
ODESolver<NumEquations>
agnostic to specific ODE solver backend
method signatures use Eigen::Map types
=⇒ vector size information implicitly provided, checked at compile time

ConcreteODESolver<CVodeSolver, NumEquations>
interfaces with a specific library
method signatures use Eigen::Map types

CVodeSolver
method signatures use double*
no template parameters

CVodeSolverImpl
method signatures use double*
implementation of the pimpl idiom
external library headers only have to be included in that file
where this class is defined

dynamic polymorphism

pass vectors on as double*, thereby no need for templates anymore

pimpl idiom: only forward calls

FunctionHandles::call(double t,
double const*const y, double *const ydot)

FunctionHandlesImpl<N>::call(double t,
double const*const y, double *const ydot)

FunctionHandlesImpl<N> has a member _f,
which is a user-supplied std::function<>.

call _f with arguments double t,
Eigen::Map<> const& y and Eigen::Map<>& ydot

_f is the function the user sets with
ODESolver::setFunction()

dynamic polymorphism

call _f wrapping double* into Eigen::Map<>

CVodeSolverImpl has a member
of type FunctionHandles
whose call() method is called
in order to compute ẏ = f(t, y).

OGS6 side

external library side


