"""Tests for common utility functions.""" import os import nose.tools as nt import pyuvdata import numpy as np from pyuvdata.data import DATA_PATH import pyuvdata.utils as uvutils ref_latlonalt = (-26.7 * np.pi / 180.0, 116.7 * np.pi / 180.0, 377.8) ref_xyz = (-2562123.42683, 5094215.40141, -2848728.58869) def test_XYZ_from_LatLonAlt(): """Test conversion from lat/lon/alt to ECEF xyz with reference values.""" out_xyz = pyuvdata.XYZ_from_LatLonAlt(ref_latlonalt[0], ref_latlonalt[1], ref_latlonalt[2]) # Got reference by forcing http://www.oc.nps.edu/oc2902w/coord/llhxyz.htm # to give additional precision. nt.assert_true(np.allclose(ref_xyz, out_xyz, rtol=0, atol=1e-3)) # test error checking nt.assert_raises(ValueError, pyuvdata.XYZ_from_LatLonAlt, ref_latlonalt[0], ref_latlonalt[1], np.array([ref_latlonalt[2], ref_latlonalt[2]])) nt.assert_raises(ValueError, pyuvdata.XYZ_from_LatLonAlt, ref_latlonalt[0], np.array([ref_latlonalt[1], ref_latlonalt[1]]), ref_latlonalt[2]) def test_LatLonAlt_from_XYZ(): """Test conversion from ECEF xyz to lat/lon/alt with reference values.""" out_latlonalt = pyuvdata.LatLonAlt_from_XYZ(ref_xyz) # Got reference by forcing http://www.oc.nps.edu/oc2902w/coord/llhxyz.htm # to give additional precision. nt.assert_true(np.allclose(ref_latlonalt, out_latlonalt, rtol=0, atol=1e-3)) nt.assert_raises(ValueError, pyuvdata.LatLonAlt_from_XYZ, ref_latlonalt) # test passing multiple values xyz_mult = np.stack((np.array(ref_xyz), np.array(ref_xyz)), axis=1) lat_vec, lon_vec, alt_vec = pyuvdata.LatLonAlt_from_XYZ(xyz_mult) nt.assert_true(np.allclose(ref_latlonalt, (lat_vec[1], lon_vec[1], alt_vec[1]), rtol=0, atol=1e-3)) # test error checking nt.assert_raises(ValueError, pyuvdata.LatLonAlt_from_XYZ, ref_xyz[0:1]) def test_ENU_tofrom_ECEF(): center_lat = -30.7215261207 * np.pi / 180.0 center_lon = 21.4283038269 * np.pi / 180.0 center_alt = 1051.7 lats = np.array([-30.72218216, -30.72138101, -30.7212785, -30.7210011, -30.72159853, -30.72206199, -30.72174614, -30.72188775, -30.72183915, -30.72100138]) * np.pi / 180.0 lons = np.array([21.42728211, 21.42811727, 21.42814544, 21.42795736, 21.42686739, 21.42918772, 21.42785662, 21.4286408, 21.42750933, 21.42896567]) * np.pi / 180.0 alts = np.array([1052.25, 1051.35, 1051.2, 1051., 1051.45, 1052.04, 1051.68, 1051.87, 1051.77, 1051.06]) # used pymap3d, which implements matlab code, as a reference. x = [5109327.46674067, 5109339.76407785, 5109344.06370947, 5109365.11297147, 5109372.115673, 5109266.94314734, 5109329.89620962, 5109295.13656657, 5109337.21810468, 5109329.85680612] y = [2005130.57953031, 2005221.35184577, 2005225.93775268, 2005214.8436201, 2005105.42364036, 2005302.93158317, 2005190.65566222, 2005257.71335575, 2005157.78980089, 2005304.7729239] z = [-3239991.24516348, -3239914.4185286, -3239904.57048431, -3239878.02656316, -3239935.20415493, -3239979.68381865, -3239949.39266985, -3239962.98805772, -3239958.30386264, -3239878.08403833] east = [-97.87631659, -17.87126443, -15.17316938, -33.19049252, -137.60520964, 84.67346748, -42.84049408, 32.28083937, -76.1094745, 63.40285935] north = [-72.7437482, 16.09066646, 27.45724573, 58.21544651, -8.02964511, -59.41961437, -24.39698388, -40.09891961, -34.70965816, 58.18410876] up = [0.54883333, -0.35004539, -0.50007736, -0.70035299, -0.25148791, 0.33916067, -0.02019057, 0.16979185, 0.06945155, -0.64058124] xyz = pyuvdata.XYZ_from_LatLonAlt(lats, lons, alts) nt.assert_true(np.allclose(np.stack((x, y, z)), xyz, atol=1e-3)) enu = pyuvdata.ENU_from_ECEF(xyz, center_lat, center_lon, center_alt) nt.assert_true(np.allclose(np.stack((east, north, up)), enu, atol=1e-3)) # check that a round trip gives the original value. xyz_from_enu = pyuvdata.ECEF_from_ENU(enu, center_lat, center_lon, center_alt) nt.assert_true(np.allclose(xyz, xyz_from_enu, atol=1e-3)) # check passing a single value enu_single = pyuvdata.ENU_from_ECEF(xyz[:, 0], center_lat, center_lon, center_alt) nt.assert_true(np.allclose(np.stack((east[0], north[0], up[0])), enu[:, 0], atol=1e-3)) xyz_from_enu = pyuvdata.ECEF_from_ENU(enu_single, center_lat, center_lon, center_alt) nt.assert_true(np.allclose(xyz[:, 0], xyz_from_enu, atol=1e-3)) # error checking nt.assert_raises(ValueError, pyuvdata.ENU_from_ECEF, xyz[0:1, :], center_lat, center_lon, center_alt) nt.assert_raises(ValueError, pyuvdata.ECEF_from_ENU, enu[0:1, :], center_lat, center_lon, center_alt) nt.assert_raises(ValueError, pyuvdata.ENU_from_ECEF, xyz / 2., center_lat, center_lon, center_alt) def test_mwa_ecef_conversion(): ''' Test based on comparing the antenna locations in a Cotter uvfits file to the antenna locations in MWA_tools. ''' test_data_file = os.path.join(DATA_PATH, 'mwa128_ant_layouts.npz') f = np.load(test_data_file) # From the STABXYZ table in a cotter-generated uvfits file, obsid = 1066666832 xyz = f['stabxyz'] # From the East/North/Height columns in a cotter-generated metafits file, obsid = 1066666832 enh = f['ENH'] # From a text file antenna_locations.txt in MWA_Tools/scripts txt_topo = f['txt_topo'] # From the unphased uvw coordinates of obsid 1066666832, positions relative to antenna 0 # these aren't used in the current test, but are interesting and might help with phasing diagnosis in the future uvw_topo = f['uvw_topo'] # Sky coordinates are flipped for uvw derived values uvw_topo = -uvw_topo uvw_topo += txt_topo[0] # transpose these arrays to get them into the right shape txt_topo = txt_topo.T uvw_topo = uvw_topo.T enh = enh.T # ARRAYX, ARRAYY, ARRAYZ in ECEF frame from Cotter file arrcent = f['arrcent'] lat, lon, alt = uvutils.LatLonAlt_from_XYZ(arrcent) # The STABXYZ coordinates are defined with X through the local meridian, # so rotate back to the prime meridian new_xyz = uvutils.ECEF_from_rotECEF(xyz.T, lon) # add in array center to get real ECEF ecef_xyz = new_xyz + arrcent enu = uvutils.ENU_from_ECEF(ecef_xyz.T, lat, lon, alt) nt.assert_true(np.allclose(enu, enh)) # test other direction of ECEF rotation rot_xyz = uvutils.rotECEF_from_ECEF(new_xyz, lon) nt.assert_true(np.allclose(rot_xyz.T, xyz)) def test_pol_funcs(): """ Test utility functions to convert between polarization strings and numbers """ pol_nums = [-8, -7, -6, -5, -4, -3, -2, -1, 1, 2, 3, 4] pol_str = ['YX', 'XY', 'YY', 'XX', 'LR', 'RL', 'LL', 'RR', 'pI', 'pQ', 'pU', 'pV'] nt.assert_equal(pol_nums, uvutils.polstr2num(pol_str)) nt.assert_equal(pol_str, uvutils.polnum2str(pol_nums)) # Check individuals nt.assert_equal(-6, uvutils.polstr2num('YY')) nt.assert_equal('pV', uvutils.polnum2str(4)) # Check errors nt.assert_raises(KeyError, uvutils.polstr2num, 'foo') nt.assert_raises(ValueError, uvutils.polstr2num, 1) nt.assert_raises(ValueError, uvutils.polnum2str, 7.3) def test_jones_num_funcs(): """ Test utility functions to convert between jones polarization strings and numbers """ jnums = [-8, -7, -6, -5, -4, -3, -2, -1] jstr = ['jyx', 'jxy', 'jyy', 'jxx', 'jlr', 'jrl', 'jll', 'jrr'] nt.assert_equal(jnums, uvutils.jstr2num(jstr)) nt.assert_equal(jstr, uvutils.jnum2str(jnums)) # Check shorthands jstr = ['yx', 'xy', 'yy', 'y', 'xx', 'x', 'lr', 'rl', 'll', 'l', 'rr', 'r'] jnums = [-8, -7, -6, -6, -5, -5, -4, -3, -2, -2, -1, -1] nt.assert_equal(jnums, uvutils.jstr2num(jstr)) # Check individuals nt.assert_equal(-6, uvutils.jstr2num('jyy')) nt.assert_equal('jxy', uvutils.jnum2str(-7)) # Check errors nt.assert_raises(KeyError, uvutils.jstr2num, 'foo') nt.assert_raises(ValueError, uvutils.jstr2num, 1) nt.assert_raises(ValueError, uvutils.jnum2str, 7.3)