Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Raw File Download
Permalink

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
content badge Iframe embedding
swh:1:cnt:ed962b4d11e5ae97df8e188bb90faf254744d674
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
"""
This script creates a plot to show how the time spent on the computation of an embedding behaves when changing the
parameter Theta for the acceleration. One line is plotted per data set.
"""

###########
# IMPORTS #
###########

from pathlib import Path
import os
import pandas as pd
import seaborn as sns
from matplotlib import pyplot as plt

####################
# READING THE DATA #
####################

results_path = Path("../results/timings_per_theta/")
data = []
for subdir, dirs, files in os.walk(results_path):
    for file in files:
        if str(os.path.basename(os.path.join(subdir, file))) == "timings.csv":
            dataset = str(subdir).split('/')[-3]
            theta = float(str(subdir).split('/')[-1].split('_')[-1])
            timing_df = pd.read_csv(os.path.join(subdir, file))
            timing_df = timing_df[(timing_df.time_type == "tot_gradient")]
            average_time = float(timing_df[["total_time"]].mean())
            data.append({
                    "dataset": dataset,
                    "theta": theta,
                    "average_time": average_time
            })
average_times = pd.DataFrame(data)
average_times.loc[average_times.dataset == "LUKK", "order"] = 1
average_times.loc[average_times.dataset == "MYELOID8000", "order"] = 2
average_times.loc[average_times.dataset == "PLANARIA", "order"] = 3
average_times.loc[average_times.dataset == "MNIST", "order"] = 4
average_times.loc[average_times.dataset == "WORDNET", "order"] = 5
average_times.loc[average_times.dataset == "C_ELEGANS", "order"] = 6
average_times = average_times.sort_values(by="order", ascending=True)

##############
# PLOT SETUP #
##############
sns.set_palette("colorblind")
modes = average_times.dataset.unique()
colors = sns.color_palette('colorblind', len(modes))
palette = {mode: color for mode, color in zip(modes, colors)}
linewidth = 3.0

#####################
# PLOTTING THE DATA #
#####################

_, axs = plt.subplots(figsize=(5, 5), ncols=1, layout="tight")
times_lineplot = sns.lineplot(
    data=average_times,
    x="theta",
    y="average_time",
    hue="dataset",
    palette=palette,
    markers=False,
    linewidth=linewidth,
    ax=axs
)
times_lineplot.set(yscale='log')
axs.set_title(f"Average Total Time per Iteration vs Theta")
axs.set_xlabel("Theta")
axs.set_ylabel("log(Time (Seconds))")
plt.savefig("theta_timing_plot.png")

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top