Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/austinhpatton/Pupfish-Fitness-Landscapes
26 April 2025, 16:35:35 UTC
  • Code
  • Branches (2)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/add-license-1
    • refs/heads/main
    • 27e7640ba769886af9ef0b2e6d6f522c9f26e2df
    No releases to show
  • fefeda8
  • /
  • Miscellaneous
  • /
  • Scripts
  • /
  • Plot-GEMMA-Manhats-Surv-Growth-Composite.R
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:ea1c8580e90e4d8d88524bdd0965d5c19484f077
origin badgedirectory badge Iframe embedding
swh:1:dir:a89b862976cca60262e23a11ef7fffe118448042
origin badgerevision badge
swh:1:rev:27e7640ba769886af9ef0b2e6d6f522c9f26e2df
origin badgesnapshot badge
swh:1:snp:b7939261e994d9e471434b4bfe96682f45113e36
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: 27e7640ba769886af9ef0b2e6d6f522c9f26e2df authored by Austin Patton on 26 May 2022, 03:39:44 UTC
Merge pull request #1 from austinhpatton/add-license-1
Tip revision: 27e7640
Plot-GEMMA-Manhats-Surv-Growth-Composite.R
# Analyze and present a simple LMM in GEMMA
library(tidyverse)
library(data.table)
library(ggplot2)
library(progressr)
library(foreach)
library(wesanderson)
library(cowplot)
library(ggrepel)

setwd('~/Dropbox/Research/Martin-Berkeley-Postdoc/Pupfish-Fitness-Genomics/Results/GEMMA/Survival/output/')

res <- read_tsv('./Hybs-LinkageThinned-Surv-LMM-Linear.assoc.txt')
res <- res[which(res$af >= 0.05),]

# Obtain p/q-values for plotting
res$log10_q <- -log10(p.adjust(res$p_wald, method = 'fdr'))
res$p <- -log10(res$p_wald)

res$RelPosition <- cumsum(res$ps)

cols <- c('grey0', 'grey44', '#2b83ba', '#d7191c')

# read in the file
scaffLen <- read.table('~/Dropbox/Research/Martin-Berkeley-Postdoc/Pupfish-Fitness-Genomics/Data/Cyprinodon_ref/Scaff-Lengths.txt')

colnames(scaffLen) <- c('chr', 'length')
scaffLen <- scaffLen[order(scaffLen$length, decreasing = T),]

scaffLen$CumPos <- c(0, cumsum(scaffLen$length)[-length(scaffLen$length)])

params <- data.frame('chr'= NA, 'rs' = NA, 'ps' = NA, 'n_miss' = NA,
                     'allele1' = NA, 'allele0' = NA, 'af' = NA, 
                     'beta' = NA, 'se' = NA, 'logl_H1' = NA,
                     'l_remle' = NA, 'p_wald' = NA, 'log10_q' = NA,
                     'RelPosition' = NA, 'ScaffCol' = NA)

get.relPos.1 <- 
  function(scaffLen, res, chr){
    tmp <- res[which(res$chr == chr),]
    tmp <- merge(scaffLen[,c(1,3)], tmp, by = 'chr')
    tmp$RelPosition <- tmp$ps + tmp$CumPos
    tmp$ScaffCol <- rep('grey0', nrow(tmp))
    return(tmp)
  }

get.relPos.2 <- 
  function(scaffLen, res, chr){
    tmp <- res[which(res$chr == chr),]
    tmp <- merge(scaffLen[,c(1,3)], tmp, by = 'chr')
    tmp$RelPosition <- tmp$ps + tmp$CumPos
    tmp$ScaffCol <- rep('grey44', nrow(tmp))
    return(tmp)
  }


with_progress({
  p <- progressor(along = 1:length(scaffLen$chr))
  lmm.res <- 
    foreach(i = 1:length(scaffLen$chr), .combine = 'rbind') %do% {
      p(sprintf("x=%g", i))
      if(i%%2 == 1){
        get.relPos.1(scaffLen, res, chr = scaffLen$chr[i])
      }else{
        get.relPos.2(scaffLen, res, chr = scaffLen$chr[i])
      }
    }
})

# cols <- RColorBrewer::brewer.pal(9, c('YlOrRd'))
# newcol <- colorRampPalette(cols[2:7])
# ncols <- 10
# cols <- newcol(ncols)

# write.table(lmm.res, file = 'GEMMA-LMM-1per-10Kb-RESULTS.txt', sep = '\t', quote = F, row.names = F)
lmm.res <- read_tsv('GEMMA-LMM-1per-10Kb-RESULTS.txt')

# Recolor outliers as blue (FDR) or red (bonferroni)
lmm.res[which(lmm.res$log10_q > 1.30103),17] <- 'FDR-sig'
lmm.res[which(lmm.res$p >= -log10(0.05 / nrow(lmm.res))),17] <- 'Bonf-sig'
bonf.p <- -log10(0.05 / nrow(lmm.res))

to.drop <- which(lmm.res$ScaffCol %in% c('grey0', 'grey44') & lmm.res$p < 3.5)
lmm.res <- lmm.res[-to.drop[round(seq(1, length(to.drop), 1.25))],]

lmm.res$ScaffCol <- factor(lmm.res$ScaffCol, 
                           levels = c('grey0', 'grey44',
                                      'FDR-sig', 'Bonf-sig'))

y.axis <- expression(paste("-Log10 (", italic(p), '-value)'))

lmm.res[-which(lmm.res$chr %in% unique(lmm.res$chr)[1:24] | lmm.res$ScaffCol %in% c('FDR-sig', 'Bonf-sig')),] 
lmm.res <- mutate(lmm.res, ScaffCol = ifelse(test = ScaffCol %in% c('grey0', 'grey44') & chr %in% unique(lmm.res$chr)[-c(1:24)], 
                                             yes = as.character('grey68'), no = as.character(ScaffCol))) 
lmm.res$ScaffCol <- as.factor(lmm.res$ScaffCol)



# #Now, thin non-outliers since it's crazy to plot otherwise
# to.drop <- which(lmm.res$ScaffCol %in% c('grey0', 'grey44') & lmm.res$p < 3.5)
# lmm.res <- lmm.res[-to.drop[round(seq(1, length(to.drop), 1.25))],]

surv.manhat <-
  ggplot(lmm.res, aes(RelPosition, p, colour = ScaffCol, size = ScaffCol)) + 
  geom_hline(yintercept = -log10(0.05 / nrow(lmm.res)), color = '#d7191c', 
             lty = 2, alpha = 0.5, size = 1.25) +
  geom_point(alpha = 0.75) +
  scale_color_manual(values = c('grey0', 'grey44', 'grey68')) +
  scale_size_manual(values = c(1.5,1.5,1.5)) +
  labs(title = 'Survival') +
  xlab('Relative Position') + 
  ylab(y.axis) +
  theme_light(base_size = 24) +
  scale_x_continuous(breaks = NULL) +
  theme(axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        legend.position = 'none')

png('Gemma-LMM-Bonf-LinkageThinned-survivorship.png', width = 12, height = 4, units = 'in', res = 600)
surv.manhat
dev.off()

pdf('Gemma-LMM-Bonf-LinkageThinned-survivorship.pdf', width = 12, height = 4)
surv.manhat
dev.off()

######################################################################################################
# Plot with data for composite fitness

res <- read_tsv('../../Traits/output/Hybs-LinkageThinned-growth-LMM-Linear.assoc.txt')
res <- res[which(res$af >= 0.05),]

# Obtain p/q-values for plotting
res$log10_q <- -log10(p.adjust(res$p_wald, method = 'fdr'))
res$p <- -log10(res$p_wald)

res$RelPosition <- cumsum(res$ps)

cols <- c('grey0', 'grey44', '#2b83ba', '#d7191c')

# read in the file
scaffLen <- read.table('~/Dropbox/Research/Martin-Berkeley-Postdoc/Pupfish-Fitness-Genomics/Data/Cyprinodon_ref/Scaff-Lengths.txt')

colnames(scaffLen) <- c('chr', 'length')
scaffLen <- scaffLen[order(scaffLen$length, decreasing = T),]

scaffLen$CumPos <- c(0, cumsum(scaffLen$length)[-length(scaffLen$length)])

# Rescale position by relative position; 
#res <- merge(res, refPos[c(3,16,17)], by = 'rs')
with_progress({
  p <- progressor(along = 1:length(scaffLen$chr))
  growth.res <- 
    foreach(i = 1:length(scaffLen$chr), .combine = 'rbind') %do% {
      p(sprintf("x=%g", i))
      if(i%%2 == 1){
        get.relPos.1(scaffLen, res, chr = scaffLen$chr[i])
      }else{
        get.relPos.2(scaffLen, res, chr = scaffLen$chr[i])
      }
    }
})

res <- growth.res

#write.table(res, file = '../../Traits/output/Composite-GEMMA-LMM-1per-10Kb-RESULTS.txt', sep = '\t', quote = F, row.names = F)
comp.res <- read_tsv('../../Traits/output/Composite-GEMMA-LMM-1per-10Kb-RESULTS.txt')

# Recolor outliers as blue (FDR) or red (bonferroni)
comp.res[which(comp.res$log10_q > 1.30103),17] <- 'FDR-sig'
comp.res[which(comp.res$p >= -log10(0.05 / nrow(comp.res))),17] <- 'Bonf-sig'
bonf.p <- -log10(0.05 / nrow(comp.res))

to.drop <- which(comp.res$ScaffCol %in% c('grey0', 'grey44') & comp.res$p < 3.5)
comp.res <- comp.res[-to.drop[round(seq(1, length(to.drop), 1.25))],]

comp.res$ScaffCol <- factor(comp.res$ScaffCol, 
                       levels = c('grey0', 'grey44',
                                  'FDR-sig', 'Bonf-sig'))

y.axis <- expression(paste("-Log10 (", italic(p), '-value)'))

# comp.annots <- 
#   data.frame('Gene' = c('CSAD', 'CSAD', 'CSAD', 'GLCCI1', 'INO80C', 
#                         'INO80C', 'INO80C', 'MAG', 'PIM2', 'MED25'),
#              'RelPosition' = c(677459848, 677460326, 677459697,
#                                298797665, 286230740, 286230787,
#                                286231015, 282928254, 561324138,
#                                337515010),
#              'p' = c(6.66, 6.82, 6.0, 5.18, 5.51, 
#                      5.66, 5.73, 5.18, 6.50, 5.35),
#              'ScaffCol' = rep('grey0', 10))

comp.annots <- 
  data.frame('Gene' = c('CSAD', 'GLCCI1', 'INO80C', 
                        'MAG', 'PIM2', 'MED25'),
             'RelPosition' = c(677460326, 298797665, 286231015, 
                               282928254, 561324138, 337515010),
             'p' = c(6.82, 5.18, 5.73, 
                     5.18, 6.50, 5.35),
             'ScaffCol' = rep('grey0', 6))

comp.res[-which(comp.res$chr %in% unique(comp.res$chr)[1:24] | comp.res$ScaffCol %in% c('FDR-sig', 'Bonf-sig')),] 
comp.res <- mutate(comp.res, ScaffCol = ifelse(test = ScaffCol %in% c('grey0', 'grey44') & chr %in% unique(comp.res$chr)[-c(1:24)], 
                                             yes = as.character('grey68'), no = as.character(ScaffCol))) 
comp.res$ScaffCol <- as.factor(comp.res$ScaffCol)

comp.manhat <-
  ggplot(comp.res, aes(RelPosition, p, colour = ScaffCol, size = ScaffCol)) + 
  geom_hline(yintercept = bonf.p, color = '#d7191c', 
             lty = 2, alpha = 0.5, size = 1.25) +
  geom_point(alpha = 0.75) +
  scale_color_manual(values = c('#d7191c', '#2b83ba', 'grey0', 'grey44', 'grey68')) +
  scale_size_manual(values = c(4.5,3,1.5,1.5,1.5)) +
  labs(title = 'Composite Fitness') +
  xlab('Relative Position') + 
  ylab(y.axis) +
  theme_light(base_size = 24) +
  scale_x_continuous(breaks = NULL) +
  geom_label_repel(data = comp.annots, aes(label = Gene), 
                   box.padding = 1, size = 4, 
                   fill = 'white') +
  theme(axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        legend.position = 'none')
comp.manhat

png('../../Traits/output/Gemma-LMM-Bonf-LinkageThinned-composite.png', width = 12, height = 4, units = 'in', res = 600)
comp.manhat
dev.off()

pdf('../../Traits/output/Gemma-LMM-Bonf-LinkageThinned-composite.pdf', width = 12, height = 4)
comp.manhat
dev.off()






######################################################################################################
# Plot with data for growth

res <- read_tsv('../../Traits/output/Hybs-LinkageThinned-growth-only-LMM-Linear.assoc.txt')
res <- res[which(res$af >= 0.05),]

# Obtain p/q-values for plotting
res$log10_q <- -log10(p.adjust(res$p_wald, method = 'fdr'))
res$p <- -log10(res$p_wald)

res$RelPosition <- cumsum(res$ps)

cols <- c('grey0', 'grey44', '#2b83ba', '#d7191c')

# read in the file
scaffLen <- read.table('~/Dropbox/Research/Martin-Berkeley-Postdoc/Pupfish-Fitness-Genomics/Data/Cyprinodon_ref/Scaff-Lengths.txt')

colnames(scaffLen) <- c('chr', 'length')
scaffLen <- scaffLen[order(scaffLen$length, decreasing = T),]

scaffLen$CumPos <- c(0, cumsum(scaffLen$length)[-length(scaffLen$length)])

# Rescale position by relative position; 
#res <- merge(res, refPos[c(3,16,17)], by = 'rs')
with_progress({
  p <- progressor(along = 1:length(scaffLen$chr))
  growth.res <- 
    foreach(i = 1:length(scaffLen$chr), .combine = 'rbind') %do% {
      p(sprintf("x=%g", i))
      if(i%%2 == 1){
        get.relPos.1(scaffLen, res, chr = scaffLen$chr[i])
      }else{
        get.relPos.2(scaffLen, res, chr = scaffLen$chr[i])
      }
    }
})

res <- growth.res

#write.table(res, file = '../../Traits/output/Growth-GEMMA-LMM-1per-10Kb-RESULTS.txt', sep = '\t', quote = F, row.names = F)
grow.res <- read_tsv('../../Traits/output/Growth-GEMMA-LMM-1per-10Kb-RESULTS.txt')

# Recolor outliers as blue (FDR) or red (bonferroni)
grow.res[which(grow.res$log10_q > 1.30103),17] <- 'FDR-sig'
grow.res[which(grow.res$p >= -log10(0.05 / nrow(grow.res))),17] <- 'Bonf-sig'
bonf.p <- -log10(0.05 / nrow(grow.res))

to.drop <- which(grow.res$ScaffCol %in% c('grey0', 'grey44') & grow.res$p < 3.5)
grow.res <- grow.res[-to.drop[round(seq(1, length(to.drop), 1.25))],]

grow.res$ScaffCol <- factor(grow.res$ScaffCol, 
                       levels = c('grey0', 'grey44',
                                  'FDR-sig', 'Bonf-sig'))

y.axis <- expression(paste("-Log10 (", italic(p), '-value)'))

grow.res[-which(grow.res$chr %in% unique(grow.res$chr)[1:24] | grow.res$ScaffCol %in% c('FDR-sig', 'Bonf-sig')),] 
grow.res <- mutate(grow.res, ScaffCol = ifelse(test = ScaffCol %in% c('grey0', 'grey44') & chr %in% unique(grow.res$chr)[-c(1:24)], 
                                             yes = as.character('grey68'), no = as.character(ScaffCol))) 
grow.res$ScaffCol <- as.factor(grow.res$ScaffCol)

grow.annots <- 
  data.frame('Gene' = c('CSAD', 'METTL21E'),
             'RelPosition' = c(677460174, 253184989),
             'p' = c(6.23, 6.14),
             'ScaffCol' = rep('grey0', 2))



growth.manhat <-
  ggplot(grow.res, aes(RelPosition, p, colour = ScaffCol, size = ScaffCol)) + 
  geom_hline(yintercept = bonf.p, color = '#d7191c', 
             lty = 2, alpha = 0.5, size = 1.25) +
  geom_point(alpha = 0.75) +
  scale_color_manual(values = c('#d7191c', '#2b83ba', 'grey0', 'grey44', 'grey68')) +
  scale_size_manual(values = c(4.5,3,1.5,1.5,1.5)) +
  labs(title = 'Growth') +
  xlab('Relative Position') + 
  ylab(y.axis) +
  theme_light(base_size = 24) +
  scale_x_continuous(breaks = NULL) +
  geom_label_repel(data = grow.annots, aes(label = Gene), 
                   box.padding = 1, size = 4, 
                   fill = 'white') +
  theme(axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        legend.position = 'none')

png('../../Traits/output/Gemma-LMM-Bonf-LinkageThinned-growth.png', width = 12, height = 4, units = 'in', res = 600)
growth.manhat
dev.off()

pdf('../../Traits/output/Gemma-LMM-Bonf-LinkageThinned-growth.pdf', width = 12, height = 4)
growth.manhat
dev.off()

library(cowplot)


comp.manhat <-
  ggplot(comp.res, aes(RelPosition, p, colour = ScaffCol, size = ScaffCol)) + 
  geom_hline(yintercept = bonf.p, color = '#d7191c', 
             lty = 2, alpha = 0.5, size = 1.25) +
  geom_point(alpha = 0.75) +
  scale_color_manual(values = c('#d7191c', '#2b83ba', 'grey0', 'grey44', 'grey68')) +
  scale_size_manual(values = c(4.5,3,1.5,1.5,1.5)) +
  labs(title = 'Composite Fitness') +
  xlab('Relative Position') + 
  ylab(y.axis) +
  theme_light(base_size = 24) +
  scale_x_continuous(breaks = NULL) +
  geom_label_repel(data = comp.annots, aes(label = Gene), 
                   box.padding = 1.5, size = 6, 
                   fill = 'white') +
  theme(axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        legend.position = 'none')

growth.manhat <-
  ggplot(grow.res, aes(RelPosition, p, colour = ScaffCol, size = ScaffCol)) + 
  geom_hline(yintercept = bonf.p, color = '#d7191c', 
             lty = 2, alpha = 0.5, size = 1.25) +
  geom_point(alpha = 0.75) +
  scale_color_manual(values = c('#d7191c', '#2b83ba', 'grey0', 'grey44', 'grey68')) +
  scale_size_manual(values = c(4.5,3,1.5,1.5,1.5)) +
  labs(title = 'Growth') +
  xlab('Relative Position') + 
  ylab(y.axis) +
  theme_light(base_size = 24) +
  scale_x_continuous(breaks = NULL) +
  geom_label_repel(data = grow.annots, aes(label = Gene), 
                   box.padding = 2, size = 6, 
                   fill = 'white') +
  theme(axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        legend.position = 'none')

all.manhats <- 
  plot_grid(surv.manhat, 
            growth.manhat,
            comp.manhat,
            ncol = 1, align = 'V')

ggsave(all.manhats, filename = '../../Traits/output/Gemma-LMM-Bonf-LinkageThinned-SurvCompGroth.pdf', 
       width = 22.75, height = 16, useDingbats = F)
ggsave(all.manhats, filename = '../../Traits/output/Gemma-LMM-Bonf-LinkageThinned-SurvCompGroth.png', 
       width = 22.75, height = 16, dpi = 600)

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top