Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Raw File Download
Permalink

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
content badge Iframe embedding
swh:1:cnt:ee6027aceb21eb2ceb6431cbc3970a267b439dfc
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
\name{automl_train}
\alias{automl_train}
\title{automl_train}
\description{
The multi deep neural network automatic train function (several deep neural networks are trained with automatic hyperparameters tuning, best model is kept)\cr
This function launches the \link{automl_train_manual} function by passing it parameters
for each particle at each converging step
}
\usage{
automl_train(Xref, Yref, autopar = list(), hpar = list(), mdlref = NULL)
}
\arguments{
\item{Xref}{ inputs matrix or data.frame (containing numerical values only)
}

\item{Yref}{ target matrix or data.frame (containing numerical values only)
}

\item{autopar}{ list of parameters for hyperparameters optimization, see \link{autopar} section\cr
Not mandatory (the list is preset and all arguments are initialized with default value) but it is advisable to adjust some important arguments for performance reasons (including processing time)
}

\item{hpar}{ list of parameters and hyperparameters for Deep Neural Network, see \link{hpar} section\cr
Not mandatory (the list is preset and all arguments are initialized with default value) but it is advisable to adjust some important arguments for performance reasons (including processing time)
}

\item{mdlref}{ model trained with \link{automl_train} to start training with saved \link{hpar} and \link{autopar}
(not the model)\cr
nb: manually entered parameters above override loaded ones}
}

\examples{
\dontrun{
##REGRESSION (predict Sepal.Length given other Iris parameters)
data(iris)
xmat <- cbind(iris[,2:4], as.numeric(iris$Species))
ymat <- iris[,1]
amlmodel <- automl_train(Xref = xmat, Yref = ymat)
}
##CLASSIFICATION (predict Species given other Iris parameters)
data(iris)
xmat = iris[,1:4]
lab2pred <- levels(iris$Species)
lghlab <- length(lab2pred)
iris$Species <- as.numeric(iris$Species)
ymat <- matrix(seq(from = 1, to = lghlab, by = 1), nrow(xmat), lghlab, byrow = TRUE)
ymat <- (ymat == as.numeric(iris$Species)) + 0
#with gradient descent and random hyperparameters sets
amlmodel <- automl_train(Xref = xmat, Yref = ymat,
                          autopar = list(numiterations = 1, psopartpopsize = 1, seed = 11),
                          hpar = list(numiterations = 10))
}

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top