https://github.com/cran/automl
Tip revision: d34ca22544dff11d21f1b644da9853880a50f9c4 authored by Alex Boulangé on 23 November 2018, 17:30:03 UTC
version 1.2.0
version 1.2.0
Tip revision: d34ca22
howto_automl.Rnw
%\VignetteIndexEntry{howto_automl.pdf}
\documentclass[10pt,a4paper,oneside]{report}
\usepackage[a4paper]{geometry}
\geometry{hscale=0.90,vscale=0.90,centering}
\begin{document}
\SweaveOpts{concordance=TRUE}
\title{automl R package vignette}
\author[1]{Alex BOULANGE - aboul@free.fr}
\maketitle
\tableofcontents
\newpage
\section{Introduction to automl package}
This document is intended to answer the following questions; why \& how automl and how to use it\\\\
automl package provides: \\
-Deep Learning last tricks (those who have taken Andrew NG’s MOOC on Coursera will be in familiar territory)\\
-hyperparameters autotune with metaheuristic (PSO)\\
-experimental stuff and more to come (you’re welcome as coauthor!)\\
\section{Why \& how automl}
\subsection{Deep Learning existing frameworks, disadvantages}
Deploying and maintaining most Deep Learning frameworks means: Python...\\
R language is so simple to install and maintain in production environments that it is obvious to use a pure R based package for deep learning !\\
\subsection{Neural Network - Deep Learning, disadvantages}
Disadvantages :\\
1st disadvantage: you have to test manually different combinations of parameters (number of layers, nodes, activation function, etc ...) and then also tune manually hyper parameters for training (learning rate, momentum, mini batch size, etc ...)\\
2nd disadvantage: only for those who are not mathematicians, calculating derivative in case of new cost or activation function, may by an issue.\\\\
\includegraphics[width=0.9\textwidth]{imgperc001.png}\\
\subsection{Metaheuristic - PSO, benefits}
The Particle Swarm Optimization algorithm is a great and simple one.\\
In a few words, the first step consists in throwing randomly a set of particles in a space and the next steps consist in discovering the best solution while converging.\\
\includegraphics[width=0.9\textwidth]{imgperc002.png}\\
video tutorial from Yarpiz is a great ressource\\
\subsection{Birth of automl package}
automl package was born from the idea to use metaheuristic PSO to address the identified disadvantages above.\\
And last but not the least reason: use R and R only :-)\\
3 functions are available:\\
- automl\_train\_manual: the manual mode to train a model\\
- automl\_train: the automatic mode to train model\\
- automl\_predict: the prediction function to apply a trained model on datas\\
\subsection{Mix 1: hyperparameters tuning with PSO}
Mix 1 consists in using PSO algorithm to optimize the hyperparameters: each particle corresponds to a set of hyperparameters.\\
The automl\_train function was made to do that.\\\\
\includegraphics[width=0.9\textwidth]{imgperc003.png}\\
\subsection{Mix 2: PSO instead of gradient descent}
Mix 2 is experimental, it consists in using PSO algorithm to optimize the weights of Neural Network in place of gradient descent: each particle corresponds to a set of neural network weights matrices.\\
The automl\_train\_manual function do that too.\\\\
\includegraphics[width=0.9\textwidth]{imgperc004.png}\\
\section{First steps: How to}
For those who will laugh at seeing deep learning with one hidden layer and the Iris data set of 150 records, I will say: you're perfectly right :-)\\
The goal at this stage is simply to take the first steps
\subsection{fit a regression model manually (hard way)}
Subject: predict Sepal.Length given other Iris parameters\\
1st with gradient descent and default hyperparameters value for learning rate (0.001) and mini batch size (32)\\
\begin{Schunk}
\begin{Sinput}
data(iris)
xmat <- cbind(iris[,2:4], as.numeric(iris$Species))
ymat <- iris[,1]
amlmodel <- automl_train_manual(Xref = xmat, Yref = ymat)
\end{Sinput}
\begin{Soutput}
(cost: mse)
cost epoch10: 20.9340400047156 (cv cost: 25.205632342013) (LR: 0.001 )
cost epoch20: 20.6280923387762 (cv cost: 23.8214521197268) (LR: 0.001 )
cost epoch30: 20.3222407903838 (cv cost: 22.1899741289456) (LR: 0.001 )
cost epoch40: 20.0217966054298 (cv cost: 21.3908446693146) (LR: 0.001 )
cost epoch50: 19.7584058034009 (cv cost: 20.7170232035934) (LR: 0.001 )
dim X: ...
\end{Soutput}
\begin{Sinput}
res <- cbind(ymat, automl_predict(model = amlmodel, X = xmat))
colnames(res) <- c('actual', 'predict')
head(res)
\end{Sinput}
\begin{Soutput}
actual predict
[1,] 5.1 -2.063614
[2,] 4.9 -2.487673
[3,] 4.7 -2.471912
[4,] 4.6 -2.281035
[5,] 5.0 -1.956937
[6,] 5.4 -1.729314
\end{Soutput}
\end{Schunk}
:-[] no pain, no gain ...\\\\
After some manual fine tuning on learning rate, mini batch size and iterations number (epochs):\\
\begin{Schunk}
\begin{Sinput}
data(iris)
xmat <- cbind(iris[,2:4], as.numeric(iris$Species))
ymat <- iris[,1]
amlmodel <- automl_train_manual(Xref = xmat, Yref = ymat,
hpar = list(learningrate = 0.01,
minibatchsize = 2^2,
numiterations = 30))
\end{Sinput}
\begin{Soutput}
(cost: mse)
cost epoch10: 5.55679482839698 (cv cost: 4.87492997304325) (LR: 0.01 )
cost epoch20: 1.64996951479802 (cv cost: 1.50339773126712) (LR: 0.01 )
cost epoch30: 0.647727077375946 (cv cost: 0.60142564484723) (LR: 0.01 )
dim X: ...
\end{Soutput}
\begin{Sinput}
res <- cbind(ymat, automl_predict(model = amlmodel, X = xmat))
colnames(res) <- c('actual', 'predict')
head(res)
\end{Sinput}
\begin{Soutput}
actual predict
[1,] 5.1 4.478478
[2,] 4.9 4.215683
[3,] 4.7 4.275902
[4,] 4.6 4.313141
[5,] 5.0 4.531038
[6,] 5.4 4.742847
\end{Soutput}
\end{Schunk}
Better result, but with human efforts!\\
\subsection{fit a regression model automatically (easy way, Mix 1)}
Same subject: predict Sepal.Length given other Iris parameters\\
\begin{Schunk}
\begin{Sinput}
data(iris)
xmat <- as.matrix(cbind(iris[,2:4], as.numeric(iris$Species)))
ymat <- iris[,1]
start.time <- Sys.time()
amlmodel <- automl_train(Xref = xmat, Yref = ymat,
autopar = list(psopartpopsize = 15,
numiterations = 5,
auto_layers_max = 1,
nbcores = 4))
end.time <- Sys.time()
cat(paste('time ellapsed:', end.time - start.time, '\n'))
\end{Sinput}
\begin{Soutput}
(cost: mse)
iteration 1 particle 1 weighted err: 22.20611 (train: 20.93004 cvalid: 17.73985 ) BEST MODEL KEPT
iteration 1 particle 2 weighted err: 21.48398 (train: 20.87709 cvalid: 19.35987 ) BEST MODEL KEPT
iteration 1 particle 3 weighted err: 22.98075 (train: 20.96822 cvalid: 15.9369 )
iteration 1 particle 4 weighted err: 22.64428 (train: 21.44958 cvalid: 22.19627 )
iteration 1 particle 5 weighted err: 22.03677 (train: 20.83123 cvalid: 17.81739 )
iteration 1 particle 6 weighted err: 22.30679 (train: 21.02051 cvalid: 17.80482 )
iteration 1 particle 7 weighted err: 22.15835 (train: 20.67513 cvalid: 16.96709 )
iteration 1 particle 8 weighted err: 21.04265 (train: 20.1281 cvalid: 17.84174 ) BEST MODEL KEPT
iteration 1 particle 9 weighted err: 21.0425 (train: 20.72162 cvalid: 19.91941 ) BEST MODEL KEPT
iteration 1 particle 10 weighted err: 13.78127 (train: 13.54355 cvalid: 12.94923 ) BEST MODEL KEPT
iteration 1 particle 11 weighted err: 20.34595 (train: 19.54807 cvalid: 17.55337 )
iteration 1 particle 12 weighted err: 21.86865 (train: 20.99222 cvalid: 18.80114 )
iteration 1 particle 13 weighted err: 14.11782 (train: 13.54468 cvalid: 12.11184 )
iteration 1 particle 14 weighted err: 23.71203 (train: 20.88439 cvalid: 13.81528 )
iteration 1 particle 15 weighted err: 22.20701 (train: 20.90727 cvalid: 17.65792 )
...
iteration 4 particle 1 weighted err: 12.94662 (train: 4.40029 cvalid: 9.74174 )
iteration 4 particle 2 weighted err: 18.67702 (train: 17.28413 cvalid: 18.15469 )
iteration 4 particle 3 weighted err: 0.76426 (train: 0.01617 cvalid: 0.48373 )
iteration 4 particle 4 weighted err: 11.2243 (train: 11.00578 cvalid: 10.45947 )
iteration 4 particle 5 weighted err: 1.93528 (train: 0.00141 cvalid: 1.21008 )
iteration 4 particle 6 weighted err: 17.89662 (train: 17.65917 cvalid: 17.06555 )
iteration 4 particle 7 weighted err: 0.49851 (train: 0.42819 cvalid: 0.47214 ) BEST MODEL KEPT
...
time ellapsed: 1.84548579454422
\end{Soutput}
\begin{Sinput}
res <- cbind(ymat, automl_predict(model = amlmodel, X = xmat))
colnames(res) <- c('actual', 'predict')
head(res)
\end{Sinput}
\begin{Soutput}
actual predict
[1,] 5.1 4.975551
[2,] 4.9 4.667541
[3,] 4.7 4.735524
[4,] 4.6 4.784364
[5,] 5.0 5.037152
[6,] 5.4 5.325999
\end{Soutput}
\end{Schunk}
It's even better, with no human efforts but machine time\\
Windows users won't benefit from parallelization, the function uses parallel package included with R base...\\
\subsection{fit a regression model experimentally (experimental way, Mix 2)}
Same subject: predict Sepal.Length given other Iris parameters\\
\begin{Schunk}
\begin{Sinput}
data(iris)
xmat <- as.matrix(cbind(iris[,2:4], as.numeric(iris$Species)))
ymat <- iris[,1]
amlmodel <- automl_train_manual(Xref = xmat, Yref = ymat,
hpar = list(modexec = 'trainwpso',
numiterations = 30,
psopartpopsize = 50))
\end{Sinput}
\begin{Soutput}
(cost: mse)
cost epoch10: 0.113576786377019 (cv cost: 0.0967069106128153) (LR: 0 )
cost epoch20: 0.0595472259640828 (cv cost: 0.0831404427407914) (LR: 0 )
cost epoch30: 0.0494578776185938 (cv cost: 0.0538888075333611) (LR: 0 )
dim X: ...
\end{Soutput}
\begin{Sinput}
res <- cbind(ymat, automl_predict(model = amlmodel, X = xmat))
colnames(res) <- c('actual', 'predict')
head(res)
\end{Sinput}
\begin{Soutput}
actual predict
[1,] 5.1 5.028114
[2,] 4.9 4.673366
[3,] 4.7 4.738188
[4,] 4.6 4.821392
[5,] 5.0 5.099064
[6,] 5.4 5.277315
\end{Soutput}
\end{Schunk}
Pretty good too, even better!\\
\subsection{fit a regression model with custom cost (experimental way, Mix 2)}
Same subject: predict Sepal.Length given other Iris parameters\\
Let's try with Mean Absolute Percentage Error instead of Mean Square Error
\begin{Schunk}
\begin{Sinput}
data(iris)
xmat <- as.matrix(cbind(iris[,2:4], as.numeric(iris$Species)))
ymat <- iris[,1]
f <- 'J=abs((y-yhat)/y)'
f <- c(f, 'J=sum(J[!is.infinite(J)],na.rm=TRUE)')
f <- c(f, 'J=(J/length(y))')
f <- paste(f, collapse = ';')
amlmodel <- automl_train_manual(Xref = xmat, Yref = ymat,
hpar = list(modexec = 'trainwpso',
numiterations = 30,
psopartpopsize = 50,
costcustformul = f))
\end{Sinput}
\begin{Soutput}
(cost: custom)
cost epoch10: 0.901580275333795 (cv cost: 1.15936129555304) (LR: 0 )
cost epoch20: 0.890142834441629 (cv cost: 1.24167078564786) (LR: 0 )
cost epoch30: 0.886088388448652 (cv cost: 1.22756121243449) (LR: 0 )
dim X: ...
\end{Soutput}
\begin{Sinput}
res <- cbind(ymat, automl_predict(model = amlmodel, X = xmat))
colnames(res) <- c('actual', 'predict')
head(res)
\end{Sinput}
\begin{Soutput}
actual predict
[1,] 5.1 4.693915
[2,] 4.9 4.470968
[3,] 4.7 4.482036
[4,] 4.6 4.593667
[5,] 5.0 4.738504
[6,] 5.4 4.914144
\end{Soutput}
\end{Schunk}
\subsection{fit a classification model with softmax (Mix 2)}
Subject: predict Species given other Iris parameters\\
Softmax is available with PSO, no derivative needed ;-)\\
\begin{Schunk}
\begin{Sinput}
data(iris)
xmat = iris[,1:4]
lab2pred <- levels(iris$Species)
lghlab <- length(lab2pred)
iris$Species <- as.numeric(iris$Species)
ymat <- matrix(seq(from = 1, to = lghlab, by = 1), nrow(xmat), lghlab, byrow = TRUE)
ymat <- (ymat == as.numeric(iris$Species)) + 0
amlmodel <- automl_train_manual(Xref = xmat, Yref = ymat,
hpar = list(modexec = 'trainwpso',
layersshape = c(10, 0),
layersacttype = c('relu', 'softmax'),
layersdropoprob = c(0, 0),
numiterations = 50,
psopartpopsize = 50))
\end{Sinput}
\begin{Soutput}
(cost: crossentropy)
cost epoch10: 0.373706545886467 (cv cost: 0.36117608867856) (LR: 0 )
cost epoch20: 0.267034060152876 (cv cost: 0.163635821437066) (LR: 0 )
cost epoch30: 0.212054571476337 (cv cost: 0.112664100290429) (LR: 0 )
cost epoch40: 0.154158717402463 (cv cost: 0.102895917099299) (LR: 0 )
cost epoch50: 0.141037927317585 (cv cost: 0.0864623836595045) (LR: 0 )
dim X: ...
\end{Soutput}
\begin{Sinput}
res <- cbind(ymat, automl_predict(model = amlmodel, X = xmat))
colnames(res) <- c(paste('act',lab2pred, sep = '_'),
paste('pred',lab2pred, sep = '_'))
head(res)
tail(res)
\end{Sinput}
\begin{Soutput}
act_setosa act_versicolor act_virginica pred_setosa pred_versicolor pred_virginica
1 1 0 0 0.9863481 0.003268881 0.010383018
2 1 0 0 0.9897295 0.003387193 0.006883349
3 1 0 0 0.9856347 0.002025946 0.012339349
4 1 0 0 0.9819881 0.004638452 0.013373451
5 1 0 0 0.9827623 0.003115452 0.014122277
6 1 0 0 0.9329747 0.031624836 0.035400439
act_setosa act_versicolor act_virginica pred_setosa pred_versicolor pred_virginica
145 0 0 1 0.02549091 2.877957e-05 0.9744803
146 0 0 1 0.08146753 2.005664e-03 0.9165268
147 0 0 1 0.05465750 1.979652e-02 0.9255460
148 0 0 1 0.06040415 1.974869e-02 0.9198472
149 0 0 1 0.02318048 4.133826e-04 0.9764061
150 0 0 1 0.03696852 5.230936e-02 0.9107221
\end{Soutput}
\end{Schunk}
\subsection{change the model parameters (shape ...)}
Same subject: predict Species given other Iris parameters\\
1st example: with gradient descent and 2 hidden layers containing 10 nodes, with various activation functions for hidden layers\\
\begin{Schunk}
\begin{Sinput}
data(iris)
xmat = iris[,1:4]
lab2pred <- levels(iris$Species)
lghlab <- length(lab2pred)
iris$Species <- as.numeric(iris$Species)
ymat <- matrix(seq(from = 1, to = lghlab, by = 1), nrow(xmat), lghlab, byrow = TRUE)
ymat <- (ymat == as.numeric(iris$Species)) + 0
amlmodel <- automl_train_manual(
Xref = xmat, Yref = ymat,
hpar = list(
layersshape = c(10, 10, 0),
layersacttype = c('tanh', 'relu', ''),
layersdropoprob = c(0, 0, 0)
)
)
\end{Sinput}
\end{Schunk}
nb: last activation type may be left to blank (it will be set automatically)\\\\
2nd example: with gradient descent and no hidden layer (logistic regression)\\
\begin{Schunk}
\begin{Sinput}
data(iris)
xmat = iris[,1:4]
lab2pred <- levels(iris$Species)
lghlab <- length(lab2pred)
iris$Species <- as.numeric(iris$Species)
ymat <- matrix(seq(from = 1, to = lghlab, by = 1), nrow(xmat), lghlab, byrow = TRUE)
ymat <- (ymat == as.numeric(iris$Species)) + 0
amlmodel <- automl_train_manual(Xref = xmat, Yref = ymat,
hpar = list(layersshape = c(0),
layersacttype = c('sigmoid'),
layersdropoprob = c(0)))
\end{Sinput}
\begin{Soutput}
(cost: crossentropy)
cost epoch10: 2.41256625698174 (cv cost: 1.52787772773656) (LR: 0.001 )
cost epoch20: 2.39487960709668 (cv cost: 1.30539484912328) (LR: 0.001 )
cost epoch30: 2.37790838174604 (cv cost: 0.914874371089546) (LR: 0.001 )
cost epoch40: 2.36237291354489 (cv cost: 1.23368286521283) (LR: 0.001 )
cost epoch50: 2.34978864866666 (cv cost: 1.26105975399258) (LR: 0.001 )
dim X: ...
\end{Soutput}
\begin{Sinput}
amlmodelsaved <- amlmodel
\end{Sinput}
\end{Schunk}
We saved the model to continue training later (see below in next section)\\
\subsection{continue training on saved model (fine tuning ...)}
Subject: continue training on saved model (model saved above in last section)\\
\begin{Schunk}
\begin{Sinput}
amlmodel <- automl_train_manual(Xref = xmat, Yref = ymat,
hpar = list(numiterations = 100,
psopartpopsize = 50),
mdlref = amlmodelsaved)
\end{Sinput}
\begin{Soutput}
(cost: crossentropy)
cost epoch10: 2.33948479711291 (cv cost: 1.3572198299724) (LR: 0.001 )
cost epoch20: 2.32669285753264 (cv cost: 1.30152708067868) (LR: 0.001 )
cost epoch30: 2.31504805288479 (cv cost: 1.29552449383989) (LR: 0.001 )
cost epoch40: 2.30430035748777 (cv cost: 1.29397405747142) (LR: 0.001 )
cost epoch50: 2.29430374216071 (cv cost: 1.29240693651625) (LR: 0.001 )
cost epoch60: 2.28495815493859 (cv cost: 1.29246202979512) (LR: 0.001 )
cost epoch70: 2.27608005019126 (cv cost: 1.29620090185108) (LR: 0.001 )
cost epoch80: 2.26753980962059 (cv cost: 1.3019296243155) (LR: 0.001 )
cost epoch90: 2.25934270485252 (cv cost: 1.30591289162664) (LR: 0.001 )
cost epoch100: 2.25229290115905 (cv cost: 1.30730635529277) (LR: 0.001 )
dim X: ...
\end{Soutput}
\end{Schunk}
We can see the error continuing to decrease from last training\\
The training continued with the same parameters, but notice that we were able to change the number of iterations
\subsection{use the 2 steps automatic approach}
Same subject: predict Species given other Iris parameters\\
Let's try the automatic approach in 2 steps with the same Logistic Regression architecture;\\
1st step goal is performance, overfitting\\
2nd step is robustness, regularization\\
\begin{Schunk}
\begin{Sinput}
data(iris)
xmat = iris[,1:4]
lab2pred <- levels(iris$Species)
lghlab <- length(lab2pred)
iris$Species <- as.numeric(iris$Species)
ymat <- matrix(seq(from = 1, to = lghlab, by = 1), nrow(xmat), lghlab, byrow = TRUE)
ymat <- (ymat == as.numeric(iris$Species)) + 0
amlmodel <- automl_train(Xref = xmat, Yref = ymat,
hpar = list(layersshape = c(0),
layersacttype = c('sigmoid'),
layersdropoprob = c(0)),
autopar = list(auto_runtype = '2steps'))
\end{Sinput}
\begin{Soutput}
STEP: 1 (overfitting)
(cost: crossentropy)
iteration 1 particle 1 weighted err: 2.42056 BEST MODEL KEPT
iteration 1 particle 2 weighted err: 2.40494 BEST MODEL KEPT
iteration 1 particle 3 weighted err: 2.41726
iteration 1 particle 4 weighted err: 2.42334
iteration 1 particle 5 weighted err: 2.4091
iteration 1 particle 6 weighted err: 2.41962
iteration 1 particle 7 weighted err: 2.40137 BEST MODEL KEPT
iteration 1 particle 8 weighted err: 2.34594 BEST MODEL KEPT
...
iteration 3 particle 1 weighted err: 2.39013
iteration 3 particle 2 weighted err: 2.36849
iteration 3 particle 3 weighted err: 2.23385 BEST MODEL KEPT
iteration 3 particle 4 weighted err: 2.40762
iteration 3 particle 5 weighted err: 2.33986
iteration 3 particle 6 weighted err: 2.39917
iteration 3 particle 7 weighted err: 2.38197
iteration 3 particle 8 weighted err: 2.34594
STEP: 2 (regularization)
(cost: crossentropy)
iteration 1 particle 1 weighted err: 2.71467 (train: 2.24374 cvalid: 1.06642 ) BEST MODEL KEPT
iteration 1 particle 2 weighted err: 2.69575 (train: 2.24196 cvalid: 1.1075 ) BEST MODEL KEPT
iteration 1 particle 3 weighted err: 2.41994 (train: 2.23777 cvalid: 2.35163 ) BEST MODEL KEPT
iteration 1 particle 4 weighted err: 2.6896 (train: 2.23791 cvalid: 1.10871 )
iteration 1 particle 5 weighted err: 2.70897 (train: 2.23907 cvalid: 1.06431 )
iteration 1 particle 6 weighted err: 2.68005 (train: 2.24226 cvalid: 1.1478 )
iteration 1 particle 7 weighted err: 2.69482 (train: 2.24414 cvalid: 1.11743 )
iteration 1 particle 8 weighted err: 4.59962 (train: 2.23349 cvalid: 3.71232 )
...
iteration 3 particle 1 weighted err: 2.70047 (train: 2.24384 cvalid: 1.10225 )
iteration 3 particle 2 weighted err: 2.69321 (train: 2.24369 cvalid: 1.11989 )
iteration 3 particle 3 weighted err: 2.25271 (train: 2.2345 cvalid: 2.18898 ) BEST MODEL KEPT
iteration 3 particle 4 weighted err: 2.68852 (train: 2.23721 cvalid: 1.10894 )
iteration 3 particle 5 weighted err: 2.69375 (train: 2.24046 cvalid: 1.10724 )
iteration 3 particle 6 weighted err: 2.68005 (train: 2.24226 cvalid: 1.1478 )
iteration 3 particle 7 weighted err: 2.68499 (train: 2.24324 cvalid: 1.13888 )
iteration 3 particle 8 weighted err: 4.58986 (train: 2.23361 cvalid: 3.70626 )
\end{Soutput}
\end{Schunk}
Compared to the last runs (in previous sections above), difference between train and cross validation errors is much more tenuous\\
Automatically :-)\\
\section{ToDo List}
- transfert learning from existing frameworks\\
- CNN\\
- RNN\\\\
-> join the team !\\
https://github.com/aboulaboul/automl
\end{document}