
MOSAIC group
Institute of Theoretical Computer Science
Department of Computer Science

pCMALib - Manual for version 1.0

Christian Lorenz Müller1∗,
Georg Ofenbeck1,
Benedikt Baumgartner2,
Ivo F. Sbalzarini1

May 21, 2010

Addresses:
1: Institute for Theoretical Computer Science and Swiss Institute of Bioinformatics, ETH Zurich, CH
8092 Zurich, Switzerland
2: Robotics and Embedded Systems Group, Department of Informatics, Technische Universität München,
Munich, Germany
∗: Corresponding author: christian.mueller@inf.ethz.ch

Abstract

We present pCMALib, a parallel software library that implements the Evolution Strategy with Co-
variance Matrix Adaptation (CMA-ES). The library is written in Fortran 90/95 and uses the Message
Passing Interface (MPI) for efficient parallelization on shared and distributed memory machines. It
allows single CMA-ES optimization runs, embarrassingly parallel CMA-ES runs, and coupled parallel
CMA-ES runs using a cooperative island model. So far, one instance of an island model CMA-ES, the
recently presented Particle Swarm CMA-ES (PS-CMA-ES) is included using collaborative concepts
from Swarm Intelligence for the migration model. Special attention has been given to an efficient
design of the MPI communication protocol, a modular software architecture, and a user-friendly pro-
gramming interface. The library includes a Matlab interface and is supplemented with an efficient
Fortran implementation of the official CEC 2005 set of 25 real-valued benchmark functions. This is
the first freely available Fortran implementation of this standard benchmark test suite. In this docu-
ment we focus on all technical aspects of the library, such as compilation, user options and set-up of
test problems. We also review in short the implemented algorithms. Further details can be found in
the referred literature.

In order to ensure financial support for our project at ETH and allow further development of this soft-
ware, please cite the following publication in all your documents and manuscripts that made use of this
software. Thanks a lot!

C.L. Müller, B. Baumgartner, G. Ofenbeck, B. Schrader, and I. F. Sbalzarini.
pCMALib: a parallel FORTRAN 90 library for the evolution strategy with covariance matrix adaptation.
In Proc. ACM Genetic and Evolutionary Computation Conference (GECCO09),
Montreal, Canada, July 2009.

IN NO EVENT SHALL THE ETH BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR

CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND

ITS DOCUMENTATION, EVEN IF THE ETH HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. THE ETH

SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS

ON AN ”AS IS” BASIS, AND THE ETH HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,

ENHANCEMENTS, OR MODIFICATIONS.

Contents

1 Introduction 1

2 Quick start 2

3 The Evolution Strategy with Covariance Matrix Adaptation 4
3.1 Standard CMA-ES . 4
3.2 Parallel island CMA-ES: the Particle Swarm CMA-ES . 5

3.2.1 Adapting the Covariance Matrix . 5
3.2.2 Biasing the Mean Value . 6
3.2.3 Strategy Parameters . 7

3.3 Low Discrepancy CMA-ES . 8
3.4 Memetic CMA-ES . 8

4 pCMALib: Features and Structure 9
4.1 General features . 9
4.2 Code design and Library structure . 9

4.2.1 General compilation and control files . 10
4.2.2 libcma . 10
4.2.3 libtestfcns . 10
4.2.4 librng . 11
4.2.5 BBOB . 11
4.2.6 bfgs . 11
4.2.7 energy landscapes . 11

5 Getting started 12
5.1 System requirements . 12

5.1.1 Platform . 12
5.1.2 Compiler . 12
5.1.3 LAPACK/BLAS . 12
5.1.4 MPI . 12

5.2 Compiling pCMALib . 12
5.3 Controlling pCMALib: the program input file . 14
5.4 Output files . 17

6 Test example 18
6.1 IPOP-CMA-ES . 18
6.2 PS-CMA-ES . 19

7 Adding new objective functions 21

8 Known issues 21

9 License and further reading 22

A MPI structure in PS-CMA-ES 24
A.1 MPI protocol for PS-CMA-ES . 24
A.2 GLOBAL BEST-Communication . 24
A.3 Excluding processes from communication . 24

1 Introduction

This document comprises a manual to pCMALib, a parallel Fortran90 library for the Evolution Strategy
with Covariance Matrix Adaptation (CMA-ES). pCMALib is intended to be a valuable tool for general
black-box optimization tasks arising in many areas of science and engineering. A schematic overview of
pCMALib is given in Fig. 1. The manual is structured as follows. For the impatient user we first provide

pCMALibpCMALib

Settings

Objective functions

Output

Figure 1: Schematic overview of pCMALib. pCMALib is controlled by a text file that specifies the
settings of the algorithmic parameters etc. Within pCMALib, a set of objective functions are available,
such as e.g. the CEC 2005 benchmarks test suite or a generic MATLAB test function. pCMALib can run
in a single/multi-core or distributed processor environment. Results are stored in either text or MATLAB
binary output files.

a Quick Start section. In Section 3 we revisit the standard CMA-ES algorithm and several variants that
are available in pCMALib. We also describe the Particle Swarm CMA-ES (PS-CMA-ES), an instance of
a parallel island CMA-ES that is included in pCMALib, and an experimental memetic CMA-ES. Readers
already familiar with these algorithms can skip this section. Section 4 summarizes the general library
features and the structure of library. The Getting Started section 5 contains a detailed description of
the system requirements, the specification of the make.inc/makefile and the input/output files. We then
provide examples how to test the installation and how to add new objective functions to the library. The
document is concluded with a list of known issues with the current version and an outlook on planned
developments in pCMALib. We also provide further reading and licensing information.

1

2 Quick start

pCMALib is a parallel FORTRAN library that implements the Evolution Strategy with Covariance
Matrix Adaptation (CMA-ES).

The software can be retrieved as zip-file soon from http://www.mosaic.ethz.ch/Downloads/pCMALib/
or via the svn repository. If you wish to get started by just typing a few lines and running an example,
we provide a quick start section here. You can compile pCMALib without MATLAB and MPI (only
LAPACK is required).

1. (unzip pCMALib.zip)

2. (cd pCMALib/)

3. emacs make.inc (adapt to the specification of your environment, leave MPI and MATLAB variables
on default)

4. make new (compiles pCMALib)

5. cd bin/

6. ./libcma ../example inputs/rastrigin ipop.txt (run a example)

7. cd rast ipop

8. ls (check the output data)

When MPI is available you can try the following test case

1. (unzip pCMALib.zip)

2. (cd pCMALib/)

3. emacs make.inc (adapt to the specification of your environment, adapt MPI related flags to your
system and set HAS MPI = 1)

4. make clean

5. make new (compiles pCMALib)

6. cd bin/

7. mpirun -np 4 ./libcma ../example inputs/water pscma.txt (minimize a water cluster)

8. cd water pscma

9. ls (check the output data, should contain files for each process)

To test the Matlab interface try the following

1. (unzip pCMALib.zip)

2. (cd pCMALib/)

3. emacs make.inc (adapt to the specification of your environment, adept MAT related flags to your
system and set HAS MAT = 1, MPI flags should be empty and HAS MPI = 0)

4. make clean

5. make new (compiles pCMALib)

6. cd bin/

2

http://www.mosaic.ethz.ch/Downloads/pCMALib/

7. ./libcma ../example inputs/matlab test.txt (minimize a water cluster)

8. cd mat test

9. ls (check the output data, should contain a .mat file)

3

3 The Evolution Strategy with Covariance Matrix Adaptation

3.1 Standard CMA-ES

We consider the standard CMA-ES [1, 2, 3] with weighted intermediate recombination, step size adap-
tation, and a combination of rank-µ update and rank-one update [4]. At each iteration of the algorithm,
the members of the new population are sampled from a multivariate normal distribution N with mean
m ∈ Rn and covariance C ∈ Rn×n. The sampling radius is controlled by the overall standard deviation

(step size) σ. Let x(g)
k the kth individual at generation g. The new individuals at generation g + 1 are

sampled as:

x(g+1)
k ∼m(g) + σ(g)N

(

0,C(g)
)

k = 1, . . . ,λ . (1)

Fig. 2 sketches the sampling process. The λ sampled points are ranked in order of ascending fitness, and

Figure 2: Example of the contour of a covariance matrix and sample points on a 2D fitness landscape

the µ best are selected. The mean of the sampling distribution given in Eq. 1 is updated using weighted
intermediate recombination of these selected points:

m(g+1) =
µ
∑

i=1

wix
(g+1)
i:λ , (2)

with
µ
∑

i=1

wi = 1, w1 ≥ w2 ≥ . . . ≥ wµ > 0 , (3)

where the wi are positive weights, and x(g+1)
i:λ denotes the ith ranked individual of the λ sampling points

x(g+1)
k . We use the standard CMA-ES implementation, where the sample weights are decreased super-

linearly as wi = log(λ−1
2 + 1)− log(i). We adapt the covariance matrix for the next generation using a

combination of rank-µ and rank-one update, thus:

C(g+1) = (1− ccov)C
(g) +

ccov
µcov

p(g+1)
c p(g+1)T

c
︸ ︷︷ ︸

rank-one update

+

ccov

(

1−
1

µcov

)
µ
∑

i=1

wiy
(g+1)
i:λ

(

y(g+1)
i:λ

)T

︸ ︷︷ ︸

rank-µ update

,
(4)

with µcov ≥ 1 weighting between rank-µ and rank-one update, ccov ∈ [0, 1] the learning rate for the

covariance matrix update, and y(g+1)
i:λ = (x(g+1)

i:λ −m(g))/σ(g). The evolution path p(g+1)
c and the step

size σ(g) are determined by elaborate adaptation formulae [5]. All strategy parameters can be externally
controlled by the input setting file (see 5).

Two proposed variants of CMA-ES use different standard settings for optimization in a bounded
subset [A,B]n: The local restart CMA-ES (LR-CMA-ES) [6] restarts a converged CMA-ES from a
random position within the subset [A,B]n with a purely local initial step size of σ = 10−2(B − A)/2.

4

The CMA-ES with iteratively increasing population size (IPOP-CMA-ES) [7] uses a large initial step
size of σ = (B − A)/2, and the population size λ is increased by a factor incPopSize in each sequential
random restart until the maximum number of function evaluations is reached. The standard setting is
incPopSize = 2. In addition to these restart settings, pCMALib also allows a restart at the converged
position, a strategy that proved valuable when exploring funneled landscapes.

3.2 Parallel island CMA-ES: the Particle Swarm CMA-ES

Today’s ever increasing availability of multi-core platforms also proliferates the use of parallel island
models in evolutionary computation. There, several instances of an evolutionary algorithm are run in
parallel and exchange information. Many migration models and communication topologies have been
suggested. For a recent summary we refer to [8]. In order to enhance the performance of CMA-ES on
multimodal functions, in particular functions with multiple funnels, we introduced the Particle Swarm
CMA-ES [9] where exchange of information between parallel CMA-ES runs is inspired by ideas from
Particle Swarm optimization (PSO). Fig. 3 sketches the general concept of PS-CMA-ES. Global swarm

Figure 3: Example of four CMA-ES instances (represented by their covariance matrices and sample
points) on a 2D fitness landscape. The arrows illustrate the exchange of non-local information among
three instances.

information is included both in the covariance adaptation mechanism of CMA-ES and in the placement
of the population mean. In what follows we review the algorithmic details, the implementation concepts
can be found in the appendix.

3.2.1 Adapting the Covariance Matrix

We adjust the covariance matrix of the CMA-ES such that it is more likely to sample good candidates,
considering the current global best position pg,best ∈ Rn in the swarm. This is achieved by mixing
the CMA covariance matrix from Eq. (4) with a PSO covariance matrix that is influenced by global
information:

C(g+1) = cpC
(g+1)
CMA + (1 − cp)C

(g+1)
PSO , (5)

where the mixing weight cp ∈ [0, 1] is a new strategy parameter. C(g+1)
CMA follows the original adaptation

rule from Eq. (4). C(g+1)
PSO is a rotated version of C(g)

CMA such that the principal eigenvector bmain of C(g)
CMA

is aligned with the vector pg = pg,best −m(g) that points from the current mean m(g) toward the global

best position pg,best. C(g)
CMA can be decomposed as C(g)

CMA = BD2 BT , such that the rotated covariance
matrix can be constructed by rotating the eigenvectors (columns of B), yielding the orthogonal matrix

B(g)
rot = RB ∈ Rn×n of the rotated eigenvectors. C(g+1)

PSO is then given by:

C(g+1)
PSO = B(g)

rot

(

D(g)
)2 (

B(g)
rot

)T
. (6)

The rotation matrix R ∈ Rn×n is uniquely and efficiently computed using Givens Rotations [10]. The
Givens rotation matrixG describes a unique rotation of a vector onto one axis. An n-dimensional rotation

5

is performed as a sequence of two-dimensional rotations for all possible pairs (i, j) of axes [11]:

R(n×n) =
n−1∏

i=1

n∏

j=i+1

Rij . (7)

Rij is an n × n matrix that describes the rotation in the plane spanned by the axes (i, j). It can be
considered as a rank-two correction to the identity:

Rij,Rplane
=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 . . . 0 . . . 0 . . . 0 1

.

.

.
. . .

.

.

.
.
.
.

.

.

.
0 . . . Rplane(1, 1) . . . Rplane(1, 2) . . . 0 i

.

.

.
.
.
.

. . .
.
.
.

.

.

.
0 . . . Rplane(2, 1) . . . Rplane(2, 2) . . . 0 j

.

.

.
.
.
.

.

.

.
. . .

.

.

.
0 . . . 0 . . . 0 . . . 1 n

1 i j n

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (8)

where the 2×2 matrix Rplane = GT
p Gb. Gp is the Givens rotation of the elements i and j of pg and Gb

the Givens rotation of the elements i and j of bmain. The complete procedure to compute the rotation
matrix R ∈ Rn×n is summarized in Algorithm 1.

Input: Two n-dimensional vectors bmain and pg

Result: Rotation matrix R, such that Rbmain = apg

Initialization: p = pg , b = bmain

for i = (n− 1),−1, 1 do
for j = n,−1, (i+ 1) do

pplane =

(

p(i)
p(j)

)

bplane =

(

b(i)
b(j)

)

Gp = Givens(pplane) Gb = Givens(bplane)

p← Rij,Gp p b← Rij,Gb
b

Rp ← Rij,Gp Rp Rb ← Rij,Gb
Rb

end
end

R = RT
pRb

Algorithm 1: Efficient computation of the n-dimensional rotation matrix using Givens
rotations

3.2.2 Biasing the Mean Value

In order to enable individual swarm particles of a PS-CMA-ES to escape local minima, we also bias the
mean value in addition to rotating the covariance matrix in direction of the global best solution. After
the recombination step of each CMA-ES generation, the updated mean value for the next generation
g + 1 is biased as:

m(g+1) ←m(g+1) + bias . (9)

Note that the bias changes the evolution path p(g+1)
c update for future generations, since the path will

be computed with respect to the biased mean value. The biasing rules can be used to include prior
knowledge about the structure of the problem, e.g. the correlation length of the fitness landscape. In our
benchmark tests, we discriminate the following 3 exploration scenarios that are coupled to the step size
σ of each individual CMA-ES instance, a natural measure for its mode of exploration:

1. The CMA-ES instance that produced pg,best and all CMA-ES instances with step sizes σ > ||pg||
are not biased at all, thus: bias = 0. Using no bias in these cases avoids catapulting the global

6

best member out of the funnel with the potential global optimum and prevents very explorative
runs from overshooting the target.

2. CMA-ES instances that have converged to local minima far from pg,best are characterized by a
ratio σ/||pg|| that is smaller than tc||pg||, tc < 1. These instances are strongly biased in order to
allow them to escape from the current funnel, thus: bias = bpg. Using a large bias prevents these
instances from converging back into the same local minimum again.

3. CMA-ES instances that are not converged, and thus still exploring the space, are given a bias equal
to the step size to distance ratio: bias = σ/||pg||pg. Using such a small bias prevents clustering of
swarm members and preserves the explorative power of the method.

This set of biasing rules, summarized in Algorithm 2, introduces two new strategy parameters, the
convergence threshold tc and the biasing factor b.

Input: Mean value m(g+1) and global best direction pg

Result: Biased mean value m(g+1)

if σ < ||pg|| then
if σ

||pg||
≤ tc||pg|| then

bias = bpg

else
bias = σ

||pg||
pg

end
else

bias = 0
end

m(g+1) = m(g+1) + bias

Algorithm 2: Standard rules for biasing the mean value

3.2.3 Strategy Parameters

In PS-CMA-ES, all swarm members communicate with each other. A swarm of size S thus requires
S(S − 1) communication steps. The PSO updates (broadcasting the global best solution, rotating the
covariance matrices, and biasing the mean values of all CMA instances) must, however, not be performed
at each iteration. Too frequent updates would prevent the CMA-ES instances from evolving and learning
the local covariance matrix. Too infrequent updates would lead to premature convergence with several
CMA-ES instances stopping in local minima before the first swarm information is exchanged. Clearly,
a problem-specific tradeoff has to be found for the communication interval Ic between PSO updates,
constituting the main strategy parameter of the PS-CMA-ES. In the limit of Ic → ∞, PS-CMA-ES is
equivalent to S parallel standard CMA-ES runs.

Other strategy parameters are the swarm size S, the biasing parameters tc and b, and the mixing
weight cp in Eq. (5). Both tc and b have been considered random variables at first, but the setting
tc = 0.1 and b = 0.5 was found a more robust choice on most test functions. The weight cp can, e.g., be
randomized, self-adapted, or determined by a preliminary grid search. In the current implementation cp
is a constant that can be set in the input file (PSOWEIGHT). If it is set to 1, i.e., the PSO covariance
is not considered, pCMALib does not compute the CPSO which significantly speeds up the code in high
dimensions (say n > 50).

The swarm size could be chosen so as to reflect the dimensionality of the problem or also using a
grid search. It determines the overall population size and the computational overhead of the algorithm.
Therefore, S should be chosen as low as possible, but as high as necessary to significantly increase
exploration power. In the limit case S = 1, PS-CMA-ES is equivalent to standard CMA-ES. In pCMALib,
the user can specify all strategy parameters in the input file except tc and b. S is equivalent to the number
of processes of an MPI run.

Note that you can combine IPOP-CMA-ES and PS-CMA-ES in pCMALib. This means that if a
swarm member converges it is not excluded from the swarm but restarted. This setting can be beneficial
if a large number of function evaluations are accessible, i.e. one is not limited by the function evaluation
budget.

7

3.3 Low Discrepancy CMA-ES

Sampling from a multivariate normal distribution relies, in practice, on the use of an efficient pseudo-
random number generator such as, e.g., the Mersenne Twister. In recent years, low-discrepancy (LD) or
quasi-random number generators gained, however, some attention. Consider for now the task of uniformly
sampling in the box [0, 1]n. Low-discrepancy sequences do not constitute i.i.d samples from the uniform
distribution in the box, but rather try to cover the space as uniformly as possible, i.e. to achieve low
discrepancy between samples. Sampling from distributions other than the uniform one (in our case from
the normal distribution) is achieved by first generating uniform LD sequences and then applying a suitable
transformation to the target distribution. Teytaud and Gelly [12] suggested three versions of applying
quasi-randomness to CMA-ES:

• substitution of the random mutations with quasi-random mutations

• derandomizing the step size

• random rotation of the offspring’s.

Since their results show that substitution of the randommutations yields the biggest performance increase,
pCMALib embeds quasi-random number generators that can replace the traditional pseudo-random sam-
pler for this purpose. Available sequences are, e.g., Halton and Sobol sequences. In addition, several
different transformation from uniform to normal can be selected. We refer to CMA-ES variants that use
LD sequences as LD-CMA-ES.

3.4 Memetic CMA-ES

For some optimization problems, such as, e.g., potential energy minimization in atomic clusters, not only
zeroth-order, i.e. objective function values, but also first-order gradient informations may be calculated
without additional costs. When gradient information is available, it can be efficiently utilized by, e.g.,
Quasi-Newton (QN) methods to perform local minimization. The most popular QN method is the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method that has been included in pCMALib [?]. A crucial
point is how to couple gradient optimization with CMA-ES. Such a memetic CMA-ES (from Dawkin’s
expression for the cultural gene, the meme) has, so far, not been reported in the literature. Our memetic
extension for CMA-ES is hence still in experimental phase. Currently, we provide two couplings between
CMA-ES and BFGS, a Lamarckian and a Baldwinian approach.

Jean-Baptiste Lamarck was a biologist, who nowadays is mainly remembered for his believe in inher-
itance of acquired characteristics. In the context of the hybridization of an EA, acquired characteristics
relate to the new function value, found via local minimization and the inheritance of the information
relates to the position of the found local minimum. An algorithm implementing Lamarckian Evolution
is as follows:

• sample population (x1, . . . ,xλ)

• minimize each individual xi of the population with local search (i.e. with BFGS)

• replace the fitness value and the position of the original individiual by the local minimum

The other approach to incorporate the local search is named after James Mark Baldwin, who also
became famous for his theories on evolution. In Baldwinian evolution, individuals are not passing on
their knowledge to the next generation. The fact that an individual can acquire certain knowledge, given
its genetic/phenotypic information, is enough that, under selective pressure, the population will move
towards this genetic/phenotypic coding. In the EA context, this relates to a replacement of the fitness
of each individiual. A Baldwinian algorithm is as follows:

• sample population (x1, . . . ,xλ)

• minimize each individual xi of the population with the local search

• replace the fitness value of the original individual by the fitness of the local minimum, but leave
the position unchanged.

Applying local minimization to all individuals in CMA-ES is equivalent to a transformation of the
underlying fitness landscape (see Wales et al. for details [13]). The transformation removes local multi-
modality from the landscape. Therefore, search performance might improve. How to use memetic CMA-
ES in pCMALib is outlined in 5.

8

Figure 4: Rastrigin’s function before and after applying local minimization (the spikes between neigh-
bouring steps are due to numerical errors of the local search applied here).

4 pCMALib: Features and Structure

pCMALib is a parallel FORTRAN library that implements the Evolution Strategy with CovarianceMatrix
Adaptation (CMA-ES). The software and additional documents including this manual can be retrieved
from http://www.mosaic.ethz.ch/Downloads/pCMALib.

We first summarize the key features of pCMALib and then give an introduction to the code design
and the library structure.

4.1 General features

pCMALib includes the following features:

• Optimizing objective functions with standard CMA-ES and IPOP-CMA-ES

• Running embarrassingly parallel CMA-ES instances and PS-CMA-ES in a distributed memory
environment with MPI

• Efficient Linear Algebra calculation with LAPACK/BLAS

• Sampling with pseuo-random numbers and low discrepancy sequences

• Coupling CMA-ES with Quasi-Newton (BFGS) methods

• Easy control of a large set of strategy parameters via a single input file

• Interfacing with MATLAB, both for objective function call and binary output files

• Benchmarking with the IEEE CEC 2005 (in FORTRAN) and BBOB (in C) benchmark test suite

• Potential Energy calculation for Lennard-Jones and TIPnP water clusters (taken from GMIN ??)

• Easily extendable to user-specific objective functions

4.2 Code design and Library structure

The core of pCMALib is written in standard FORTRAN 90. A fundamental goal in the code design has
been to keep the code structured, easy-to-read and documented. pCMALib’s algorithmic flow follows
Niko Hansen’s MATLAB CMA-ES version (v. 2.54 from 2006) 1. The user is able to control all relevant
algorithmic parameters via an input text file. Output can be generated in text format or MATLAB
binary format. All Linear Algebra calculations such as, e.g., matrix multipications, are conducted with
LAPACK/BLAS routines. pCMALib is able to run several CMA-ES runs in parallel using MPI. There,
each CMA-ES instance is a unique MPI process that are mapped onto the available cores. pCMALib
includes third-party software, e.g., for generation of Quasi-/pseudorandom numbers and for gradient
descent. Fig. 5 summarizes the library structure. A JAVA-like API will be available soon. We shortly
describe the content of all directories and their purpose.

1available at http://www.lri.fr/h̃ansen/cmaesintro.html

9

http://www.mosaic.ethz.ch/Downloads/pCMALib

Figure 5: pCMALib directory structure

4.2.1 General compilation and control files

On the top level pCMALib comprises the key compilation files. The files make*.inc allow the user to
specify all compilation related settings, e.g., the name of the executable, logicals for the use of MATLAB
and MPI and their respective location in the system etc. The make*.inc is used by the makefile via
an include statement. This file serves as input to the make command (see 5.2 for details). For WIndows
Visual Studio users we also included Libpcma.sln, a Visual studio makefile, and a Visual Studio project
file Libpcma.vfproj. The directory example inputs contains several text files that serve as example input
to pCMALib’s executable (see 5.3 for details).

4.2.2 libcma

The directory libcma contains the core f90 source code of pCMALib. Module files that contain key
variables and data types needed throughout the source code are named * mod.f90. cmaes *.f90 source
files contain the core CMA-ES algorithm while tool *.f90 files comprise necessary help and support
code. The folder matlab contains .f90 files that need FORTRAN libraries provided by MATLAB. The
folder mpi includes source that handles all MPI-related commands. The main program is included in
cma.f90.

4.2.3 libtestfcns

The directory libtestfcns provides several benchmark functions that can be used to test the efficienvy
of CMA-ES variants. The CEC2005.f90 provides, e.g., a stand-alone FORTRAN version of the IEEE
CEC 2005 benchmark test suite (also with make and test files) [14, 9] and double funnel.f90 Lunacek’s
double funnel problem [15]. If the user intends to code further test functions for CMA-ES, they should
be included in this folder.

10

4.2.4 librng

This directory contains third-party software that is used for random number generation. For pseudo-
random numbers we use the Chandler/Northrop f77 implementation of the Marsaglia-Zaman type subtract-
with-borrow generator (rand generator.f). For Low discrepancy sequences we included several imple-
mentations for Halton, Faure, Niederreiter and Sobol sequences (see files for references).

4.2.5 BBOB

This directory includes the C version of BBOB challenge program, Beta version 0.9 that is available on
http://coco.gforge.inria.fr/doku.php?id=bbob-2009. BBOB is the GECCO 2009 benchmark test
suite and also provides an excellent test bed for algorithm development and comparison.

4.2.6 bfgs

This directory comprises Nocedal’s ACM TOMS implementation of the Limited Memory BFGS (L-BFGS)
algorithm in the version that is included in GMIN (see http://www-wales.ch.cam.ac.uk/GMIN/ for
details). It is wrapped by a pCMALib module.

4.2.7 energy landscapes

The folder energy landscapes currently contains potential energy functions for Lennard-Jones clusters
and TIPnP water clusters. With slight modification these files are equivalent to the ones included in
GMIN (see http://www-wales.ch.cam.ac.uk/GMIN/ for details). Users that want to implement and
test different cluster energies should include their source files here.

11

http://coco.gforge.inria.fr/doku.php?id=bbob-2009
http://www-wales.ch.cam.ac.uk/GMIN/
http://www-wales.ch.cam.ac.uk/GMIN/

5 Getting started

5.1 System requirements

We summarize the necessary and optional system requirements for pCMALib here.

5.1.1 Platform

The current implementation of pCMALib has been successfully tested on desktop computers with Win-
dows XP SP2, Windows Vista, Windows 7, Mac OS X 10.4.x, Ubuntu Linux 8.10 and OpenSolaris
2008.11. Calculations on clusters have been successfully conducted on Gentoo Linux 2.6.25 and Redhat
Linux CentOS 5.4. Both 32 bit and 64 bit architectures have been tested. However, different combina-
tions of Fortran compilers and MPI distributions have been used on the various machines, and hence,
platform-independence cannot be guaranteed.

5.1.2 Compiler

The recommended compiler for pCMALib is the Intel Fortran compiler, version 9.1or higher. Successful
compilation with PGI fortran and gfortran is not guaranteed at the current stage. Before compilation a
number of preprocessing statements have to be resolved. We recommend to use the C preprocessor cpp.
When using the BBOB test suite a C compiler is needed. We tested both the GNU C compiler gcc and
Intel’s icc.

5.1.3 LAPACK/BLAS

Using pCMALib requires a working LAPACK/BLAS installation. We both tested the LAPACK available
at http://www.netlib.org/lapack/ and the one included in the Intel MKL (Math Kernel Library).
Benchmark runs revealed that, on Intel processsors, MKL’s LAPACK is considerably faster [16] and
should be used.

5.1.4 MPI

Running pCMALib in the parallel setting requires the installation of an MPI library. We tested and
recommend both the OpenMPI (1.2.6, 1.2.8, 1.3) and the Intel MPI library. Again, running pCMALib
with Intel MPI jointly with Intel MKl on Intel cores gives superior performance [16].

5.2 Compiling pCMALib

Before compilation, some system-specific configurations have to be set. This is achieved by adapting
variables in the one of the provided make*.inc files.

Listing 1: Snippet of the make.inc file

###
PCMALIB make i n c l ud e f i l e
December 2009
#
Georg Ofenbeck ,
MOSAIC Group , ETH Zurich , Swi t zer l and
###

Name of the program
LIB CMA := libpcma . a

######### SHELL OPTIONS ################

SHELL := /bin / sh

######## OUTPUT Folder ################
w i l l c r ea t e d i r e c t o r i e s BUILDDIR/bin , BUILDDIR/ o b j e c t s and BUILDDIR/ i nc l ud e here
BUILDDIR:= .
. . .

12

http://www.netlib.org/lapack/

We have a specific make brutus.inc for the ETH Zurich cluster Brutus and a user-specific make.inc.
There, the user can specify all relevant variables, e.g., the name of the executable by LIB CMA :=
libpcma.a, the directory where to build the object and binary files, the FORTRAN compiler, variables
for location of LAPACK/MPI/MATLAB distribution etc.. The make.inc is included in the makefile.

Listing 2: Beginning of the makefile

#−−−
pCMALib : a p a r a l l e l f o r t r an 90 l i b r a r y f o r the e vo l u t i on s t r a t e g y wi th
covariance matrix adap ta t i on
Chr i s t i an L. Muel ler , Benedikt Baumgartner , Georg Ofenbeck
MOSAIC group , ETH Zurich , Swi t zer l and
#−−−
i n c lude make . in c

Defau l t va l ue f o r the dependency pre−processor
= same as code−genera t ing pre−processor
DEPCPP ?= $ (CPP)
$ (CPP) = cpp
. . .

The makefile first resolves all source dependencies and preprocessor statements. Then, the resulting
sources are compiled. The makefile contains four targets:

Listing 3: makefile targets

.DEFAULT: ;
Defau l t t a r g e t i s e v e r y t h i n g
a l l : $ (TARGET)

. . .

at the i n s t a l l par t we copy the inpu t f i l e s and the programm i t s e l f to
i n s t a l l :

$ (s h e l l mkdir $ (INSTALL DIR))
$ (s h e l l mv $ (TARGET) $ (INSTALL DIR))
$ (s h e l l cp −r $ (CEC2005 DIR)/ supportData $ (INSTALL DIR))

Get r i d o f the . d ’ s too . Not ice t h i s may produce weird behav ior during
the next invocat ion , s ince the make f i l e i t s e l f needs the . d ’ s .
c l ean :

rm −f $ (OBJECTS)
rm −f $ (MODULES)
rm −f $ (TARGET)
rm −f $ (DEPENDENCIES)

Make new
new : c l ean a l l i n s t a l l

Execute make new in the main folder. The makefile should generate a objects and a bin folder. In
the bin folder you will find now the executable with the specified name, e.g., libpcma.a. Depending on
your specification this file can now be run on single or multiple cores using (o)mpirun. The program is
controlled by a single text file as outlined in the next section.

13

5.3 Controlling pCMALib: the program input file

pCMALib’s program is controlled by a input file that specifies all algorithmic settings. The exam-
ple inputs folder contains several examples. We show here the example used in the Quickstart section
where IPOP-CMA-ES is run on the shifted 10D Rastrigin function (Function f9 from the CEC 2005
benchmark test suite [14]).

Listing 4: Example input file

#−−
pCMALib : a p a r a l l e l f o r t r an 90 l i b r a r y f o r the e vo l u t i on s t r a t e g y wi th
covariance matrix adap ta t i on
Chr i s t i an L. Muel ler , Benedikt Baumgartner , Georg Ofenbeck
MOSAIC group , ETH Zurich , Swi t zer l and
#−−−

output data i s saved i n to t h i s f o l d e r (r e l a t i v e to workdi r)
OUTPUT FOLDER = ras t i p op
which func t i on o f the CEC2005 or BBOB benchmark s u i t e to use
BENCHFCTNR = 9
Dimension o f the problem
DIMENSIONS = 10
Upper bounds on a l l dimensions
ALLDIMUBOUNDS = 5
Lower bounds on a l l dimensions
ALLDIM LBOUNDS = −5
#the g l o b a l optimum
GLOBAL MIN = −330
use the CEC2005 benchmark s u i t e as t a r g e t f unc t i on
USE CEC = true

usage o f Quasi Random Sampling
QR SAMPLING = true

t h i s on ly works wi th Sobo l R implementat ion ! (0) no scrambl ing
(1) owen type scrambl ing , (2) faure−t e zuka type scrambl ing ,
(3) owen , faure−t e zuka type scrambl ing
QR SCRAMBLING = 0
(0)Moros Inverse , (1) Peter J . Acklam . s Inver te r , (2) I n v e r t e r from R
QR INVERTER = 1
(0) Sobol , (1) Sobo l R implementation , (2) Halton , (3) Halton R
implementation , (4) Faure (buggy !) , (5) N i ed e r r e i t e r
QR SAMPLER = 1
Succe s s f u l run i f g l oba l min − f (x) < accuracy
ACCURACY = 1 .E−8
i f mu l t i r e s t a r t CMA (IPOP) shou l d be used
RESTARTCMA = true

(0) r e s t a r t randomly w i th in bounds , (1) r e s t a r t from po in t o f
convergence , (2) r e s t a r t from same s t a r t p o i n t a l l the time
RESTARTTYPE = 1
f a c t o r by which the popu l a t i on s i z e i s i ncreased every r e s t a r t
INCPOPSIZE = 1.3
#the f o l d e r where to f i nd the supportData f o l d e r
CECFOLDERS = ./

It is important that the input parameters are spelled correctly. There is no parser included so far
that checks input parameters for correct spelling. Hence, wrongly spelled input parameters are ignored.

As in the MATLAB version of CMA-ES there are many options that can be set. The following tables
summarize all available options. In the code, most of the default settings are set in libcma/cmaes opts mod.f90.

14

Name Default Value Explanation

Stop Criteria
STOPFITNESS -Inf Stop if f(x) < StopFitness

STOPMAXFUNEVALS Inf Maximal number of FES

STOPMAXITER
1e3 (n+5)2
√

PopSize
Maximal number of iterations

STOPTOLX 1e-11max(σinitial) Stop if x-change < StopTolX

STOPTOLUPX 1e3max(σinitial) Stop if x-change > StopTolUpX

STOPTOLFUN 1e-12 Stop if fun-change < StopTolFun

STOPTOLHISTFUN 1e-13 Stop if back fun-change < StopTolFun

STOPTIME true usage of a stop time
STOPTIMEHH 0 stop after given hours
STOPTIMEMM 0 stop after given minutes
STOPTIMESS 0 stop after given seconds
STOPONWARNINGS true stop if any of the warnings occur

CMA-ES Strat. Params.
ABS SIGMA 0 size of the inital σ as absolut value
REL SIGMA 0.2 size of the inital σ relative to the size of the

box constraints - only used if ABS SIGMA is
not set

POPSIZE 4 + ⌊3 ln (n)⌋ Population Size λ
PARENTNUMBER ⌊λ

2
⌋ Parent Number µ

RECOMBINATIONWEIGHTS 3 Super–linear (3), linear (2) or equal (1)

PS-CMA-ES Strat. Params.
PSCMA false Switch PS-CMA-ES on or off
PSOWEIGHT 0.7 weights between PSO-based and local covari-

ance matrix (equivalent to cp in 5)
PSOFREQ 200 Intervall length Ic between PSO updates (see

3.2.3)

Sampling Options
QR SAMPLING true usage of Quasi Random sampling
QR SAMPLER 1 (0)Sobol, (1)Sobol R implementation

(2)Halton
(3)Halton R implementation
(4)Faure (buggy!)
(5)Niederreiter

QR SCRAMBLING 0 this only works with Sobol R implementation!
(0)no scrambling
(1)owen type scrambling
(2)faure-tezuka type scrambling
(3)owen,faure-tezuka type scrambling

QR INVERTER 1 (0)Moros Inverse
(1)Peter J. Acklam’s Inverter
(2)Inverter from the R Implementation

Restart Settings
RESTART CMA false Flag if restart CMA (IPOP) should be used
RESTART TYPE 0 (0) restart randomly within bounds

(1) restart from point of convergence
(2) restart from same startpoint all the time

RESTARTS 0 limit on how many restarts are allowed, 0 =
unlimited

INCPOPSIZE 1.25 factor by which the population size is increased
every restart

MAXINCFAC 100 the maximum fold increase of the population
compared to the initial population size

Benchmark Opts.
BENCHMARK false Switch Benchmark on or off, this causes pC-

MALib to record and keep track of several
variables that are required in the CEC 2005
benchmark protocols

RECORD ACCURACY 0.0 record when the CMA-ES reaches this level of
accuracy

RECORD BESTHIST false record a history of the fitness over time
RECORD MODULO 100 FE MAX/RECORD MODULO gives the

number of records

Table 1: Available pCMALib options

15

Others
DIMENSIONS Dimension n of the problem
GLOBAL MIN 0.0 Global minimum (if available)
ACCURACY 0.0 Successful run if |GLOBAL MIN − f(x)| ≤

accuracy

EVALINITIALX true Evaluate initial solution
WARNONEQUALFUNCTIONVALUES true Report warning if all function values in a gen-

eration are identical
FLGGENDATA true Flag if complete output data should be gener-

ated (can result in huge files!)
INTGENDATA 1 Integer interval to log output data
FLGOUTTXT true if compiled without

matlab, otherwise false
saves the results of the pCMAlib run into
textfiles

FLGGENTRACE false saves only trace of best solutions and their fit-
ness values into textfiles

FUNCNAME ’ ’ Name of the function that will be reported in
output

VERBOSEMODULO 100 Messaging after every i-th iteration in the con-
sole

OUTPUT FOLDER ’out’ output data is saved into this folder (relative
to workdir)

SILENTMPI true flag if only process with rank 0 should report
output in the console

USE SEED false if a seed for the RNG should be used
SEED FOLDER ’false’ folder containing the seed file ’seed.txt’

Boundary setting
ALLDIM LBOUNDS -Inf Lower bounds on all dimensions
ALLDIM UBOUNDS Inf Upper bounds on all dimensions
USE INIT BOUNDS false if special bounds should be used for initaliza-

tion of population
INIT UBOUNDS Inf Upper bounds for initialization
INIT LBOUNDS -Inf Lower bounds for initialization

Objective functions
USE LJ COMP false use the Lennard Jones potential with compres-

sion as target function
USE DF false use the DoubleFunnel benchmark as target

function
USE MATFUNC false use the template for a Matlab target as func-

tion
USE RANDOM LANDSCAPE false use the random landscape test as target func-

tion
USE CEC false use the CEC2005 benchmark suite as target

function
USE BBOB false use the BBOB benchmark suite as target func-

tion
USE LJ false use the Lennard Jones potential as target func-

tion
USE TIP false use the TIP4P water potential as target func-

tion

Add. objective function settings
WRITE PDB false if a pdb file representing the current best so-

lution is written in intervals according to the
VerboseModulo setting

LJ COMP 1 compression parameter µcomp for the Lennard
Jones potential with compression

DF S 0 setting for parameter ’s’ for the Double Funnel
benchmark

DF RAST true if rastrigin function should be applied to the
Double Funnel benchmark

CECFOLDERS ” where to find the supportData folder for the
CEC2005 benchmark suite relative to the
working directory

BENCHFCTNR 1 which function of the CEC2005 or BBOB
benchmark suite to use

Table 2: Available pCMALib options

16

BFGS Settings (experimental)
BFGS USE false if BFGS should be used to assist CMA. This

is still in development!
BFGS FACTR not used at the moment
BFGS PGTOL not used at the moment
BFGS GRAD STEPSIZE step size used for the gradient approximation
BFGS POSITION 2 1 = replace X values by local minimum X

2 = replace F values with F values at local
minimum

BFGS CENTRAL DIFFERENCE false if central difference should be used, otherwise
backward difference is utilized

BFGS DGUESS the guess for the inital step size for the line
search

BFGS STPMAX uper bounds for the step in the line search
BFGS STPMIN specify lower for the step in the line search
BFGS GTOL controls the accuracy of the line search routine

MCSRCH

Table 3: Available pCMALib options5.4 Output files

There are several modes of output generation in pCMALib which are controlled by the four input parame-
ters FLGGENDATA, INTGENDATA, FLGOUTTXT and FLGGENTRACE. The files will be generated
in the folder specified by the input parameter OUTPUT FOLDER.

If the FLGGENDATA is true, pCMALib will write out every INTGENDATA generation almost all
CMA-ES data, such as e.g. the populations, the covariance matrices, the Cholesky matrices, the evolution
path etc. Depending on the dimensionality, the run length and the write out interval length, this may
result in HUGE text files. So when doing production runs with pCMALib, the user is advised to handle
the settings with care. In case MATLAB is available, in addition to the text file, a binary MATLAB file
cmaesData.mat is generated that includes the summary data given below but NOT the traces along the
optimization run.

In case FLGGENDATA is false, the user has the possibility to just write the summary data (see
below) in text files by setting FLGOUTTXT true. No MATLAB is required for this.

This is the list of summary output files that are provided. In case MATLAB is available, these data
are stored in a structured binary MATLAB .mat file. It follows the standard output from the Hansen’s
CMA-ES MATLAB version plus some pCMALib specific output.

out bestever f.txt the best fitness value found during the optimization
out bestever x.txt the best input vector x found during the optimization
out bestever evals.txt the evaluation where the best fitness value has been found
out countEvalNaN.txt the number of invalid samples drawn during the optimization run
out countEval.txt the number of samples drawn during the optimization
out countIter.txt the number of CMA Iteration done during the optimization
out countOutOfBounds.txt the number of samples that fell outside of the Bounds given to CMA
out funcName.txt the name of the function like given in the input file

if a benchmark is utilized, it returns the name of the function evaluated
out insigma.txt the initial sigma CMA starts with in absolute numbers
out lambda.txt the initial lambda CMA starts with
out mueff.txt effective population weight
out mu.txt number of selected individuals per generation
out N.txt dimension of the problem
out settings.txt all settings turned on/off by pCMALib. Also those values that are turned

off via flags (e.g. QR SAMPLING = .false.
and all the other QR Settings are reported)

out stopflag.txt the reason why the CMA optimization stopped
(e.g. time limit reached, global minimum found etc.)

out weights.txt the weights used for the ranking
out xstart.txt the initial x mean of CMA-ES - not utilized at the moment
seed.txt the initial random number seed - can be used for reproducing the same results

Table 4: Summary output from pCMALib

17

Finally, if the user is only interested in the trace of current best candidate solutions and its corre-
sponding fitness values, these can be generated by setting the FLGGENTRACE true. Then, the text
files besteverF.txt and besteverX.txt contain these values at every INTGENDATA generation.

If pCMALib is run in MPI mode, the output files are generated for each process. The resulting file
names are the same as in the single process case but with the extension RANK, i.e. the cmaesData.mat
for the process with rank 0 is called cmaesData 0.mat.

For the specific case where LJ or TIPnP water clusters are optimized, the user has the possibility to
write out PDB files with the LJ or Water atom coordinates. For this purpose the flag WRITE PDB
should be set true. The write out frequency is controlled by the input parameter VERBOSEMODULO.

6 Test example

6.1 IPOP-CMA-ES

• Unzip / checkout

• Change all parameters in the make.inc file. MPI and MATLAB Include/Library Paths are not
required for this example. Make sure that HAS MPI, HAS MAT and BBOB are set to 0.

• in the main folder execute make new

• cd to the newly created bin folder

• execute ./libpcma.a ../example inputs/rastrigin ipop.txt

• you should get output on the console similar to the one listed below

Listing 5: Console output generated by pCMAlib on the rastrigin IPOP example

∗∗

Warnings :
n= 10 : (5 , 10)−CMA−ES on function Sh i f t ed Ras t r i g i n s Function

I t e r a t , #Feval s : Function Value
1 , 12 : −134.484715127431

100 , 1002 : −319.957567812663
200 , 2002 : −320.050414465281
262 , 2622 : −320.050414466886
262 , 2622 : −320.050414466886

−−−−−−− Restart # 1 Reason : warnequa l f unva l s
n= 10 : (6 , 13)−CMA−ES on function Sh i f t ed Ras t r i g i n s Function
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

I n i t i a l sigma 2.00000000000000
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

I t e r a t , #Feval s : Function Value
300 , 3116 : −260.736124312701
400 , 4416 : −326.020162842026
473 , 5365 : −326.020163771627
473 , 5365 : −326.020163771627

−−−−−−− Restart # 2 Reason : warnequa l f unva l s

.

.

.

−−−−−−− Restart # 2 Reason : warnequa l f unva l s

n= 10 : (45 , 91)−CMA−ES on function Sh i f t ed Ras t r i g i n s Function
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

I n i t i a l sigma 2.00000000000000
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

I t e r a t , #Feval s : Function Value
7000 , 524992 : −281.725617082436

18

7071 , 531453 : −329.999999995965

GLOBAL Bestever . f : −329.999999995965
GLOBAL Bestever . x :

1 .900E+00
−1.564E+00
−9.788E−01
−2.254E+00
2.499E+00

−3.285E+00
9.759E−01

−3.666E+00
9.850E−02

−3.246E+00
Stop f l ag : f i t n e s s

• ls rast test should yield a list of files generated by the optimization run as shown in the previous
section.

6.2 PS-CMA-ES

• Unzip / checkout

• Change all parameters in the make.inc file. MPI Paths are required for this example. Make sure
that HAS MAT and BBOB are set to 0, while HAS MPI is set to 1

• in the main folder execute make new

• cd to the newly created bin folder

• execute mpirun -n 4 ./libcma ../example inputs/water pscma.txt. This command structure might
vary depending on the installed MPI software.

• you should get output on the console similar to the one listed below

Listing 6: Console output generated by pCMAlib on the rastrigin IPOP example

∗∗

Warnings :
∗∗

Started MPI−CMA
To guarantee a decent conso l e output only Process 0 i s shown
Al l output data i s saved to

f o l d e r water pscma

∗∗

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

PSO con f i gu r a t i on :
Weight : 0.800000000000000
Frequency : 1000
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

I n i t i a l sigma 2.40000000000000
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

n= 48 : (7 , 15)−CMA−ES on function

I t e r a t , #Feval s : Function Value
1 , 17 : −24.7688838771480

100 , 1502 : −91.9960387430328
200 , 3002 : −141.671714969162
300 , 4502 : −149.296251112378
400 , 6002 : −194.206246961448
500 , 7502 : −203.078431185465

19

600 , 9002 : −207.834413560923
700 , 10502 : −208.866055139447
800 , 12002 : −209.640611386233
900 , 13502 : −210.402527129655

1000 , 15002 : −211.520111342927
1100 , 16502 : −212.422564260838
1200 , 18002 : −212.949637423201
1300 , 19502 : −213.668174681497
1400 , 21002 : −226.061157943448
1500 , 22502 : −237.363561233379
1600 , 24002 : −239.168766472368

.

.

.
GLOBAL Bestever . f : −243.051022815494

GLOBAL Bestever . x :
1 .423E+00

1.402E+00
−2.535E+00
−2.564E−01
−6.437E−01
−3.328E+00
−8.623E−01
−9.006E−01
−6.475E−01
−9.176E−01
1.923E+00

−2.113E−01
2.389E+00

−6.220E−01
−4.128E+00
−1.737E+00
−2.249E−01
−5.593E+00
2.254E−01
1.494E+00
2.318E+00
1.417E+00
4.412E−01
4.009E−02
2.217E+00
6.194E−01
9.304E−01

−4.445E−01
1.224E−01
3.384E+00

−2.908E+00
−3.839E+00
5.877E+00
2.826E+00

−3.180E+00
−2.960E+00
3.403E+00

−1.536E+00
−9.409E−01
−2.305E−01
−3.482E+00
−6.000E+00
9.542E−01
4.354E+00
1.263E+00

−2.616E+00
−1.269E+00

20

−1.310E+00
Stop f l ag : t o l f un

• ls water pscma should yield a list of files generated by the optimization run as shown in the previous
section, but this time one file for each process should exist of the form FILENAME {Process#.txt}

7 Adding new objective functions

Adding user-specific objective functions is rather simple. In the user folder you have a template that you
can adapt for your needs. If the name of the template function is renamed, you have to rename EXTERNAL
user function in cmaes.f90 and its call further down in the main as well. Further test functions can
also be located in either testfcns or the energy landscapes folder. They also have to be known as
EXTERNAL user function in cmaes.f90 in order to work properly.

Listing 7: Snippet of the main.f90

!−−−

! R o u t i n e : u s e r f u n c t i o n
!−−−

!
! P u r p o s e :
!
! Remark : a t t h e moment p c m a l i b w i l l o n l y c a l l s i n g l e v a l u e s a t o n c e
! mea n i ng i t w i l l s e n d ’ v a r s ’ o f s i z e m x 1 and e x p e c t a v e c t o r o f s i z e
! n=1 b a c k . T h i s m i g h t c h a n g e i n t h e f u t u r e and t h e r e f o r e i t i s r e c ommended
! t o w r i t e t h e f u n c t i o n i n a way t h a t i t c an h a n d l e m u l t i p l e i n p u t v e c t o r s i n f o rm
! o f a m a t r i x and r e t u r n a v e c t o r o f r e s u l t s
!
! I n p u t :
! m (I) m D imen s i on o f t h e ma t r i x (Rows)
! = D imen s i on o f V e c t o r s
! n (I) n D imen s i on o f t h e ma t r i x (Co lumns)
! = # o f V e c t o r s t o p r o c e s s
! I n p u t (o p t i o n a l) : l b o u n d s / u b o und s − m d i m e n s i o n a l a r r a y w i t h b o u n d a r i e s g i v e n t o CMA−ES
!
!
! I n p u t / O u t p u t : v a r s (R) t h e m a t r i x w i t h t h e i n p u t v a l u e s o f s i z e m∗n
!
! Ou t p u t : r e s (R) t h e v e c t o r w i t h t h e r e s u l t s o f s i z e n
!
!−−−

SUBROUTINE u s e r f unc t i o n (res , vars ,m, n , lbounds , ubounds)
USE cmaes param mod
!−−−

! P a r am e t e r s
!−−−

REAL(MK) ,DIMENSION(n) ,INTENT(out) : : r e s
REAL(MK) ,DIMENSION(m, n) ,INTENT(in) : : vars
INTEGER,INTENT(in) : : m
INTEGER,INTENT(in) : : n
REAL(MK) ,DIMENSION(m) ,OPTIONAL : : lbounds
REAL(MK) ,DIMENSION(m) ,OPTIONAL : : ubounds

! y o u r c o d e h e r e ! ! ! ! !
WRITE(∗ ,∗) ’ no code provided in the u s e r f u nc t i on yet ’
STOP

END SUBROUTINE us e r f u nc t i on

As can be seen from the current template for objective functions it is not possible to provide additional
parameters to the objective functions explicitly. If the user function needs additional parameters they
have to be provided via global/MODULE variables. An example how to provide function parameters can
be found in the double funnel test function case (USE DF). This objective function has a parameter s
that tunes the size and depth ratio of two funnels. It is provided with the input parameter DF S in the
input file.

8 Known issues

• Scrambling caused some troubles on the ETH cluster after some million iterations which could not
be reproduced on a local machine (returning 0 values for all samples)

• Ipop (Restart) settings can cause troubles if not limited by the MAXINCFAC control input. This
is due to the exponential increase in population size and the therefore linked exponential increase
in memory requirements

21

• the matlab engine is not the most reliable - it happened sometimes that the program would just
freeze during the write out of the .mat file

• very long paths (>200 characters) are cut off and might cause troubles

• if the FLGGENDATA is set to true and INTGENDATA small, the output files can become very
big due to the fact that it is written as text file

• after the setting file (make.inc) is altered, manual cleaning of the previous make run might be
required (deleting the objects folder manually)

9 License and further reading

ToDo

22

References

[1] Nikolaus Hansen and Andreas Ostermeier. Completely Derandomized Self-Adaption in Evolution
Strategies. Evolutionary Computation, 9(2):159–195, 2001.

[2] Nikolaus Hansen, Sibylle D. Müller, and Petros Koumoutsakos. Reducing the Time Complexity of
the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES). Evolutionary
Computation, 11(1):1–18, 2003.

[3] Nikolaus Hansen and Stefan Kern. Evaluating the CMA Evolution Strategy on Multimodal Test
Functions. In Lecture Notes in Computer Science, volume 3242 of Parallel Problem Solving from
Nature - PPSN VIII, pages 282–291, Berlin, Heidelberg, 2004. Springer.

[4] Nikolaus Hansen. The CMA Evolution Strategy. http://www.lri.fr/ hansen/cmaesintro.html.

[5] Nikolaus Hansen. The CMA Evolution Strategy: A Tutorial. http://www.lri.fr/ hansen/cmatuto-
rial.pdf, 2007.

[6] Anne Auger and Nikolaus Hansen. Performance Evaluation of an Advanced Local Search Evolution-
ary Algorithm. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2005),
volume 2, pages 1777–1784, 2005.

[7] Anne Auger and Nikolaus Hansen. A Restart CMA Evolution Strategy with Increasing Population
Size. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2005), volume 2,
pages 1769–1776, 2005.

[8] Enrique Alba. Parallel Metaheuristics: A New Class of Algorithms. Wiley-Interscience, 2005.

[9] Christian L. Müller, B. Baumgartner, and I. F. Sbalzarini. Particle Swarm CMA Evolution Strat-
egy for the Optimization of Multi-Funnel Landscapes. In Proceedings of the IEEE Congress on
Evolutionary Computation (CEC 2009), 2009.

[10] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins University Press,
3rd edition, 1996.

[11] Günther Rudolph. On CorrelatedMutations in Evolution Strategies. In R. Männer and B. Manderick,
editors, Parallel Problem Solving from Nature 2 (Proc. 2nd Int. Conf. on Parallel Problem Solving
from Nature, Brussels 1992), pages 105–114, Amsterdam, 1992. Elsevier.

[12] Olivier Teytaud and Sylvain Gelly. DCMA: yet another derandomization in covariance-matrix-
adaptation. In GECCO ’07: Proceedings of the 9th annual conference on Genetic and evolutionary
computation, pages 955–963, New York, NY, USA, 2007. ACM.

[13] David J. Wales and Jonathan P. K. Doye. Global Optimization by Basin-Hopping and the Lowest
Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms. The Journal of Physical
Chemistry A, 101(28):5111–5116, 1997.

[14] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A. Auger, and S. Tiwari. Problem Def-
initions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization.
Technical report, Nanyang Technological University, Singapore, May 2005.

[15] Monte Lunacek, Darrell Whitley, and Andrew Sutton. The Impact of Global Structure on Search.
In Proceedings of the 10th international conference on Parallel Problem Solving from Nature, pages
498–507, Berlin, Heidelberg, 2008. Springer-Verlag.

[16] Christian L. Müller. Benchmark runs of pCMALib on Nehalem and Shanghai nodes. Technical
report, ETH Zurich, 2009.

[17] Lawrence Livermore National Laboratory. Message Passing Interface (MPI).
https://computing.llnl.gov/tutorials/mpi/, September 2007.

23

APPENDIX

A MPI structure in PS-CMA-ES

A.1 MPI protocol for PS-CMA-ES

The parallel CMA-ES code is developed based on MPI. Multiple CMA-ES instances need to communicate
in order to integrate parallel inofrmation. MPI is designed to tackle such tasks on an implementational
level. Each CMA-ES instance represents a computational process with separate address spaces. Via
MPI, these processes can be distributed to multiple processors (for example to different PCs in a Local
Area Network (LAN)). If such a topology is not available, MPI allows to execute parallel code on single
processors.
Unfortunately, the developed algorithm is computationally demanding. Especially when multiple CMA-
ES units have to share hardware facilities, computation speed decreases. Therefore, an elaborate com-
munication strategy is essential to reduce complexity.

A.2 GLOBAL BEST-Communication

In MPI, each process is assigned a unique number: the process rank. Multiple processes can be dis-
tinguished by their rank. In section 3 it has been outlined, that each CMA-ES instance has to inform
the other swarm members on its current best candidate solution. Figure 6 illustrates our procedure. A
2-dimensional array, called F BEST, is introduced. It holds the current best fitness value, as well as the
process rank (illustrated by light red ellipses in Figure 6(a)). The MPI collective communication routine
MPI ALLREDUCE is able to find the global best function value within all F BEST arrays. Since the
array also contains the process rank, the corresponding CMA-ES instance is known. In a second step
(Figure 6(b)), this process broadcasts the position of its current optimal solution to the other swarm
members.
To reduce communication expenses, the broadcast is only performed, when the current optimum has
changed.

CMA-ES 1

Rank: 0
fbest: 100.369
p0,best

CMA-ES 2

Rank: 1
fbest: 78.173
p1,best

CMA-ES 3

Rank: 2
fbest: 102.705
p2,best

MPI ALLREDUCE

Global Best

Rank: 1
fbest: 78.173

(a) MPI Allreduce

CMA-ES 1 CMA-ES 3

CMA-ES 2

Rank: 1
fbest: 78.173
p1,best = pg

pg pg

(b) MPI Broadcast

Figure 6: MPI Communication of the Global Best Position pg

A.3 Excluding processes from communication

If a CMA-ES instance has converged and stopped its search, it needs to be excluded from communication.
There are two possible scenarios, how a safe program termination can be ensured, and a communication
deadlock can be avoided. One is, that the process waits until all other running processes have reached the
same state, such that all processes can be finalized synchronously. Such an approach heavily influences
performance, because resources keep on being allocated, until the last process has converged.
Therefore, another, more dynamic approach is favoured: whenever a process stops, communication is
adapted, such that this specific process is excluded. To describe our method, definitions of MPI groups
and communicators have to be given [17]:

24

Definition A.3.1 A group is an ordered set of processes. Each process in a group is associated with a
unique integer rank. Rank values start at zero and go to N-1, where N is the number of processes in the
group. A group is always associated with a communicator object.

Definition A.3.2 A communicator encompasses a group of processes that may communicate with each
other. All MPI messages must specify a communicator. For example, the communicator that comprises
all tasks is MPI COMM WORLD.

In MPI, communicators can not be adapted directly. Therefore, a little workaround is needed to adapt
communications. At the end of each CMA-ES generation, it is checked, whether one or more processes
have met a stopping criterion and are about to terminate. If this is the case, the following rules are
applied:

1. Ranks of terminating processes are collected.

2. MPI COMM GROUP() and MPI GROUP EXCL() are used to build a new communication group,
that excludes the specified ranks.

3. A new rank for each process in the group (MPI GROUP RANK()) is assigned.

4. A group communicator using MPI COMM CREATE() is created.

5. Calculations using the newly created communicator are continued. All processes, that are not in
the scope of the communicator, are terminated.

MPI COMM WORLD

0 1 2 3

4 5 6 7

Group 1

1 2 4

5 7

New Communicator

0 1 2

3 4

Continue

Group 2

0 6 3

Terminate

Figure 7: Excluding processes from communication

Figure 7 illustrates an example for the MPI group and communicator management. At the very
top of the figure, all processes are within the same communicator environment (MPI COMM WORLD).
Colored in a light red are processes that will stop. Following the chart, two groups are formed. One
group contains running processes (Group 1), the other contains stopping processes (Group 2)2. Based on
Group 1, a new communicator can be created. Note, that the processes are assigned a new rank starting
from 0 again.

2Group 2 is not a valid communication group. Instead it contains processes with rank value MPI UNDEFINED

25

	Introduction
	Quick start
	The Evolution Strategy with Covariance Matrix Adaptation
	Standard CMA-ES
	Parallel island CMA-ES: the Particle Swarm CMA-ES
	Adapting the Covariance Matrix
	Biasing the Mean Value
	Strategy Parameters

	Low Discrepancy CMA-ES
	Memetic CMA-ES

	pCMALib: Features and Structure
	General features
	Code design and Library structure
	General compilation and control files
	libcma
	libtestfcns
	librng
	BBOB
	bfgs
	energy_landscapes

	Getting started
	System requirements
	Platform
	Compiler
	LAPACK/BLAS
	MPI

	Compiling pCMALib
	Controlling pCMALib: the program input file
	Output files

	Test example
	IPOP-CMA-ES
	PS-CMA-ES

	Adding new objective functions
	Known issues
	License and further reading
	MPI structure in PS-CMA-ES
	MPI protocol for PS-CMA-ES
	GLOBAL_BEST-Communication
	Excluding processes from communication

