Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/cran/nFactors
24 October 2022, 04:44:14 UTC
  • Code
  • Branches (47)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/master
    • refs/tags/1.0
    • refs/tags/2.1
    • refs/tags/2.2
    • refs/tags/2.3
    • refs/tags/2.3.1
    • refs/tags/2.3.2
    • refs/tags/2.3.3
    • refs/tags/2.3.3.1
    • refs/tags/2.4.1
    • refs/tags/2.4.1.1
    • refs/tags/R-2.10.0
    • refs/tags/R-2.10.1
    • refs/tags/R-2.11.0
    • refs/tags/R-2.11.1
    • refs/tags/R-2.12.0
    • refs/tags/R-2.12.1
    • refs/tags/R-2.12.2
    • refs/tags/R-2.13.0
    • refs/tags/R-2.13.1
    • refs/tags/R-2.13.2
    • refs/tags/R-2.14.0
    • refs/tags/R-2.14.1
    • refs/tags/R-2.14.2
    • refs/tags/R-2.15.0
    • refs/tags/R-2.15.1
    • refs/tags/R-2.15.2
    • refs/tags/R-2.15.3
    • refs/tags/R-2.4.0
    • refs/tags/R-2.4.1
    • refs/tags/R-2.5.0
    • refs/tags/R-2.5.1
    • refs/tags/R-2.6.0
    • refs/tags/R-2.6.1
    • refs/tags/R-2.6.2
    • refs/tags/R-2.7.0
    • refs/tags/R-2.7.1
    • refs/tags/R-2.7.2
    • refs/tags/R-2.8.0
    • refs/tags/R-2.8.1
    • refs/tags/R-2.9.0
    • refs/tags/R-2.9.1
    • refs/tags/R-2.9.2
    • refs/tags/R-3.0.0
    • refs/tags/R-3.0.1
    • refs/tags/R-3.0.2
    • refs/tags/R-3.0.3
    No releases to show
  • 84a4e35
  • /
  • man
  • /
  • studySim.Rd
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:f1687e97f465b84802a4c8833ca30e06c689118e
origin badgedirectory badge Iframe embedding
swh:1:dir:9a116f7ca6d1adc7a54dc80567d28469b21e8124
origin badgerevision badge
swh:1:rev:0d077e574bae60fadd67bd0683ad4277c58f593a
origin badgesnapshot badge
swh:1:snp:788a101542b9bf7049cc9068e737c43bfa0ac40a
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: 0d077e574bae60fadd67bd0683ad4277c58f593a authored by Gilles Raiche on 10 October 2022, 11:20:07 UTC
version 2.4.1.1
Tip revision: 0d077e5
studySim.Rd
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/studySim.r
\name{studySim}
\alias{studySim}
\title{Simulation Study from Given Factor Structure Matrices and Conditions}
\usage{
studySim(var, nFactors, pmjc, loadings, unique, N, repsim, reppar,
  stats = 1, quantile = 0.5, model = "components", r2limen = 0.75,
  all = FALSE, dir = NA, trace = TRUE)
}
\arguments{
\item{var}{numeric: vector of the number of variables}

\item{nFactors}{numeric: vector of the number of components/factors}

\item{pmjc}{numeric: vector of the number of major loadings on each
component/factor}

\item{loadings}{numeric: vector of the major loadings on each
component/factor}

\item{unique}{numeric: vector of the unique loadings on each
component/factor}

\item{N}{numeric: vector of the number of subjects/observations}

\item{repsim}{numeric: number of replications of the matrix correlation
simulation}

\item{reppar}{numeric: number of replications for the parallel and
permutation analysis}

\item{stats}{numeric: vector of the statistics to return: mean(1),
median(2), sd(3), quantile(4), min(5), max(6)}

\item{quantile}{numeric: quantile for the parallel and permutation analysis}

\item{model}{character: \code{"components"} or \code{"factors"}}

\item{r2limen}{numeric: R2 limen value for the R2 Nelson index}

\item{all}{logical: if \code{TRUE} computes the Bentler and Yuan index (very
long computing time to consider)}

\item{dir}{character: directory where to save output. Default to NA}

\item{trace}{logical: if \code{TRUE} outputs details of the status of the
simulations}
}
\value{
\item{values}{ Returns selected statistics about the number of
components/factors to retain: mean, median, quantile, standard deviation,
minimum and maximum.}
}
\description{
The \code{structureSim} function returns statistical results from
simulations from predefined congeneric factor structures. The main ideas
come from the methodology applied by Zwick and Velicer (1986).
}
\examples{

\dontrun{
# ....................................................................
# Example inspired from Zwick and Velicer (1986)
# Very long computimg time
# ...................................................................

# 1. Initialisation
# reppar    <- 30
# repsim    <- 5
# quantile  <- 0.50

# 2. Simulations
# X         <- studySim(var=36,nFactors=3, pmjc=c(6,12), loadings=c(0.5,0.8),
#                       unique=c(0,0.2), quantile=quantile,
#                       N=c(72,180), repsim=repsim, reppar=reppar,
#                       stats=c(1:6))

# 3. Results (first 10 results)
# print(X[1:10,1:14],2)
# names(X)

# 4. Study of the error done in the determination of the number
#    of components/factors. A positive value is associated to over
#    determination.
# results   <- X[X$stats=="mean",]
# residuals <- results[,c(11:25)] - X$nfactors
# BY        <- c("nsubjects","var","loadings")
# round(aggregate(residuals, by=results[BY], mean),0)
 }

}
\references{
Raiche, G., Walls, T. A., Magis, D., Riopel, M. and Blais, J.-G. (2013). Non-graphical solutions
for Cattell's scree test. Methodology, 9(1), 23-29.

Zwick, W. R. and Velicer, W. F. (1986). Comparison of five rules
for determining the number of components to retain. \emph{Psychological
Bulletin, 99}, 432-442.
}
\seealso{
\code{\link{generateStructure}}, \code{\link{structureSim}}
}
\author{
Gilles Raiche \cr Centre sur les Applications des Modeles de
Reponses aux Items (CAMRI) \cr Universite du Quebec a Montreal\cr
\email{raiche.gilles@uqam.ca}
}
\keyword{multivariate}

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API