Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • 2bcaf0f
  • /
  • src
  • /
  • c_optim.cpp
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:ee2e4b7aac88e7c62f3705c5149fc974c646cea5
directory badge Iframe embedding
swh:1:dir:bae9250549db521cf6323ba0dfdace3c2d492ae1
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
c_optim.cpp
#include <Rcpp.h>
#include <R_ext/Applic.h>
#include <vector>
#include <map>
#include <float.h> /* DBL_EPSILON */
#include "c_optim.h"

// #include "uncmin.cpp"

namespace rstpm2 {

  using namespace Rcpp;

  double min(double a, double b) { return a < b ? a : b; }
  double max(double a, double b) { return a < b ? b : a; }
  double bound(double x, double lower, double upper) { return x < lower ? lower : (x > upper ? upper : x); }

  // print utilities
  void Rprint_(NumericMatrix m) {
    for (int i=0; i<m.nrow(); ++i) {
      for (int j=0; j<m.ncol(); ++j) 
	Rprintf("%f ", m(i,j));
      Rprintf("\n");
    }
  }
  void Rprint_(NumericVector v) {
    for (int i=0; i<v.size(); ++i) 
      Rprintf("%f ", v(i));
    Rprintf("\n");
  }

  // void nmmin(int n, double *Bvec, double *X, double *Fmin, optimfn fminfn,
  // 	   int *fail, double abstol, double intol, void *ex,
  // 	   double alpha, double bet, double gamm, int trace,
  // 	   int *fncount, int maxit)

  NelderMead::NelderMead(int trace, int maxit, 
			 double abstol, double reltol, 
			 double alpha, double beta, double gamma,
			 double epshess, bool hessianp) : 
      trace(trace), maxit(maxit), abstol(abstol), reltol(reltol), 
      alpha(alpha), beta(beta), gamma(gamma), epshess(epshess), hessianp(hessianp) { 
    }
  void NelderMead::optim(optimfn fn, NumericVector init, void * ex) {
    n = init.size();
    coef = clone(init);
    nmmin(n, &init[0], &coef[0], &Fmin, fn,
	    &fail, abstol, reltol, ex,
	    alpha, beta, gamma, trace,
	    &fncount, maxit);
      if (hessianp)
	hessian = calc_hessian(fn, ex);
    }
  NumericMatrix NelderMead::calc_hessian(optimfn fn, void * ex) {
      int n = coef.size();
      NumericMatrix hess(n,n);
      double tmpi,tmpj,f1,f0,fm1,hi,hj,fij,fimj,fmij,fmimj;
      f0 = fn(n,&coef[0],ex);
      for(int i=0; i<n; ++i) {
	tmpi = coef[i];
	hi = epshess*(1.0+std::abs(tmpi));
	coef[i] = tmpi + hi;
	f1=fn(n, &coef[0], ex);
	coef[i] = tmpi - hi;
	fm1=fn(n, &coef[0], ex);
	// hess(i,i) = (-f2 +16.0*f1 - 30.0*f0 + 16.0*fm1 -fm2)/(12.0*hi*hi);
	hess(i,i) = (f1 - 2.0*f0 + fm1)/(hi*hi);
	coef[i] = tmpi;
	for (int j=i; j<n; ++j) {
	  if (i != j) {
	    tmpj = coef[j];
	    hj = epshess*(1.0+std::abs(tmpj));
	    coef[i] = tmpi + hi;
	    coef[j] = tmpj + hj;
	    fij=fn(n, &coef[0], ex);
	    coef[i] = tmpi + hi;
	    coef[j] = tmpj - hj;
	    fimj=fn(n, &coef[0], ex);
	    coef[i] = tmpi - hi;
	    coef[j] = tmpj + hj;
	    fmij=fn(n, &coef[0], ex);
	    coef[i] = tmpi - hi;
	    coef[j] = tmpj - hj;
	    fmimj=fn(n, &coef[0], ex);
	    hess(j,i) = hess(i,j) = (fij-fimj-fmij+fmimj)/(4.0*hi*hj);
	    coef[i] = tmpi;
	    coef[j] = tmpj;
	  }
	}
      }
      return wrap(hess);
    }

  // void
  // vmmin(int n0, double *b, double *Fmin, optimfn fminfn, optimgr fmingr,
  //       int maxit, int trace, int *mask,
  //       double abstol, double reltol, int nREPORT, void *ex,
  //       int *fncount, int *grcount, int *fail)
  BFGS::BFGS(int trace, int maxit, 
	 double abstol,
	     double reltol, int report, double epshess, bool hessianp) : 
    trace(trace), maxit(maxit), report(report), abstol(abstol), reltol(reltol), epshess(epshess), hessianp(hessianp) { }
  void BFGS::optim(optimfn fn, optimgr gr, NumericVector init, void * ex) {
    n = init.size();
    std::vector<int> mask(n,1); 
    vmmin(n, &init[0], &Fmin, fn, gr, maxit, trace, &mask[0], abstol, reltol, report,
	  ex, &fncount, &grcount, &fail);
    coef = clone(init);
    if (hessianp)
      hessian = calc_hessian(gr, ex);
  }
  void BFGS::optim(int n, optimfn fn, optimgr gr, double *initptr, void * ex) {
    std::vector<int> mask(n,1); 
    vmmin(n, initptr, &Fmin, fn, gr, maxit, trace, &mask[0], abstol, reltol, report,
	  ex, &fncount, &grcount, &fail);
    coef = NumericVector(n);
    for (int i=0; i<n; ++i) coef[i] = initptr[i];
    if (hessianp)
      hessian = calc_hessian(gr, ex);
  }
  double BFGS::calc_objective(optimfn fn, NumericVector coef, void * ex) {
      return fn(coef.size(), &coef[0], ex);
    }
  double BFGS::calc_objective(optimfn fn, void * ex) {
      return fn(coef.size(), &coef[0], ex);
    }
  NumericMatrix BFGS::calc_hessian(optimgr gr, void * ex) {
      int n = coef.size();
      NumericVector df1(n);
      NumericVector df2(n);
      NumericMatrix hess(n,n);
      double tmp;
      for(int i=0; i<n; ++i) {
	tmp = coef[i];
	coef[i] = tmp + epshess;
	gr(n, &coef[0], &df1[0], ex);
	coef[i] = tmp - epshess;
	gr(n, &coef[0], &df2[0], ex);
	for (int j=0; j<n; ++j)
	  hess(i,j) = (df1[j] - df2[j]) / (2*epshess);
	coef[i] = tmp;
      }
      // now symmetrize
      for(int i=0; i<n; ++i) 
	for(int j=i; j<n; ++j) 
	  if (i != j)
	    hess(i,j) = hess(j,i) = (hess(i,j) + hess(j,i)) / 2.0;
      return wrap(hess); // wrap()?
    }


// void
// optif9(int nr, int n, double *x, fcn_p fcn, fcn_p d1fcn, d2fcn_p d2fcn,
//        void *state, double *typsiz, double fscale, int method,
//        int iexp, int *msg, int ndigit, int itnlim, int iagflg, int iahflg,
//        double dlt, double gradtl, double stepmx, double steptl,
//        double *xpls, double *fpls, double *gpls, int *itrmcd, double *a,
//        double *wrk, int *itncnt)
  Nlm::Nlm(double fscale,
	   int method,
	   int iexp,
	   int msg,
	   int ndigit,
	   int itnlim,
	   int iagflg,
	   int iahflg,
	   double dlt,
	   double gradtl, // cf. epshess
	   double stepmx,
	   double steptl,
     double epshess,
	   int itrmcd,
	   int itncnt,
	   bool hessianp
	   ) : fscale(fscale), method(method), iexp(iexp), msg(msg),
	       ndigit(ndigit), itnlim(itnlim), iagflg(iagflg), 
	       iahflg(iahflg), dlt(dlt), gradtl(gradtl), stepmx(stepmx),
	       steptl(steptl), epshess(epshess),
         itrmcd(itrmcd), itncnt(itncnt), hessianp(hessianp) { }
  void Nlm::optim(fcn_p fcn, fcn_p d1fcn, NumericVector init, void * state) {
      int n;
      n = init.size();
      std::vector<double> typsize(n,1.0), gpls(n,0.0), a(n*n,0.0), wrk(n*8,0.0);
      double norm, fpls;
      NumericVector xpls(n);
      // stepmax calculations
      if (stepmx == -1.0) {
	norm = 0.0;
	for (int i=0; i<n; ++i)
	  norm += init[i]*init[i]/typsize[i]/typsize[i];
	norm = sqrt(norm);
	stepmx = norm < 1.0 ? 1000.0 : norm*1000.0;
      }
      iagflg = 1; iahflg = 0;
      // call the optimizer
      optif9(n, n, &init[0], fcn, d1fcn, (d2fcn_p) 0, state, &typsize[0], fscale, method, 
	     iexp, &msg, ndigit, itnlim, iagflg, iahflg,
	     dlt, gradtl, stepmx, steptl,
	     &xpls[0], &fpls, &gpls[0], &itrmcd, &a[0],
	     &wrk[0], &itncnt);
      coef = clone(xpls);
      if (hessianp)
	hessian = calc_hessian(d1fcn, state);
    }
  void Nlm::optim(fcn_p fcn, NumericVector init, void * state) {
      int n;
      n = init.size();
      std::vector<double> typsize(n,1.0), gpls(n,0.0), a(n*n,0.0), wrk(n*8,0.0);
      double norm, fpls;
      NumericVector xpls(n);
      // stepmax calculations
      if (stepmx == -1.0) {
  norm = 0.0;
	for (int i=0; i<n; ++i)
	  norm += init[i]*init[i]/typsize[i]/typsize[i];
	norm = sqrt(norm);
	stepmx = norm < 1.0 ? 1000.0 : norm*1000.0;
      }
      iagflg = iahflg = 0;
      // call the optimizer
      optif9(n, n, &init[0], fcn, (fcn_p) 0, (d2fcn_p) 0, state, &typsize[0], fscale, method, 
	     iexp, &msg, ndigit, itnlim, iagflg, iahflg,
	     dlt, gradtl, stepmx, steptl,
	     &xpls[0], &fpls, &gpls[0], &itrmcd, &a[0],
	     &wrk[0], &itncnt);
      coef = clone(xpls);
      //if (hessianp)
	//hessian = calc_hessian(d1fcn, state);
    }
  double Nlm::calc_objective(fcn_p fn, NumericVector coef, void * ex) {
    double f;
    fn(coef.size(), &coef[0], &f, ex);
    return f;
  }
  double Nlm::calc_objective(fcn_p fn, void * ex) {
    double f;
    fn(coef.size(), &coef[0], &f, ex);
    return f;
  }
  NumericMatrix Nlm::calc_hessian(fcn_p gr, void * ex) {
      int n = coef.size();
      NumericVector df1(clone(coef));
      NumericVector df2(clone(coef));
      NumericMatrix hess(n,n);
      double tmp;
      for(int i=0; i<n; ++i) {
	tmp = coef[i];
	coef[i] += gradtl;
	gr(n, &coef[0], &df1[0], ex);
	coef[i] = tmp - gradtl;
	gr(n, &coef[0], &df2[0], ex);
	for (int j=i; j<n; ++j)
	  hess(j,i) = hess(i,j) = (df1[j] - df2[j]) / (2*gradtl);
	coef[i] = tmp;
      }
      return wrap(hess);
  }
  void Nlm::set_print_level(int print_level) {
    if (print_level == 0) msg = 9;
    if (print_level == 1) msg = 1;
    if (print_level >= 2) msg = 17;
  }

double Brent_fmin(double ax, double bx, double (*f)(double, void *),
		  void *info, double tol)
{
    /*  c is the squared inverse of the golden ratio */
    const double c = (3. - sqrt(5.)) * .5;

    /* Local variables */
    double a, b, d, e, p, q, r, u, v, w, x;
    double t2, fu, fv, fw, fx, xm, eps, tol1, tol3;

/*  eps is approximately the square root of the relative machine precision. */
    eps = DBL_EPSILON;
    tol1 = eps + 1.;/* the smallest 1.000... > 1 */
    eps = sqrt(eps);

    a = ax;
    b = bx;
    v = a + c * (b - a);
    w = v;
    x = v;

    d = 0.;/* -Wall */
    e = 0.;
    fx = (*f)(x, info);
    fv = fx;
    fw = fx;
    tol3 = tol / 3.;

/*  main loop starts here ----------------------------------- */

    for(;;) {
	xm = (a + b) * .5;
	tol1 = eps * fabs(x) + tol3;
	t2 = tol1 * 2.;

	/* check stopping criterion */

	if (fabs(x - xm) <= t2 - (b - a) * .5) break;
	p = 0.;
	q = 0.;
	r = 0.;
	if (fabs(e) > tol1) { /* fit parabola */

	    r = (x - w) * (fx - fv);
	    q = (x - v) * (fx - fw);
	    p = (x - v) * q - (x - w) * r;
	    q = (q - r) * 2.;
	    if (q > 0.) p = -p; else q = -q;
	    r = e;
	    e = d;
	}

	if (fabs(p) >= fabs(q * .5 * r) ||
	    p <= q * (a - x) || p >= q * (b - x)) { /* a golden-section step */

	    if (x < xm) e = b - x; else e = a - x;
	    d = c * e;
	}
	else { /* a parabolic-interpolation step */

	    d = p / q;
	    u = x + d;

	    /* f must not be evaluated too close to ax or bx */

	    if (u - a < t2 || b - u < t2) {
		d = tol1;
		if (x >= xm) d = -d;
	    }
	}

	/* f must not be evaluated too close to x */

	if (fabs(d) >= tol1)
	    u = x + d;
	else if (d > 0.)
	    u = x + tol1;
	else
	    u = x - tol1;

	fu = (*f)(u, info);

	/*  update  a, b, v, w, and x */

	if (fu <= fx) {
	    if (u < x) b = x; else a = x;
	    v = w;    w = x;   x = u;
	    fv = fw; fw = fx; fx = fu;
	} else {
	    if (u < x) a = u; else b = u;
	    if (fu <= fw || w == x) {
		v = w; fv = fw;
		w = u; fw = fu;
	    } else if (fu <= fv || v == x || v == w) {
		v = u; fv = fu;
	    }
	}
    }
    /* end of main loop */

    return x;
}


double R_zeroin2(			/* An estimate of the root */
    double ax,				/* Left border | of the range	*/
    double bx,				/* Right border| the root is seeked*/
    double fa, double fb,		/* f(a), f(b) */
    double (*f)(double x, void *info),	/* Function under investigation	*/
    void *info,				/* Add'l info passed on to f	*/
    double *Tol,			/* Acceptable tolerance		*/
    int *Maxit)				/* Max # of iterations */
{
    double a,b,c, fc;			/* Abscissae, descr. see above,  f(c) */
    double tol;
    int maxit;

    a = ax;  b = bx;
    c = a;   fc = fa;
    maxit = *Maxit + 1; tol = * Tol;

    /* First test if we have found a root at an endpoint */
    if(fa == 0.0) {
	*Tol = 0.0;
	*Maxit = 0;
	return a;
    }
    if(fb ==  0.0) {
	*Tol = 0.0;
	*Maxit = 0;
	return b;
    }

    while(maxit--)		/* Main iteration loop	*/
    {
	double prev_step = b-a;		/* Distance from the last but one
					   to the last approximation	*/
	double tol_act;			/* Actual tolerance		*/
	double p;			/* Interpolation step is calcu- */
	double q;			/* lated in the form p/q; divi-
					 * sion operations is delayed
					 * until the last moment	*/
	double new_step;		/* Step at this iteration	*/

	if( fabs(fc) < fabs(fb) )
	{				/* Swap data for b to be the	*/
	    a = b;  b = c;  c = a;	/* best approximation		*/
	    fa=fb;  fb=fc;  fc=fa;
	}
	tol_act = 2*DBL_EPSILON*fabs(b) + tol/2;
	new_step = (c-b)/2;

	if( fabs(new_step) <= tol_act || fb == (double)0 )
	{
	    *Maxit -= maxit;
	    *Tol = fabs(c-b);
	    return b;			/* Acceptable approx. is found	*/
	}

	/* Decide if the interpolation can be tried	*/
	if( fabs(prev_step) >= tol_act	/* If prev_step was large enough*/
	    && fabs(fa) > fabs(fb) ) {	/* and was in true direction,
					 * Interpolation may be tried	*/
	    register double t1,cb,t2;
	    cb = c-b;
	    if( a==c ) {		/* If we have only two distinct	*/
					/* points linear interpolation	*/
		t1 = fb/fa;		/* can only be applied		*/
		p = cb*t1;
		q = 1.0 - t1;
	    }
	    else {			/* Quadric inverse interpolation*/

		q = fa/fc;  t1 = fb/fc;	 t2 = fb/fa;
		p = t2 * ( cb*q*(q-t1) - (b-a)*(t1-1.0) );
		q = (q-1.0) * (t1-1.0) * (t2-1.0);
	    }
	    if( p>(double)0 )		/* p was calculated with the */
		q = -q;			/* opposite sign; make p positive */
	    else			/* and assign possible minus to	*/
		p = -p;			/* q				*/

	    if( p < (0.75*cb*q-fabs(tol_act*q)/2) /* If b+p/q falls in [b,c]*/
		&& p < fabs(prev_step*q/2) )	/* and isn't too large	*/
		new_step = p/q;			/* it is accepted
						 * If p/q is too large then the
						 * bisection procedure can
						 * reduce [b,c] range to more
						 * extent */
	}

	if( fabs(new_step) < tol_act) {	/* Adjust the step to be not less*/
	    if( new_step > (double)0 )	/* than tolerance		*/
		new_step = tol_act;
	    else
		new_step = -tol_act;
	}
	a = b;	fa = fb;			/* Save the previous approx. */
	b += new_step;	fb = (*f)(b, info);	/* Do step to a new approxim. */
	if( (fb > 0 && fc > 0) || (fb < 0 && fc < 0) ) {
	    /* Adjust c for it to have a sign opposite to that of b */
	    c = a;  fc = fa;
	}

    }
    /* failed! */
    *Tol = fabs(c-b);
    *Maxit = -1;
    return b;
}


  // Complete Q matrix from a QR decomposition
  NumericMatrix qr_q(const NumericMatrix& X, double tol) 
  {
    // Initialize member data and allocate heap memory
    int n=X.rows(), p=X.cols(), rank=0;
    NumericMatrix qr(X), y(n,n), q(n,n);
    int* pivot=(int*)R_alloc(p,sizeof(int)); 
    double* tau=(double*)R_alloc(p,sizeof(double)); 
    double* work=(double*)R_alloc(p*2,sizeof(double));
    for(int i=0;i<p;i++) 
      pivot[i]=i+1; 
    for(int i=0;i<n;i++) 
      for(int j=0;j<n;j++) 
	y(i,j) = i==j ? 1.0 : 0.0;
    // LINPACK QR factorization via householder transformations
    F77_CALL(dqrdc2)(&qr[0], &n, &n, &p, &tol, &rank, tau, pivot, work);
    // Compute orthogonal factor Q
    F77_CALL(dqrqy)(&qr[0], &n, &rank, tau, &y[0], &n, &q[0]);
    return q;
  }
  
  
  // R CMD INSTALL ~/src/R/microsimulation
  // R -q -e "require(microsimulation); .Call('test_nmmin',1:2,PACKAGE='microsimulation')"

  // .Call("optim_stpm2",init,X,XD,rep(bhazard,nrow(X)),wt,ifelse(event,1,0),package="rstpm2")

} // namespace rstpm2

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API