Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • b7953a0
  • /
  • deam.jl
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:ed0de4f77902e46f1e440b88fd565e7c1b38adcd
directory badge Iframe embedding
swh:1:dir:b7953a0181984616831ccdfbbba622e10eb82cca
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
deam.jl
# This file contains functions for the Radial Multiplier DEA model
"""
    AbstractRadialMultiplierDEAModel
An abstract type representing a radial DEA model.
"""
abstract type AbstractRadialMultiplierDEAModel <: AbstractTechnicalDEAModel end

"""
    RadialMultiplierDEAModel
An data structure representing a radial multiplier DEA model.
"""
struct RadialMultiplierDEAModel <: AbstractRadialMultiplierDEAModel
    n::Int64
    m::Int64
    s::Int64
    orient::Symbol
    rts::Symbol
    dmunames::Union{Vector{AbstractString},Nothing}
    eff::Vector
    v::Matrix
    u::Matrix    
    omega::Vector
    Xtarget::Matrix
    Ytarget::Matrix
end

"""
    deam(X, Y)
Compute the radial multiplier model using data envelopment analysis for inputs X and outputs Y.

# Optional Arguments
- `orient=:Input`: chooses the radially oriented input mode. For the radially oriented output model choose `:Output`.
- `rts=:CRS`: chooses constant returns to scale. For variable returns to scale choose `:VRS`.
- `Xref=X`: Identifies the reference set of inputs against which the units are evaluated.
- `Yref=Y`: Identifies the reference set of outputs against which the units are evaluated.
- `names`: a vector of strings with the names of the decision making units.
"""
function deam(X::Union{Matrix,Vector}, Y::Union{Matrix,Vector};
    orient::Symbol = :Input, rts::Symbol = :CRS,
    Xref::Union{Matrix,Vector,Nothing} = nothing, Yref::Union{Matrix, Vector,Nothing} = nothing,
    names::Union{Vector{<: AbstractString},Nothing} = nothing,
    optimizer::Union{DEAOptimizer,Nothing} = nothing, progress::Bool = false)::RadialMultiplierDEAModel

    # Check parameters
    nx, m = size(X, 1), size(X, 2)
    ny, s = size(Y, 1), size(Y, 2)

    if Xref === nothing Xref = X end
    if Yref === nothing Yref = Y end

    nrefx, mref = size(Xref, 1), size(Xref, 2)
    nrefy, sref = size(Yref, 1), size(Yref, 2)

    if nx != ny
        throw(DimensionMismatch("number of rows in X and Y ($nx, $ny) are not equal"));
    end
    if nrefx != nrefy
        throw(DimensionMismatch("number of rows in Xref and Yref ($nrefx, $nrefy) are not equal"));
    end
    if m != mref
        throw(DimensionMismatch("number of columns in X and Xref ($m, $mref) are not equal"));
    end
    if s != sref
        throw(DimensionMismatch("number of columns in Y and Yref ($s, $sref) are not equal"));
    end

    # Default optimizer
    if optimizer === nothing 
        optimizer = DEAOptimizer(:LP)
    end

    # Compute efficiency for each DMU
    n = nx
    nref = nrefx

    effi = zeros(n)
    vi = zeros(n, m)
    ui = zeros(n, s)
    omegai = zeros(n)

    p = progressbarmeter(n, desc = "Computing Radial DEA Model...", progress = progress)

    for i=1:n
        # Value of inputs and outputs to evaluate
        x0 = X[i,:]
        y0 = Y[i,:]

        # Create the optimization model
        deamodel = newdeamodel(optimizer)

        @variable(deamodel, v[1:m] >= 0)
        @variable(deamodel, u[1:s] >= 0)      
        @variable(deamodel, omega)  

        if orient == :Input
            @objective(deamodel, Max, sum(u[r] * y0[r] for r in 1:s) - omega)

            @constraint(deamodel, sum(v[i] * x0[i] for i in 1:m) == 1)
            @constraint(deamodel, [j in 1:nref], sum(u[r] * Yref[j,r] for r in 1:s) - sum(v[i] * Xref[j,i] for i in 1:m) - omega <= 0)

        elseif orient == :Output
            @objective(deamodel, Min, sum(v[i] * x0[i] for i in 1:m) + omega)

            @constraint(deamodel, sum(u[r] * y0[r] for r in 1:s) == 1)
            @constraint(deamodel, [j in 1:nref], sum(v[i] * Xref[j,i] for i in 1:m) - sum(u[r] * Yref[j,r] for r in 1:s) + omega >= 0)
        else
            throw(ArgumentError("`orient` must be :Input or :Output"));
        end

        # Add return to scale constraints
        if rts == :CRS
            @constraint(deamodel, omega == 0)
        elseif rts == :VRS            
            # No contraint to add for variable returns to scale
        else
            throw(ArgumentError("`rts` must be :CRS or :VRS"));
        end

        # Optimize and return results
        JuMP.optimize!(deamodel)

        effi[i]  = JuMP.objective_value(deamodel)
        vi[i, :] = JuMP.value.(v)
        ui[i, :] = JuMP.value.(u)
        omegai[i] = JuMP.value(omega)

        # Check termination status
        if (termination_status(deamodel) != MOI.OPTIMAL) && (termination_status(deamodel) != MOI.LOCALLY_SOLVED)
            @warn ("DMU $i termination status: $(termination_status(deamodel)). Primal status: $(primal_status(deamodel)). Dual status: $(dual_status(deamodel))")
        end

        next!(p)
    end

    # Get first-stage X and Y targets
    if orient == :Input
        Xtarget = X .* effi
        Ytarget = Y
    elseif orient == :Output
        Xtarget = X
        Ytarget = Y .* effi
    end

    if typeof(Xtarget) <: AbstractVector    Xtarget = Xtarget[:,:]  end
    if typeof(Ytarget) <: AbstractVector    Ytarget = Ytarget[:,:]  end

    return RadialMultiplierDEAModel(n, m, s, orient, rts, names, effi, vi, ui, omegai, Xtarget, Ytarget)
end

function Base.show(io::IO, x::RadialMultiplierDEAModel)
    compact = get(io, :compact, false)

    n = nobs(x)
    m = ninputs(x)
    s = noutputs(x)
    dmunames = names(x)

    eff = efficiency(x)
    v = multipliers(x, :X)
    u = multipliers(x, :Y)

    if !compact
        print(io, "Radial DEA Model (Multiplier form)\n")
        print(io, "DMUs = ", n)
        print(io, "; Inputs = ", m)
        print(io, "; Outputs = ", s)
        print(io, "\n")
        print(io, "Orientation = ", string(x.orient))
        print(io, "; Returns to Scale = ", string(x.rts))
        print(io, "\n")

        show(io, CoefTable(hcat(eff, v, u), ["efficiency"; ["v$i" for i in 1:m ]; ["u$i" for i in 1:s ]], dmunames))
    end
end

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API