\name{rF01FrankJoe} \alias{rF01Frank} \alias{rF01Joe} \title{Sample Univariate Distributions involved in nested Frank and Joe Copulas} \description{ \code{rF01Frank}: Generate a vector of random variates \eqn{V_{01}\sim F_{01}}{V01 ~ F01} with Laplace-Stieltjes transform \deqn{\psi_{01}(t;V_0)= \Bigl(\frac{1-(1-\exp(-t)(1-e^{-\theta_1}))^{\theta_0/\theta_1}}{1-e^{-\theta_0}} \Bigr)^{V_0}.}{% psi01(t;V0) = ((1-(1-exp(-t)*(1-e^-theta1))^(theta0/theta1))/(1-e^-theta0))^V0. } for the given realizations \eqn{V_0}{V0} of Frank's \eqn{F_0}{F0} and the parameters \eqn{\theta_0,\theta_1\in(0,\infty)}{theta0, theta1 in (0,Inf)} such that \eqn{\theta_0\le\theta_1}{theta0 <= theta1}. This distribution appears on sampling nested Frank copulas. The parameter \code{rej} is used to determine the cut-off point of two algorithms that are involved in sampling \eqn{F_{01}}{F01}. If \eqn{\code{rej} < V_0\theta_0(1-e^{-\theta_0})^{V_0-1}}{% rej < V0*theta_0*(1-e^{-theta0})^(V0-1)} a rejection from \eqn{F_{01}}{F01} of Joe is applied (see \code{rF01Joe}; the meaning of the parameter \code{approx} is explained below), otherwise a sum is sampled with a logarithmic envelope for each summand. \code{rF01Joe}: Generate a vector of random variates \eqn{V_{01}\sim F_{01}}{V01 ~ F01} with Laplace-Stieltjes transform \deqn{\psi_{01}(t;V_0)=(1-(1-\exp(-t))^\alpha)^{V_0}.}{% psi01(t;V0) = (1-(1-exp(-t))^alpha)^V0.} for the given realizations \eqn{V_0}{V0} of Joe's \eqn{F_0}{F0} and the parameter \eqn{\alpha\in(0,1]}{alpha in (0,1]}. This distribution appears on sampling nested Joe copulas. Here, \eqn{\alpha=\theta_0/\theta_1}{alpha = theta0/theta1}, where \eqn{\theta_0,\theta_1\in[1,\infty)}{theta0, theta1 in [1,Inf)} such that \eqn{\theta_0\le\theta_1}{theta0 <= theta1}. The parameter \code{approx} denotes the largest number of summands in the sum-representation of \eqn{V_{01}}{V01} before the asymptotic \deqn{V_{01}=V_0^{1/\alpha}S(\alpha,1,\cos^{1/\alpha}(\alpha\pi/2), \mathbf{1}_{\{\alpha=1\}};1)}{% V01 = V0^(1/alpha) S(alpha,1, cos^(1/alpha)(alpha*pi/2), 1_(alpha==1); 1)} is used to sample \eqn{V_{01}}{V01}. } \usage{ rF01Frank(V0, theta0, theta1, rej, approx) rF01Joe(V0, alpha, approx) } \arguments{ \item{V0}{a vector of random variates from \eqn{F_0}{F0}.} \item{theta0, theta1, alpha}{parameters \eqn{\theta_0,\theta_1}{theta0, theta1} and \eqn{\alpha}{alpha} as described above.} \item{rej}{parameter value as described above.} \item{approx}{parameter value as described above.} } \value{ A vector of positive \code{\link{integer}}s of length \code{n} containing the generated random variates. } \author{Marius Hofert, Martin Maechler} \references{ Hofert, M. (2011). Efficiently sampling nested Archimedean copulas. \emph{Computational Statistics & Data Analysis} \bold{55}, 57--70. } \seealso{ \code{\link{rFFrank}}, \code{\link{rFJoe}}, \code{\link{rSibuya}}, and \code{\link{rnacopula}}. \code{\link{rnacopula}} } \examples{ ## Sample n random variates V0 ~ F0 for Frank and Joe with parameter ## chosen such that Kendall's tau equals 0.2 and plot histogram n <- 1000 theta0.F <- copFrank@tauInv(0.2) V0.F <- copFrank@V0(n,theta0.F) hist(log(V0.F), prob=TRUE); lines(density(log(V0.F)), col=2, lwd=2) theta0.J <- copJoe@tauInv(0.2) V0.J <- copJoe@V0(n,theta0.J) hist(log(V0.J), prob=TRUE); lines(density(log(V0.J)), col=2, lwd=2) ## Sample corresponding V01 ~ F01 for Frank and Joe and plot histogram ## copFrank@V01 calls rF01Frank(V0, theta0, theta1, rej=1, approx=10000) ## copJoe@V01 calls rF01Joe(V0, alpha, approx=10000) theta1.F <- copFrank@tauInv(0.5) V01.F <- copFrank@V01(V0.F,theta0.F,theta1.F) hist(log(V01.F), prob=TRUE); lines(density(log(V01.F)), col=2, lwd=2) theta1.J <- copJoe@tauInv(0.5) V01.J <- copJoe@V01(V0.J,theta0.J,theta1.J) hist(log(V01.J), prob=TRUE); lines(density(log(V01.J)), col=2, lwd=2) } \keyword{distribution}