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I. INTRODUCTION

Numerical electromagnetic simulation packages, such as FEKO (www.feko.info), most typically provide far-field data at

constant ∆θ,∆φ steps. This works fine for antenna applications, but is inconvenient in Radio Astronomy as celestial sources

do not generally follow constant θ or φ trajectories. However, an option to calculate Spherical Wave Expansion (SWE)

coefficients is provided in FEKO. This allows calculation of continuous (near and far) fields at radii larger than that of the

sphere containing the sources [1], [2]. Radio astronomy deals with far-field radiation, and hence, a far-field expression is

sufficient for our purpose.

II. FAR-FIELD EXPRESSION USING FEKO’S SWE

We follow FEKO’s SWE convention as described in [1]. In the far-field (r → ∞), the electric field can be expressed as:

~Eff(r, θ, φ) = β
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where β is the wavenumber and Z0 is the intrinsic impedance of free space and
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Qsmn are the coefficients given by FEKO where s = 1 and s = 2 refer to TE and TM modes, respectively. Similar expressions,

though with slightly different conventions, may be found in [3], [4]. Also,

Cmn =

√

2n+ 1

2

(n− |m|)!
(n+ |m|)! (4)

is the normalization factor for the associated Legendre function of order n and rank |m|, P |m|
n (cos θ) [5], [6].

A. Dealing with P
|m|
n (cos θ)/ sin θ

The factor P
|m|
n (cos θ)/ sin θ gives an appearance of singularity for θ → 0, π which requires special treatment. Note that

θ = 0 is in the direction of the zenith in LFAA; it is important that we get this right. We can use a solution to the associated

Legendre equation given by [6]:

P |m|
n (u) = (−1)|m|(1− u2)|m|/2d

|m|Pn(u)

du|m|
(5)

where u = cos θ. It follows that

P
|m|
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=

P
|m|
n (u)

(1− u2)1/2

= (−1)|m|(1 − u2)(|m|−1)/2 d
|m|Pn(u)
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(6)

There are three cases to consider:

1) m = 0: In (2) and (3) (and as it turns out, in all cases encountered here), the P
|m|
n (cos θ)/ sin θ factor is multiplied by

such that

mPn(cos θ)/ sin θ
θ=0,π→ 0 (7)
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2) |m| = 1: Setting |m| = 1 in (6), we obtain

Pn(cos θ)

sin θ
= −dPn(u)

du
(8)

From the definition of the Legendre polynomial [6]

Pn(u) =

L
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2nl!(n− l)!(n− 2l)!
un−2l (9)

where L = n/2 (for n even) or (n− 1)/2 (for n odd). Therefore, we can write
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which allows us to obtain, for θ →= 0, π:
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3) |m| ≥ 2: From (6), we obtain

P |m|
n (cos θ)/ sin θ = (−1)|m|(sin θ)|m|−1 d

|m|Pn(cos θ)

d(cos θ)|m|
(12)

Equation (9) suggests that Pn(u) is continuously differentiable for |u| ≤ 1, hence

P |m|
n (cos θ)/ sin θ

θ=0,π→ 0 (13)

Table I summarizes our discussion in this subsection. Note that the pre-multiplying factor, m, is included.

Table I

SUMMARY OF limθ→0,π
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∑L=floor(n/2)

l=0
(−1)l(2n−2l)!(n−2l)
2nl!(n−l)!(n−2l)!
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≥ 2 0

B. Dealing with dP
|m|
n (cos θ)/dθ

We are interested in

dP
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n (cos θ)
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= − sin θ

P
|m|
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(14)

For the second factor in the right-hand-side (RHS) of (14), we can use a derivative formula given in [6]
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With that substitution, we obtain
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=
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We again encounter P
|m|
n (cos θ)/ sin θ factor in the RHS of (16) for which we can consult Table I for θ → 0, π. The only

exception is for |m| = 1 where the pre-multiplying factor is −|m| = −1.

The discussion above allows us to re-write (2), (3) as

eθmn = jn

[

P
|m|
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(

|m|Q2mn cos θ −mQ1mn

)

+Q2mnP
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)
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]

(18)

III. SIMPLE EXAMPLES

A. Single Hertzian dipole

1) +ẑ−directed Hertzian dipole with I∆l = 1 Am at origin: This is a single TMm=0,n=1 mode. From FEKO, Q201 =
−93.7 [

√
W]. We are left with

~Eff(r, θ, φ) = β

√

Z0

2π

e−jβr

βr

√

3

4
eθ01θ̂ (19)

where

eθ01 = jQ201P
1
1 (cos θ)

= jQ201(− sin θ)

= j93.7 sin θ [
√
W] (20)

The sin θ radiation pattern and θ̂ only polarization are expected. Neglecting the e−jβr/r factor (implicitly assumed henceforth)

and using Z0 = 367.73Ω1, we obtain ~Eff(π/2, 0) = j628.3 θ̂ which is identical to j628.3 given by FEKO.

2) +ŷ−directed Hertzian dipole with I∆l = 1 Am at origin: From FEKO: Q2,−1,1 = Q211 = j66.25 [
√
W]

~Eff(r, θ, φ) = β

√

Z0

2π

e−jβr

βr
Σ

Σ = −ejφ
√

3

8

(

eθ11θ̂ + eφ11φ̂
)

+ e−jφ
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3

8

(

eθ−11θ̂ + eφ−11φ̂
)

(21)

where

eθ−11 = −jQ2,−1,1 cos θ

eθ11 = −jQ211 cos θ

eφ−11 = −Q2,−1,1

eφ11 = Q211 (22)

substituting the values for Q2,−1,1 and Q211, we obtain

Σ = −2j 66.25

√

3

8

(

cos θ sinφ θ̂ + cosφ φ̂
)

(23)

Again, ~Eff(0, 0) = −j628.3 φ̂ is identical to −j628.3 given by FEKO.

3) +x̂−directed Hertzian dipole with I∆l = 1 Am at origin: From FEKO: Q2,−1,1 = −Q211 = 66.25 [
√
W]. Re-using

(21) and (22), we obtain

Σ = −2j 66.25

√

3

8

(

cos θ cosφ θ̂ − sinφ φ̂
)

(24)

Note that the patterns expressed in (23) and (24) are consistent with the Jones matrix of crossed x̂ and ŷ Hertzian dipoles [7].

1using µ0 = 4π10−7 and ǫ0 = 8.854 10−12. This more closely matches the value used in FEKO as opposed to 377 or 120π Ω
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B. Array of Hertzian dipoles

Consider two Hertzian dipoles, +ŷ-directed at (0, 0, λ/20) and −ŷ-directed at (0, 0,−λ/20), each with I∆l = 1 Am. FEKO

SWE coefficients for this problem are: −Q1,−1,1 = Q111 = 20.6; Q2,−1,2 = Q212 = j15.9; −Q1,−1,3 = Q113 = 0.089. We

neglect −Q1,−1,3, Q113 (very small) values for simplicity.

It can be shown that

Σ ≈ C11√
2

(

[eθ−11e
−jφ − eθ11e

jφ]θ̂ + [eφ−11e
−jφ − eφ11e

jφ]φ̂
)

+

+
C12√
6

(

[eθ−12e
−jφ − eθ12e

jφ]θ̂ + [eφ−12e
−jφ − eφ12e

jφ]φ̂
)

(25)

Substituting the coefficients, we obtain

Σ ≈ 50.4 cosθ
(

cos θ sinφ θ̂ + cosφ φ̂
)

(26)

This radiation pattern is proportional to cos θ times (23). The cos θ factor can be seen as the array factor of two closely spaced

and oppositely signed point sources: sin([βλ/20] cos θ) ≈ [βλ/20] cos θ. Here, ~Eff(0, 0) = 390 φ̂ which is similar to 388.3
given by FEKO. This small difference seems to be due to the neglected Q1,−1,3, Q113 factors.

IV. NUMERICAL IMPLEMENTATION AND EXAMPLES

A. Implementation

We find equations (17) and (18) in conjunction with (1) to be very convenient for numerical implementation. Two aspects

are worth mentioning:

1) FEKO *.out file prints (“FAR FIELD MODAL COEFFICIENTS”) Q1mn and Q2mn alternately (as a column vector)

with increasing order m = −n to n for every degree n. Once the Q1mn and Q2mn are separated into two column vectors,

the FEKO (m,n) format is convenient as it is compatible with legendre(n,u) function found in MATLAB.

2) P
|m|
n (cos θ)/ sin θ and P

|m|+1
n (cos θ) are easily implemented using legendre(n,u). We deal with apparent singularities

in the former as per Tab. I.

3) Numerical calculation of the factorials in (11) appears to be unstable for N ∼> 45. Consequently, we employ forward

and backward differencing to approximate (8) numerically.

B. Example: closely spaced ±ŷ Hertzian dipoles

We return to the example in Sec. III-B, this time testing our numerical implementation. All FEKO SWE coefficients including

Q1,−1,3 = Q113 are used. The analytical expression for this problem is:

~Eff(θ, φ) = 2
I∆l

4π
Z0β sin(2π

z

λ
cos θ)

(

cos θ sinφ θ̂ + cosφ φ̂
)

(27)

where I∆l = 1Am and z/λ = 1/20.

Fig. 1 reports comparison between analytical expression and numerical calculation based on spherical harmonics for the

(θ, φ) trajectory indicated. This trajectory is representative of of a celestial source, Hydra, as seen from the Murchison Radio-

astronomy Observatory (MRO) in Western Australia. The difference between the two curves of less than 0.25% is very small.

C. Example: Antenna Array on Soil

The next example is a pseudo random array of 16 dual-polarized log-periodic antennas (referred to as AAVS0.5) on MRO

soil [8], [9]. Fig. 2 depicts the simulation setup in FEKO. The array is pointed to Azimuth/Elevation of 0/75 degrees. Fig. 3

reports antenna gains at the nominal pointing direction taken from FEKO far-field data and computed via spherical harmonics

over frequency. The two results are in excellent agreement with no more than ∼ 0.5% difference.

V. CONCLUSION

Spherical harmonics expansion is a convenient method for calculating continuous far-field radiation. This is especially useful

in radio astronomy where celestial sources follow trajectories that continuously vary in θ, φ in the spherical coordinate system.

We discussed an implementation based on FEKO generated spherical modal coefficients and found very good agreement with

far-field values calculated by FEKO and analytical expression.
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Figure 1. Comparison between numerically calculated far-field based on spherical harmonics and analytical expression. The difference is less than 0.25%.

Figure 2. FEKO simulation of a pseudo random array of 16 dual-polarized log-periodic antennas distributed in an 8 m diameter circle.
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