.CreateRet(retval); find_next_stmt(-1); continue; } if (jl_is_gotonode(stmt)) { int lname = jl_gotonode_label(stmt); come_from_bb[cursor+1] = ctx.builder.GetInsertBlock(); ctx.builder.CreateBr(BB[lname]); find_next_stmt(lname - 1); continue; } if (jl_is_upsilonnode(stmt)) { emit_upsilonnode(ctx, upsilon_to_phic[cursor + 1], jl_fieldref_noalloc(stmt, 0)); find_next_stmt(cursor + 1); continue; } if (jl_is_gotoifnot(stmt)) { jl_value_t *cond = jl_gotoifnot_cond(stmt); int lname = jl_gotoifnot_label(stmt); Value *isfalse = emit_condition(ctx, cond, "if"); mallocVisitStmt(debuginfoloc, nullptr); come_from_bb[cursor+1] = ctx.builder.GetInsertBlock(); workstack.push_back(lname - 1); BasicBlock *ifnot = BB[lname]; BasicBlock *ifso = BB[cursor+2]; if (ifnot == ifso) ctx.builder.CreateBr(ifnot); else ctx.builder.CreateCondBr(isfalse, ifnot, ifso); find_next_stmt(cursor + 1); continue; } else if (expr && expr->head == enter_sym) { jl_value_t **args = (jl_value_t**)jl_array_data(expr->args); assert(jl_is_long(args[0])); int lname = jl_unbox_long(args[0]); // Save exception stack depth at enter for use in pop_exception Value *excstack_state = ctx.builder.CreateCall(prepare_call(jl_excstack_state_func)); assert(!ctx.ssavalue_assigned.at(cursor)); ctx.SAvalues.at(cursor) = jl_cgval_t(excstack_state, NULL, false, (jl_value_t*)jl_ulong_type, NULL); ctx.ssavalue_assigned.at(cursor) = true; CallInst *sj = ctx.builder.CreateCall(prepare_call(except_enter_func)); // We need to mark this on the call site as well. See issue #6757 sj->setCanReturnTwice(); Value *isz = ctx.builder.CreateICmpEQ(sj, ConstantInt::get(T_int32, 0)); BasicBlock *tryblk = BasicBlock::Create(jl_LLVMContext, "try", f); BasicBlock *handlr = NULL; handlr = BB[lname]; workstack.push_back(lname - 1); come_from_bb[cursor + 1] = ctx.builder.GetInsertBlock(); ctx.builder.CreateCondBr(isz, tryblk, handlr); ctx.builder.SetInsertPoint(tryblk); } else { emit_stmtpos(ctx, stmt, cursor); mallocVisitStmt(debuginfoloc, nullptr); } find_next_stmt(cursor + 1); } // Delete any unreachable blocks for (auto &item : BB) { if (!item.second->getTerminator()) item.second->eraseFromParent(); } ctx.builder.SetCurrentDebugLocation(noDbg); ctx.builder.ClearInsertionPoint(); auto undef_value_for_type = [&](Type *T) { auto tracked = CountTrackedPointers(T); Value *undef; if (tracked.count) // make sure gc pointers (including ptr_phi of union-split) are initialized to NULL undef = Constant::getNullValue(T); else undef = UndefValue::get(T); return undef; }; // Codegen Phi nodes std::map, BasicBlock*> BB_rewrite_map; std::vector ToDelete; for (auto &tup : ctx.PhiNodes) { jl_cgval_t phi_result; PHINode *VN; jl_value_t *r; AllocaInst *dest; BasicBlock *PhiBB; std::tie(phi_result, PhiBB, dest, VN, r) = tup; jl_value_t *phiType = phi_result.typ; jl_array_t *edges = (jl_array_t*)jl_fieldref_noalloc(r, 0); jl_array_t *values = (jl_array_t*)jl_fieldref_noalloc(r, 1); PHINode *TindexN = cast_or_null(phi_result.TIndex); DenseSet preds; for (size_t i = 0; i < jl_array_len(edges); ++i) { size_t edge = ((int32_t*)jl_array_data(edges))[i]; jl_value_t *value = jl_array_ptr_ref(values, i); // This edge value is undef, handle it the same as if the edge wasn't listed at all if (!value) continue; BasicBlock *FromBB = come_from_bb[edge]; // This edge was statically unreachable. Don't codegen it. if (!FromBB) continue; // see if this edge has already been rewritten // (we'll continue appending blocks to the current end) std::pair LookupKey(FromBB, PhiBB); if (BB_rewrite_map.count(LookupKey)) { FromBB = BB_rewrite_map[LookupKey]; } if (!preds.insert(FromBB).second) { // Only codegen this branch once for each PHI (the expression must be the same on all branches) #ifndef NDEBUG for (size_t j = 0; j < i; ++j) { size_t j_edge = ((int32_t*)jl_array_data(edges))[j]; if (j_edge == edge) { assert(jl_egal(value, jl_array_ptr_ref(values, j))); } } #endif continue; } assert(find(pred_begin(PhiBB), pred_end(PhiBB), FromBB) != pred_end(PhiBB)); // consistency check TerminatorInst *terminator = FromBB->getTerminator(); if (!terminator->getParent()->getUniqueSuccessor()) { // Can't use `llvm::SplitCriticalEdge` here because // we may have invalid phi nodes in the destination. BasicBlock *NewBB = BasicBlock::Create(terminator->getContext(), FromBB->getName() + "." + PhiBB->getName() + "_crit_edge"); Function::iterator FBBI = FromBB->getIterator(); ctx.f->getBasicBlockList().insert(++FBBI, NewBB); // insert after existing block terminator->replaceSuccessorWith(PhiBB, NewBB); DebugLoc Loc = terminator->getDebugLoc(); terminator = BranchInst::Create(PhiBB); terminator->setDebugLoc(Loc); ctx.builder.SetInsertPoint(NewBB); } else { terminator->removeFromParent(); ctx.builder.SetInsertPoint(FromBB); } if (dest) ctx.builder.CreateLifetimeStart(dest); jl_cgval_t val = emit_expr(ctx, value); if (val.constant) val = mark_julia_const(val.constant); // be over-conservative at making sure `.typ` is set concretely, not tindex if (!jl_is_uniontype(phiType) || !TindexN) { Type *lty = julia_type_to_llvm(ctx, phiType); if (VN) { Value *V; if (val.typ == (jl_value_t*)jl_bottom_type) { V = undef_value_for_type(VN->getType()); } else if (VN && VN->getType() == T_prjlvalue) { // Includes the jl_is_uniontype(phiType) && !TindexN case V = boxed(ctx, val); } else { // XXX: must emit undef here (rather than a bitcast or // load of val) if the runtime type of val isn't phiType V = emit_unbox(ctx, VN->getType(), val, phiType); } VN->addIncoming(V, ctx.builder.GetInsertBlock()); assert(!TindexN); } else if (dest && val.typ != (jl_value_t*)jl_bottom_type) { // XXX: must emit undef here (rather than a bitcast or // load of val) if the runtime type of val isn't phiType assert(lty != T_prjlvalue); (void)emit_unbox(ctx, lty, val, phiType, maybe_decay_tracked(ctx, dest)); } } else { Value *RTindex; // The branch below is a bit too complex for GCC to realize that // `V` is always initialized when it is used. // Ref https://gcc.gnu.org/bugzilla/show_bug.cgi?id=96629 Value *V = nullptr; if (val.typ == (jl_value_t*)jl_bottom_type) { if (VN) V = undef_value_for_type(VN->getType()); RTindex = UndefValue::get(T_int8); } else if (jl_is_concrete_type(val.typ) || val.constant) { size_t tindex = get_box_tindex((jl_datatype_t*)val.typ, phiType); if (tindex == 0) { if (VN) V = boxed(ctx, val); RTindex = ConstantInt::get(T_int8, 0x80); } else { if (VN) V = V_rnull; Type *lty = julia_type_to_llvm(ctx, val.typ); if (dest && !type_is_ghost(lty)) // basically, if !ghost union emit_unbox(ctx, lty, val, val.typ, dest); RTindex = ConstantInt::get(T_int8, tindex); } } else { Value *skip = NULL; // must compute skip here, since the runtime type of val might not be in phiType // caution: only Phi and PhiC are allowed to do this (and maybe sometimes Pi) jl_cgval_t new_union = convert_julia_type(ctx, val, phiType, &skip); RTindex = new_union.TIndex; if (!RTindex) { assert(new_union.isboxed && new_union.Vboxed && "convert_julia_type failed"); RTindex = compute_tindex_unboxed(ctx, new_union, phiType); if (dest) { // If dest is not set, this is a ghost union, the recipient of which // is often not prepared to handle a boxed representation of the ghost. RTindex = ctx.builder.CreateOr(RTindex, ConstantInt::get(T_int8, 0x80)); } new_union.TIndex = RTindex; } if (VN) V = new_union.Vboxed ? new_union.Vboxed : V_rnull; if (dest) { // basically, if !ghost union if (new_union.Vboxed != nullptr) { Value *isboxed = ctx.builder.CreateICmpNE( // if 0x80 is set, we won't select this slot anyways ctx.builder.CreateAnd(RTindex, ConstantInt::get(T_int8, 0x80)), ConstantInt::get(T_int8, 0)); skip = skip ? ctx.builder.CreateOr(isboxed, skip) : isboxed; } emit_unionmove(ctx, dest, tbaa_arraybuf, new_union, skip); } } if (VN) VN->addIncoming(V, ctx.builder.GetInsertBlock()); if (TindexN) TindexN->addIncoming(RTindex, ctx.builder.GetInsertBlock()); } // put the branch back at the end of our current basic block ctx.builder.Insert(terminator); // Record the current tail of this Phi edge in the rewrite map and // check any phi nodes in the Phi block to see if by emitting on the edges // we made things inconsistent. BasicBlock *NewBB = ctx.builder.GetInsertBlock(); if (FromBB != NewBB) { BB_rewrite_map[LookupKey] = NewBB; preds.insert(NewBB); PhiBB->replacePhiUsesWith(FromBB, NewBB); } ctx.builder.ClearInsertionPoint(); } // In LLVM IR it is illegal to have phi nodes without incoming values, even if // there are no operands (no incoming branches), so delete any such phi nodes if (pred_empty(PhiBB)) { if (VN) ToDelete.push_back(VN); if (TindexN) ToDelete.push_back(TindexN); continue; } // Julia PHINodes may be incomplete with respect to predecessors, LLVM's may not for (auto *FromBB : predecessors(PhiBB)) { if (preds.count(FromBB)) continue; ctx.builder.SetInsertPoint(FromBB->getTerminator()); // PHI is undef on this branch. But still may need to put a valid pointer in place. Value *RTindex = TindexN ? UndefValue::get(T_int8) : NULL; if (VN) { Value *undef = undef_value_for_type(VN->getType()); VN->addIncoming(undef, FromBB); if (TindexN) // let the runtime / optimizer know this is unknown / boxed / null, so that it won't try to union_move / copy it later RTindex = ConstantInt::get(T_int8, 0x80); } if (TindexN) TindexN->addIncoming(RTindex, FromBB); if (dest) { ctx.builder.CreateLifetimeStart(dest); if (CountTrackedPointers(dest->getAllocatedType()).count) ctx.builder.CreateStore(Constant::getNullValue(dest->getAllocatedType()), dest); } ctx.builder.ClearInsertionPoint(); } } for (PHINode *PN : ToDelete) { PN->replaceAllUsesWith(UndefValue::get(PN->getType())); PN->eraseFromParent(); } // step 13. Perform any delayed instantiations if (ctx.debug_enabled) { bool in_prologue = true; for (auto &BB : *ctx.f) { for (auto &I : BB) { CallBase *call = dyn_cast(&I); if (call && !I.getDebugLoc()) { // LLVM Verifier: inlinable function call in a function with debug info must have a !dbg location // make sure that anything we attempt to call has some inlining info, just in case optimization messed up // (except if we know that it is an intrinsic used in our prologue, which should never have its own debug subprogram) Function *F = call->getCalledFunction(); if (!in_prologue || !F || !(F->isIntrinsic() || F->getName().startswith("julia.") || &I == restTuple)) { I.setDebugLoc(topdebugloc); } } if (&I == &prologue_end) in_prologue = false; } } dbuilder.finalize(); } if (ctx.vaSlot > 0) { // remove VA allocation if we never referenced it Instruction *root = cast_or_null(ctx.slots[ctx.vaSlot].boxroot); if (root) { Instruction *store_value = NULL; bool have_real_use = false; for (Use &U : root->uses()) { User *RU = U.getUser(); if (StoreInst *SRU = dyn_cast(RU)) { if (!store_value) store_value = dyn_cast(SRU->getValueOperand()); } else if (isa(RU)) { } else if (isa(RU) && RU->use_empty()) { } else { have_real_use = true; break; } } if (!have_real_use) { Instruction *use = NULL; for (Use &U : root->uses()) { if (use) // erase after the iterator moves on use->eraseFromParent(); User *RU = U.getUser(); use = cast(RU); } if (use) use->eraseFromParent(); root->eraseFromParent(); assert(!store_value || store_value == restTuple); restTuple->eraseFromParent(); } } } // copy ctx.roots into m->roots // if we created any new roots during codegen if (ctx.roots) { jl_method_t *m = lam->def.method; JL_LOCK(&m->writelock); if (m->roots == NULL) { m->roots = ctx.roots; jl_gc_wb(m, m->roots); } else { size_t i, ilen = jl_array_dim0(ctx.roots); size_t j, jlen = jl_array_dim0(m->roots); for (i = 0; i < ilen; i++) { jl_value_t *ival = jl_array_ptr_ref(ctx.roots, i); for (j = 0; j < jlen; j++) { jl_value_t *jval = jl_array_ptr_ref(m->roots, j); if (ival == jval) break; } if (j == jlen) // not found - add to array jl_array_ptr_1d_push(m->roots, ival); } } ctx.roots = NULL; JL_UNLOCK(&m->writelock); } // link the dependent llvmcall modules, but switch their function's linkage to private // so that they don't show up in the execution engine. for (auto &Mod : ctx.llvmcall_modules) { SmallVector Exports; for (const auto &F: Mod->functions()) if (!F.isDeclaration()) Exports.push_back(F.getName().str()); if (Linker::linkModules(*jl_Module, std::move(Mod))) { jl_error("Failed to link LLVM bitcode"); } for (auto FN: Exports) jl_Module->getFunction(FN)->setLinkage(GlobalVariable::PrivateLinkage); } // link in opaque closure modules for (auto &Mod : ctx.oc_modules) { SmallVector Exports; for (const auto &F: Mod->functions()) if (!F.isDeclaration()) Exports.push_back(F.getName().str()); jl_merge_module(jl_Module, std::move(Mod)); for (auto FN: Exports) jl_Module->getFunction(FN)->setLinkage(GlobalVariable::PrivateLinkage); } JL_GC_POP(); return std::make_pair(std::unique_ptr(M), declarations); } // --- entry point --- void jl_add_code_in_flight(StringRef name, jl_code_instance_t *codeinst, const DataLayout &DL); JL_GCC_IGNORE_START("-Wclobbered") jl_compile_result_t jl_emit_code( jl_method_instance_t *li, jl_code_info_t *src, jl_value_t *jlrettype, jl_codegen_params_t ¶ms) { JL_TIMING(CODEGEN); // caller must hold codegen_lock jl_llvm_functions_t decls = {}; std::unique_ptr m; assert((params.params == &jl_default_cgparams /* fast path */ || !params.cache || compare_cgparams(params.params, &jl_default_cgparams)) && "functions compiled with custom codegen params must not be cached"); JL_TRY { std::tie(m, decls) = emit_function(li, src, jlrettype, params); if (dump_emitted_mi_name_stream != NULL) { jl_printf(dump_emitted_mi_name_stream, "%s\t", decls.specFunctionObject.c_str()); // NOTE: We print the Type Tuple without surrounding quotes, because the quotes // break CSV parsing if there are any internal quotes in the Type name (e.g. in // Symbol("...")). The \t delineator should be enough to ensure whitespace is // handled correctly. (And we don't need to worry about any tabs in the printed // string, because tabs are printed as "\t" by `show`.) jl_static_show(dump_emitted_mi_name_stream, li->specTypes); jl_printf(dump_emitted_mi_name_stream, "\n"); } } JL_CATCH { // Something failed! This is very, very bad. // Try to pretend that it isn't and attempt to recover. m.reset(); decls.functionObject = ""; decls.specFunctionObject = ""; const char *mname = name_from_method_instance(li); jl_printf((JL_STREAM*)STDERR_FILENO, "Internal error: encountered unexpected error during compilation of %s:\n", mname); jl_static_show((JL_STREAM*)STDERR_FILENO, jl_current_exception()); jl_printf((JL_STREAM*)STDERR_FILENO, "\n"); jlbacktrace(); // written to STDERR_FILENO } return std::make_tuple(std::move(m), decls); } jl_compile_result_t jl_emit_codeinst( jl_code_instance_t *codeinst, jl_code_info_t *src, jl_codegen_params_t ¶ms) { JL_TIMING(CODEGEN); JL_GC_PUSH1(&src); if (!src) { src = (jl_code_info_t*)codeinst->inferred; jl_method_t *def = codeinst->def->def.method; if (src && (jl_value_t*)src != jl_nothing && jl_is_method(def)) src = jl_uncompress_ir(def, codeinst, (jl_array_t*)src); if (!src || !jl_is_code_info(src)) { JL_GC_POP(); return jl_compile_result_t(); // failed } } jl_compile_result_t result = jl_emit_code(codeinst->def, src, codeinst->rettype, params); const jl_llvm_functions_t &decls = std::get<1>(result); const std::string &specf = decls.specFunctionObject; const std::string &f = decls.functionObject; if (params.cache && !f.empty()) { const Module *m = std::get<0>(result).get(); // Prepare debug info to receive this function // record that this function name came from this linfo, // so we can build a reverse mapping for debug-info. bool toplevel = !jl_is_method(codeinst->def->def.method); if (!toplevel) { const DataLayout &DL = m->getDataLayout(); // but don't remember toplevel thunks because // they may not be rooted in the gc for the life of the program, // and the runtime doesn't notify us when the code becomes unreachable :( if (!specf.empty()) jl_add_code_in_flight(specf, codeinst, DL); if (!f.empty() && f != "jl_fptr_args" && f != "jl_fptr_sparam") jl_add_code_in_flight(f, codeinst, DL); } if (// don't alter `inferred` when the code is not directly being used params.world && // don't change inferred state codeinst->inferred) { jl_method_t *def = codeinst->def->def.method; if (// keep code when keeping everything !(JL_DELETE_NON_INLINEABLE) || // aggressively keep code when debugging level >= 2 jl_options.debug_level > 1) { // update the stored code if (codeinst->inferred != (jl_value_t*)src) { if (jl_is_method(def)) src = (jl_code_info_t*)jl_compress_ir(def, src); codeinst->inferred = (jl_value_t*)src; jl_gc_wb(codeinst, src); } } else if (// don't delete toplevel code jl_is_method(def) && // and there is something to delete (test this before calling jl_ir_flag_inlineable) codeinst->inferred != jl_nothing && // don't delete inlineable code, unless it is constant (codeinst->invoke == jl_fptr_const_return || !jl_ir_flag_inlineable((jl_array_t*)codeinst->inferred)) && // don't delete code when generating a precompile file !imaging_mode) { // if not inlineable, code won't be needed again codeinst->inferred = jl_nothing; } } } JL_GC_POP(); return result; } void jl_compile_workqueue( std::map &emitted, jl_codegen_params_t ¶ms, CompilationPolicy policy) { JL_TIMING(CODEGEN); jl_code_info_t *src = NULL; JL_GC_PUSH1(&src); while (!params.workqueue.empty()) { jl_code_instance_t *codeinst; Function *protodecl; jl_returninfo_t::CallingConv proto_cc; bool proto_specsig; unsigned proto_return_roots; std::tie(codeinst, proto_cc, proto_return_roots, protodecl, proto_specsig) = params.workqueue.back(); params.workqueue.pop_back(); // try to emit code for this item from the workqueue assert(codeinst->min_world <= params.world && codeinst->max_world >= params.world && "invalid world for code-instance"); StringRef preal_decl = ""; bool preal_specsig = false; if (params.cache && codeinst->invoke != NULL) { if (codeinst->invoke == jl_fptr_args) { preal_decl = jl_ExecutionEngine->getFunctionAtAddress((uintptr_t)codeinst->specptr.fptr, codeinst); } else if (codeinst->isspecsig) { preal_decl = jl_ExecutionEngine->getFunctionAtAddress((uintptr_t)codeinst->specptr.fptr, codeinst); preal_specsig = true; } } else { jl_compile_result_t &result = emitted[codeinst]; jl_llvm_functions_t *decls = NULL; if (std::get<0>(result)) { decls = &std::get<1>(result); } else { // Reinfer the function. The JIT came along and removed the inferred // method body. See #34993 if (policy == CompilationPolicy::Extern && codeinst->inferred && codeinst->inferred == jl_nothing) { src = jl_type_infer(codeinst->def, jl_world_counter, 0); if (src) result = jl_emit_code(codeinst->def, src, src->rettype, params); } else { result = jl_emit_codeinst(codeinst, NULL, params); } if (std::get<0>(result)) decls = &std::get<1>(result); else emitted.erase(codeinst); // undo the insert above } if (decls) { if (decls->functionObject == "jl_fptr_args") { preal_decl = decls->specFunctionObject; } else if (decls->functionObject != "jl_fptr_sparam") { preal_decl = decls->specFunctionObject; preal_specsig = true; } } } // patch up the prototype we emitted earlier Module *mod = protodecl->getParent(); assert(protodecl->isDeclaration()); if (proto_specsig) { // expected specsig if (!preal_specsig) { // emit specsig-to-(jl)invoke conversion Function *preal = emit_tojlinvoke(codeinst, mod, params); protodecl->setLinkage(GlobalVariable::PrivateLinkage); //protodecl->setAlwaysInline(); protodecl->addFnAttr("no-frame-pointer-elim", "true"); size_t nrealargs = jl_nparams(codeinst->def->specTypes); // number of actual arguments being passed // TODO: maybe this can be cached in codeinst->specfptr? emit_cfunc_invalidate(protodecl, proto_cc, proto_return_roots, codeinst->def->specTypes, codeinst->rettype, nrealargs, params, preal); preal_decl = ""; // no need to fixup the name } else { assert(!preal_decl.empty()); } } else { // expected non-specsig if (preal_decl.empty() || preal_specsig) { // emit jlcall1-to-(jl)invoke conversion preal_decl = emit_tojlinvoke(codeinst, mod, params)->getName(); } } if (!preal_decl.empty()) { // merge and/or rename this prototype to the real function if (Value *specfun = mod->getNamedValue(preal_decl)) { if (protodecl != specfun) protodecl->replaceAllUsesWith(specfun); } else { protodecl->setName(preal_decl); } } } JL_GC_POP(); } // --- initialization --- std::pair tbaa_make_child(const char *name, MDNode *parent=nullptr, bool isConstant=false) { MDBuilder mbuilder(jl_LLVMContext); if (tbaa_root == nullptr) { MDNode *jtbaa = mbuilder.createTBAARoot("jtbaa"); tbaa_root = mbuilder.createTBAAScalarTypeNode("jtbaa", jtbaa); } MDNode *scalar = mbuilder.createTBAAScalarTypeNode(name, parent ? parent : tbaa_root); MDNode *n = mbuilder.createTBAAStructTagNode(scalar, scalar, 0, isConstant); return std::make_pair(n, scalar); } std::vector> gv_for_global; static void global_jlvalue_to_llvm(JuliaVariable *var, jl_value_t **addr) { gv_for_global.push_back(std::make_pair(addr, var)); } static JuliaVariable *julia_const_gv(jl_value_t *val) { for (auto &kv : gv_for_global) { if (*kv.first == val) return kv.second; } return nullptr; } static void init_julia_llvm_meta(void) { tbaa_gcframe = tbaa_make_child("jtbaa_gcframe").first; MDNode *tbaa_stack_scalar; std::tie(tbaa_stack, tbaa_stack_scalar) = tbaa_make_child("jtbaa_stack"); tbaa_unionselbyte = tbaa_make_child("jtbaa_unionselbyte", tbaa_stack_scalar).first; MDNode *tbaa_data_scalar; std::tie(tbaa_data, tbaa_data_scalar) = tbaa_make_child("jtbaa_data"); tbaa_binding = tbaa_make_child("jtbaa_binding", tbaa_data_scalar).first; MDNode *tbaa_value_scalar; std::tie(tbaa_value, tbaa_value_scalar) = tbaa_make_child("jtbaa_value", tbaa_data_scalar); MDNode *tbaa_mutab_scalar; std::tie(tbaa_mutab, tbaa_mutab_scalar) = tbaa_make_child("jtbaa_mutab", tbaa_value_scalar); tbaa_datatype = tbaa_make_child("jtbaa_datatype", tbaa_mutab_scalar).first; tbaa_immut = tbaa_make_child("jtbaa_immut", tbaa_value_scalar).first; tbaa_arraybuf = tbaa_make_child("jtbaa_arraybuf", tbaa_data_scalar).first; tbaa_ptrarraybuf = tbaa_make_child("jtbaa_ptrarraybuf", tbaa_data_scalar).first; MDNode *tbaa_array_scalar; std::tie(tbaa_array, tbaa_array_scalar) = tbaa_make_child("jtbaa_array"); tbaa_arrayptr = tbaa_make_child("jtbaa_arrayptr", tbaa_array_scalar).first; tbaa_arraysize = tbaa_make_child("jtbaa_arraysize", tbaa_array_scalar).first; tbaa_arraylen = tbaa_make_child("jtbaa_arraylen", tbaa_array_scalar).first; tbaa_arrayflags = tbaa_make_child("jtbaa_arrayflags", tbaa_array_scalar).first; tbaa_arrayoffset = tbaa_make_child("jtbaa_arrayoffset", tbaa_array_scalar).first; tbaa_const = tbaa_make_child("jtbaa_const", nullptr, true).first; tbaa_arrayselbyte = tbaa_make_child("jtbaa_arrayselbyte", tbaa_array_scalar).first; Thunk = Attribute::get(jl_LLVMContext, "thunk"); } static void init_julia_llvm_env(Module *m) { // every variable or function mapped in this function must be // exported from libjulia, to support static compilation T_int1 = Type::getInt1Ty(jl_LLVMContext); T_int8 = Type::getInt8Ty(jl_LLVMContext); T_pint8 = PointerType::get(T_int8, 0); T_ppint8 = PointerType::get(T_pint8, 0); T_pppint8 = PointerType::get(T_ppint8, 0); T_int16 = Type::getInt16Ty(jl_LLVMContext); T_pint16 = PointerType::get(T_int16, 0); T_int32 = Type::getInt32Ty(jl_LLVMContext); T_char = Type::getInt32Ty(jl_LLVMContext); T_pint32 = PointerType::get(T_int32, 0); T_int64 = Type::getInt64Ty(jl_LLVMContext); T_pint64 = PointerType::get(T_int64, 0); T_uint8 = T_int8; T_uint16 = T_int16; T_uint32 = T_int32; T_uint64 = T_int64; if (sizeof(size_t) == 8) T_size = T_uint64; else T_size = T_uint32; T_sigatomic = Type::getIntNTy(jl_LLVMContext, sizeof(sig_atomic_t) * 8); T_psize = PointerType::get(T_size, 0); T_float16 = Type::getHalfTy(jl_LLVMContext); T_float32 = Type::getFloatTy(jl_LLVMContext); T_pfloat32 = PointerType::get(T_float32, 0); T_float64 = Type::getDoubleTy(jl_LLVMContext); T_pfloat64 = PointerType::get(T_float64, 0); T_float128 = Type::getFP128Ty(jl_LLVMContext); T_void = Type::getVoidTy(jl_LLVMContext); T_pvoidfunc = FunctionType::get(T_void, /*isVarArg*/false)->getPointerTo(); // add needed base debugging definitions to our LLVM environment DIBuilder dbuilder(*m); DIFile *julia_h = dbuilder.createFile("julia.h", ""); jl_value_dillvmt = dbuilder.createStructType(nullptr, "jl_value_t", julia_h, 71, // At the time of this writing. Not sure if it's worth it to keep this in sync 0 * 8, // sizeof(jl_value_t) * 8, __alignof__(void*) * 8, // __alignof__(jl_value_t) * 8, DINode::FlagZero, // Flags nullptr, // Derived from nullptr); // Elements - will be corrected later jl_pvalue_dillvmt = dbuilder.createPointerType(jl_value_dillvmt, sizeof(jl_value_t*) * 8, __alignof__(jl_value_t*) * 8); SmallVector Elts; std::vector diargs(0); Elts.push_back(jl_pvalue_dillvmt); dbuilder.replaceArrays(jl_value_dillvmt, dbuilder.getOrCreateArray(Elts)); jl_ppvalue_dillvmt = dbuilder.createPointerType(jl_pvalue_dillvmt, sizeof(jl_value_t**) * 8, __alignof__(jl_value_t**) * 8); diargs.push_back(jl_pvalue_dillvmt); // Return Type (ret value) diargs.push_back(jl_pvalue_dillvmt); // First Argument (function) diargs.push_back(jl_ppvalue_dillvmt); // Second Argument (argv) // Third argument (length(argv)) diargs.push_back(_julia_type_to_di(NULL, (jl_value_t*)jl_int32_type, &dbuilder, false)); jl_di_func_sig = dbuilder.createSubroutineType( dbuilder.getOrCreateTypeArray(diargs)); jl_di_func_null_sig = dbuilder.createSubroutineType( dbuilder.getOrCreateTypeArray(None)); T_jlvalue = StructType::get(jl_LLVMContext); T_pjlvalue = PointerType::get(T_jlvalue, 0); T_prjlvalue = PointerType::get(T_jlvalue, AddressSpace::Tracked); T_ppjlvalue = PointerType::get(T_pjlvalue, 0); T_pprjlvalue = PointerType::get(T_prjlvalue, 0); V_null = Constant::getNullValue(T_pjlvalue); V_rnull = Constant::getNullValue(T_prjlvalue); V_size0 = Constant::getNullValue(T_size); std::vector ftargs(0); ftargs.push_back(T_prjlvalue); // function ftargs.push_back(T_pprjlvalue); // args[] ftargs.push_back(T_int32); // nargs jl_func_sig = FunctionType::get(T_prjlvalue, ftargs, false); assert(jl_func_sig != NULL); ftargs.push_back(T_pprjlvalue); // linfo->sparam_vals jl_func_sig_sparams = FunctionType::get(T_prjlvalue, ftargs, false); assert(jl_func_sig_sparams != NULL); Type *vaelts[] = {PointerType::get(T_int8, AddressSpace::Loaded) #ifdef STORE_ARRAY_LEN , T_size #endif , T_int16 , T_int16 , T_int32 }; static_assert(sizeof(jl_array_flags_t) == sizeof(int16_t), "Size of jl_array_flags_t is not the same as int16_t"); jl_array_llvmt = StructType::get(jl_LLVMContext, makeArrayRef(vaelts)); jl_parray_llvmt = PointerType::get(jl_array_llvmt, 0); } static void init_jit_functions(void) { add_named_global(jlstack_chk_guard_var, &__stack_chk_guard); add_named_global(jlRTLD_DEFAULT_var, &jl_RTLD_DEFAULT_handle); #ifdef _OS_WINDOWS_ add_named_global(jlexe_var, &jl_exe_handle); add_named_global(jldll_var, &jl_libjulia_internal_handle); #endif global_jlvalue_to_llvm(new JuliaVariable{"jl_true", true, get_pjlvalue}, &jl_true); global_jlvalue_to_llvm(new JuliaVariable{"jl_false", true, get_pjlvalue}, &jl_false); global_jlvalue_to_llvm(new JuliaVariable{"jl_emptysvec", true, get_pjlvalue}, (jl_value_t**)&jl_emptysvec); global_jlvalue_to_llvm(new JuliaVariable{"jl_emptytuple", true, get_pjlvalue}, &jl_emptytuple); global_jlvalue_to_llvm(new JuliaVariable{"jl_diverror_exception", true, get_pjlvalue}, &jl_diverror_exception); global_jlvalue_to_llvm(new JuliaVariable{"jl_undefref_exception", true, get_pjlvalue}, &jl_undefref_exception); add_named_global(jlgetworld_global, &jl_world_counter); add_named_global("__stack_chk_fail", &__stack_chk_fail); add_named_global(jltls_states_func, (void*)NULL); add_named_global(jlerror_func, &jl_error); add_named_global(jlthrow_func, &jl_throw); add_named_global(jlundefvarerror_func, &jl_undefined_var_error); add_named_global(jlboundserrorv_func, &jl_bounds_error_ints); add_named_global(jlboundserror_func, &jl_bounds_error_int); add_named_global(jlvboundserror_func, &jl_bounds_error_tuple_int); add_named_global(jluboundserror_func, &jl_bounds_error_unboxed_int); add_named_global(jlnew_func, &jl_new_structv); add_named_global(jlsplatnew_func, &jl_new_structt); add_named_global(setjmp_func, &jl_setjmp_f); add_named_global(memcmp_func, &memcmp); add_named_global(jltypeerror_func, &jl_type_error); add_named_global(jlcheckassign_func, &jl_checked_assignment); add_named_global(jldeclareconst_func, &jl_declare_constant); add_named_global(jlgetbindingorerror_func, &jl_get_binding_or_error); add_named_global(jlboundp_func, &jl_boundp); for (auto it : builtin_func_map) add_named_global(it.second, it.first); add_named_global(jlapplygeneric_func, &jl_apply_generic); add_named_global(jlinvoke_func, &jl_invoke); add_named_global(jltopeval_func, &jl_toplevel_eval); add_named_global(jlcopyast_func, &jl_copy_ast); //add_named_global(jlnsvec_func, &jl_svec); add_named_global(jlmethod_func, &jl_method_def); add_named_global(jlgenericfunction_func, &jl_generic_function_def); add_named_global(jlenter_func, &jl_enter_handler); add_named_global(jl_current_exception_func, &jl_current_exception); add_named_global(jlleave_func, &jl_pop_handler); add_named_global(jl_restore_excstack_func, &jl_restore_excstack); add_named_global(jl_excstack_state_func, &jl_excstack_state); add_named_global(jlegal_func, &jl_egal); add_named_global(jlisa_func, &jl_isa); add_named_global(jlsubtype_func, &jl_subtype); add_named_global(jltypeassert_func, &jl_typeassert); add_named_global(jlapplytype_func, &jl_instantiate_type_in_env); add_named_global(jl_object_id__func, &jl_object_id_); add_named_global(jl_alloc_obj_func, (void*)NULL); add_named_global(jl_newbits_func, (void*)jl_new_bits); add_named_global(jl_loopinfo_marker_func, (void*)NULL); add_named_global(jl_typeof_func, (void*)NULL); add_named_global(jl_write_barrier_func, (void*)NULL); add_named_global(jldlsym_func, &jl_load_and_lookup); add_named_global(jlgetcfunctiontrampoline_func, &jl_get_cfunction_trampoline); add_named_global(jlgetnthfieldchecked_func, &jl_get_nth_field_checked); add_named_global(diff_gc_total_bytes_func, &jl_gc_diff_total_bytes); add_named_global(sync_gc_total_bytes_func, &jl_gc_sync_total_bytes); add_named_global(jlarray_data_owner_func, &jl_array_data_owner); add_named_global(gcroot_flush_func, (void*)NULL); add_named_global(gc_preserve_begin_func, (void*)NULL); add_named_global(gc_preserve_end_func, (void*)NULL); add_named_global(pointer_from_objref_func, (void*)NULL); add_named_global(except_enter_func, (void*)NULL); #ifdef _OS_WINDOWS_ #if defined(_CPU_X86_64_) #if defined(_COMPILER_GCC_) add_named_global("___chkstk_ms", &___chkstk_ms); #else add_named_global("__chkstk", &__chkstk); #endif #else #if defined(_COMPILER_GCC_) add_named_global("_alloca", &_alloca); #else add_named_global("_chkstk", &_chkstk); #endif #endif #endif #define BOX_F(ct) add_named_global("jl_box_"#ct, &jl_box_##ct); BOX_F(int8); BOX_F(uint8); BOX_F(int16); BOX_F(uint16); BOX_F(int32); BOX_F(uint32); BOX_F(int64); BOX_F(uint64); BOX_F(float32); BOX_F(float64); BOX_F(char); BOX_F(ssavalue); #undef BOX_F } extern "C" void jl_init_llvm(void) { jl_page_size = jl_getpagesize(); imaging_mode = jl_options.image_codegen || (jl_generating_output() && !jl_options.incremental); jl_default_cgparams.generic_context = jl_nothing; jl_init_debuginfo(); InitializeNativeTarget(); InitializeNativeTargetAsmPrinter(); InitializeNativeTargetAsmParser(); InitializeNativeTargetDisassembler(); // Initialize passes PassRegistry &Registry = *PassRegistry::getPassRegistry(); initializeCore(Registry); initializeCoroutines(Registry); initializeScalarOpts(Registry); initializeVectorization(Registry); initializeAnalysis(Registry); initializeTransformUtils(Registry); initializeInstCombine(Registry); initializeAggressiveInstCombine(Registry); initializeInstrumentation(Registry); initializeTarget(Registry); #ifdef USE_POLLY polly::initializePollyPasses(Registry); #endif // Parse command line flags after initialization const char *const argv_tailmerge[] = {"", "-enable-tail-merge=0"}; // NOO TOUCHIE; NO TOUCH! See #922 cl::ParseCommandLineOptions(sizeof(argv_tailmerge)/sizeof(argv_tailmerge[0]), argv_tailmerge, "disable-tail-merge\n"); #if defined(_OS_WINDOWS_) && defined(_CPU_X86_64_) const char *const argv_copyprop[] = {"", "-disable-copyprop"}; // llvm bug 21743 cl::ParseCommandLineOptions(sizeof(argv_copyprop)/sizeof(argv_copyprop[0]), argv_copyprop, "disable-copyprop\n"); #endif #if defined(_CPU_X86_) || defined(_CPU_X86_64_) const char *const argv_avoidsfb[] = {"", "-x86-disable-avoid-SFB"}; // llvm bug 41629, see https://gist.github.com/vtjnash/192cab72a6cfc00256ff118238163b55 cl::ParseCommandLineOptions(sizeof(argv_avoidsfb)/sizeof(argv_avoidsfb[0]), argv_avoidsfb, "disable-avoidsfb\n"); #endif #if JL_LLVM_VERSION >= 120000 // https://reviews.llvm.org/rGc068e9c8c123e7f8c8f3feb57245a012ccd09ccf Optional envValue = sys::Process::GetEnv("JULIA_LLVM_ARGS"); if (envValue) { SmallVector newArgv; BumpPtrAllocator A; StringSaver Saver(A); newArgv.push_back(Saver.save("Julia").data()); // Parse the value of the environment variable into a "command line" // and hand it off to ParseCommandLineOptions(). cl::TokenizeGNUCommandLine(*envValue, Saver, newArgv); int newArgc = static_cast(newArgv.size()); cl::ParseCommandLineOptions(newArgc, &newArgv[0]); } #else cl::ParseEnvironmentOptions("Julia", "JULIA_LLVM_ARGS"); #endif // if the patch adding this option has been applied, lower its limit to provide // better DAGCombiner performance. auto &clOptions = cl::getRegisteredOptions(); if (clOptions.find("combiner-store-merge-dependence-limit") != clOptions.end()) { const char *const argv_smdl[] = {"", "-combiner-store-merge-dependence-limit=4"}; cl::ParseCommandLineOptions(sizeof(argv_smdl)/sizeof(argv_smdl[0]), argv_smdl); } TargetOptions options = TargetOptions(); //options.PrintMachineCode = true; //Print machine code produced during JIT compiling #if defined(_OS_WINDOWS_) && !defined(_CPU_X86_64_) // tell Win32 to assume the stack is always 16-byte aligned, // and to ensure that it is 16-byte aligned for out-going calls, // to ensure compatibility with GCC codes options.StackAlignmentOverride = 16; #endif Triple TheTriple(sys::getProcessTriple()); #if defined(FORCE_ELF) TheTriple.setObjectFormat(Triple::ELF); #endif uint32_t target_flags = 0; auto target = jl_get_llvm_target(imaging_mode, target_flags); auto &TheCPU = target.first; SmallVector targetFeatures(target.second.begin(), target.second.end()); std::string errorstr; const Target *TheTarget = TargetRegistry::lookupTarget("", TheTriple, errorstr); if (!TheTarget) jl_errorf("%s", errorstr.c_str()); if (jl_processor_print_help || (target_flags & JL_TARGET_UNKNOWN_NAME)) { std::unique_ptr MSTI( TheTarget->createMCSubtargetInfo(TheTriple.str(), "", "")); if (!MSTI->isCPUStringValid(TheCPU)) jl_errorf("Invalid CPU name \"%s\".", TheCPU.c_str()); if (jl_processor_print_help) { // This is the only way I can find to print the help message once. // It'll be nice if we can iterate through the features and print our own help // message... #if JL_LLVM_VERSION >= 120000 MSTI->setDefaultFeatures("help", "", ""); #else MSTI->setDefaultFeatures("help", ""); #endif } } // Package up features to be passed to target/subtarget std::string FeaturesStr; if (!targetFeatures.empty()) { SubtargetFeatures Features; for (unsigned i = 0; i != targetFeatures.size(); ++i) Features.AddFeature(targetFeatures[i]); FeaturesStr = Features.getString(); } // Allocate a target... Optional codemodel = #ifdef _P64 // Make sure we are using the large code model on 64bit // Let LLVM pick a default suitable for jitting on 32bit CodeModel::Large; #else None; #endif auto optlevel = CodeGenOptLevelFor(jl_options.opt_level); jl_TargetMachine = TheTarget->createTargetMachine( TheTriple.getTriple(), TheCPU, FeaturesStr, options, Reloc::Static, // Generate simpler code for JIT codemodel, optlevel, true // JIT ); assert(jl_TargetMachine && "Failed to select target machine -" " Is the LLVM backend for this CPU enabled?"); #if (!defined(_CPU_ARM_) && !defined(_CPU_PPC64_)) // FastISel seems to be buggy for ARM. Ref #13321 if (jl_options.opt_level < 2) jl_TargetMachine->setFastISel(true); #endif init_julia_llvm_meta(); jl_ExecutionEngine = new JuliaOJIT(*jl_TargetMachine, &jl_LLVMContext); // Mark our address spaces as non-integral jl_data_layout = jl_ExecutionEngine->getDataLayout(); std::string DL = jl_data_layout.getStringRepresentation() + "-ni:10:11:12:13"; jl_data_layout.reset(DL); // Register GDB event listener if(jl_using_gdb_jitevents) jl_ExecutionEngine->RegisterJITEventListener(JITEventListener::createGDBRegistrationListener()); #ifdef JL_USE_INTEL_JITEVENTS if (jl_using_intel_jitevents) jl_ExecutionEngine->RegisterJITEventListener(JITEventListener::createIntelJITEventListener()); #endif #ifdef JL_USE_OPROFILE_JITEVENTS if (jl_using_oprofile_jitevents) jl_ExecutionEngine->RegisterJITEventListener(JITEventListener::createOProfileJITEventListener()); #endif #ifdef JL_USE_PERF_JITEVENTS if (jl_using_perf_jitevents) jl_ExecutionEngine->RegisterJITEventListener(JITEventListener::createPerfJITEventListener()); #endif } extern "C" void jl_init_codegen(void) { jl_init_llvm(); // Now that the execution engine exists, initialize all modules jl_init_jit(); init_jit_functions(); Module *m = new Module("julia", jl_LLVMContext); jl_setup_module(m); init_julia_llvm_env(m); jl_init_intrinsic_functions_codegen(); } extern "C" void jl_teardown_codegen() { // output LLVM timings and statistics reportAndResetTimings(); PrintStatistics(); } // the rest of this file are convenience functions // that are exported for assisting with debugging from gdb extern "C" void jl_dump_llvm_value(void *v) { llvm_dump((Value*)v); } extern "C" void jl_dump_llvm_inst_function(void *v) { llvm_dump(cast(((Value*)v))->getParent()->getParent()); } extern "C" void jl_dump_llvm_type(void *v) { llvm_dump((Type*)v); } extern "C" void jl_dump_llvm_module(void *v) { llvm_dump((Module*)v); } extern "C" void jl_dump_llvm_metadata(void *v) { llvm_dump((Metadata*)v); } extern "C" void jl_dump_llvm_debugloc(void *v) { llvm_dump((DebugLoc*)v); } namespace llvm { class MachineBasicBlock; class MachineFunction; raw_ostream& operator<<(raw_ostream &OS, const MachineBasicBlock &MBB); void printMIR(raw_ostream &OS, const MachineFunction &MF); } extern "C" void jl_dump_llvm_mbb(void *v) { errs() << *(llvm::MachineBasicBlock*)v; } extern "C" void jl_dump_llvm_mfunction(void *v) { llvm::printMIR(errs(), *(llvm::MachineFunction*)v); } extern void jl_write_bitcode_func(void *F, char *fname) { std::error_code EC; raw_fd_ostream OS(fname, EC, sys::fs::F_None); llvm::WriteBitcodeToFile(*((llvm::Function*)F)->getParent(), OS); } extern void jl_write_bitcode_module(void *M, char *fname) { std::error_code EC; raw_fd_ostream OS(fname, EC, sys::fs::F_None); llvm::WriteBitcodeToFile(*(llvm::Module*)M, OS); }