jMDP User’s Guide

Germéan Riano and Andrés Sarmiento
Universidad de Los Andes

Contents
[1 Java and Object Oriented Programming| 1
2__Markov Decision Process - The Mathematical Modell 2
2.1 Finite Horizon Problemsl 3
2.2 Infinite Horizon Problems| o oo 4
221 Discounted Costl o oo oo 4
222 Total Costl. e 5
[2.2.3 Average Cost| 5
2.3 Deterministic Dynamic Programming|., 6
2.4 Main modeling elements in MDP|o o000 6
[3 Framework Design| 7
4 xamples 12
4.1 Deterministic inventory problem| 12
4.2 Finite horizon stochastic inventory problem| 16
|4.3 Infinite horizon stochastic inventory problem| 22
b__Advanced Features| 28
b.1 States and Actions| e 28
5.2 Decision Rules and Policiesl 29
B3 MDPclassl. 29
.4 Solver classesl e 29
b.4.1 FmiteSolverl 30
5.4.2 ValuelterationSolverl 30
9.4.3 Policylterationdolver|o 30
[6 Further Development| 31
Introduction

Java package for Markov Decision Process Package (JMDP) is an object oriented framework de-
signed to model dynamic programming problems (DP) and Markov Decision Processes (MDPs).

1 Java and Object Oriented Programming

Java is a publicly available language developed by Sun Microsystems. The main characteristics
that Sun intended to have in Java are:

e Object-Oriented.

Robust.

Secure.

Architecture Neutral
Portable

High Performance
Interpreted
Threaded

Dynamic

Object Oriented Programming (OOP) is not a new idea. However it has not have an increased
development until recently. OOP is based on four key principles:

abstraction.
encapsulation
inheritance

polymorphism

An excellent explanation of OOP and the Java programming language can be found in [7].

The abstraction capability is the one that interests us most. Java allows us to define abstract
types like Actions, States, etc. We also define abstract functions like immediateCost(). We can
program the algorithm in terms of this abstract objects and functions, creating a flexible tool. This
tool can be used to define and solve DP problems. All the user has to do is to implement the
abstract functions. What it is particularly nice is that if a function is declared as abstract, then
the compiler itself will require the user to implement it before attempting to run the model.

2 Markov Decision Process - The Mathematical Model

The general problems that can be modeled and solved with the present framework can be classified
in finite or infinite horizon problems. In any of these cases, the problem can be deterministic or
stochastic. See Figure

Deterministic Stochastic

Finite Mhorizon

|

Total reward Total reward

|
I ! }
Average reward Discounted
per stage reward

Figure 1: Taxonomy for MDP problems. WARNNING: “rewards” need to be changed to “costs”.

The deterministic problems are known as Dynamic Programming problems, and the stochastic

problems are commonly called MDPs.

2.1 Finite Horizon Problems

We will show how a Markov Decision Process is built. Consider a discrete space, discrete time,
bivariate random process {(X¢, A;),t = 0,1,...,T}. Each of the X; € S, represents the state of
the system at stage ¢, and each A; € A; is the action taken at that stage. The quantity T' < oo
is called the horizon of the problem. The sets S; and A; are called the space state and the action
space, respectively, and represent the states and actions available at stage t; we will assume that
both are finite. The dynamics of the system are defined by two elements. First, we assume the
system has the following Markov property

P{Xiy1 =j| Xy =i, Ay = a}
=P{Xip=j|Xe =i, A =0, X411 =01, Q41 =ar—1,...,Xo =1lp}.

We call piji(a) = P{X+1 = j| X =i, Ay = a} the transition probabilities. Next, actions are taken
when a state is realized. In general the action taken depends on the history of the process up to
time ¢, i.e. Hy = (Xo, Ao, X1, 41,..., X4—1,Ar—1, Xt). A decision rule is a function m; that given
a history realization assign a probability distributions over the set A. A sequence of decision rules
m = (mo, 71, ...,7mr) is called a policy. We call IT is the set of all policies. A policy is called Markov
if given X; all previous history becomes irrelevant, that is

Pﬂ{At = G|Xt =1, A1 = ap—1, Xp—1 = 441, .. } = Pﬂ{At = a|Xt = i}v

where we use Pr{-} to denote the probability measure (on events defined by (X}, A;)) induced by
w. A Markov policy is called stationary if for all t =0,1,..., and all i € S and a € A,

Po{A; = a| Xy = i} = Pr{Ay = a| X = i}.

Notice that a stationary policy is completely determined by a single decision rule, and we have
7w = (mo, T, T, - - .). A Markov policy is called deterministic if there is a function fi(i) € A such
that
1 ifa= fi(i)

0 otherwise.

P{At :a|Xt :’L} == {

Whenever action a taken from state i at stage ¢, a finite cost ¢(4,a) is incurred. Consequently it
is possible to define a total expected cost vf (i) obtained from time ¢ to the final stage 7' following
policy m; this is called the value function

T
Z Cs(Xsa As)

s=t

vi (1) = Ex

&:4,ie& (1)

where E is the expectation operator following the probability distribution associated with policy
7. The problem is to find the policy 7 € I, that maximizes the objective function shown above.

Vi (i) = inf o7 ().

Such optimal value function can be shown to satisfy Bellman’s optimality equation

v; (1) = min {ct(i,a)—i— Z pijt(a)v;rl(j)}, ieS,t=0,1,...,T—1. (2)

a€A() JES(1,a)

where Ay(7) is the set of feasible actions that can be taken from state i at stage ¢ and Sy(i,a) is the
set of reachable states from state ¢ taking action a at stage t. Observe that equation implies an
algorithm to solve the optimal value function, and consequently the optimal policy. It starts from
some final values of vr(i) and solves backward the optimal decisions for the other stages. Since
the action space A; is finite, the Bellman equation shows that it is possible to find a deterministic
decision rule f;(i) (and hence a deterministic policy) that is optimal, by choosing in every stage in
every state the action that maximizes the right hand side (breaking ties arbitrarily).

2.2 Infinite Horizon Problems

Consider a discrete space discrete time bivariate random process {(Xy, A;),t € N}. Notice the
time horizon is now infinite. Solving a general problem like this is difficult unless we make some
assumptions about the regularity of the system. In particular we will assume that the the system is
time homogeneous, this means that at every stage the space state and action space remain constant
and the transition probabilities are independent of time p;ji(a) = pij(a) = P{Xi1 = j|X; =
i,Ay = a} for all t = 0,1,.... Costs are also time homogeneous so ¢(i,a) = ¢(i,a) stands for
the cost incurred when action a is taken from state i. However, it is customary to define two
objective functions, besides total cost: discounted cost, and average cost. We will explain these
three problems in the next subsections.

2.2.1 Discounted Cost

In the discounted cost problem the costs in the first stages are more important than the later ones.
In particular, a cost incurred at time ¢ is assumed to have a present value a'r(i,a), where 0 < @ < 1
is a discount factor. If the interest per period is r then aw = 1/(1+47). The total expected discounted
cost gives rise to a value function under policy 7 defined as

vi(i) = By

67

> atc(Xt,At)‘Xg - 2] . ieS (3)
t=0

In this case, the optimal value function is

(i) = inf 7).

v
« well

and it can be shown that it satisfies the following Bellman’s optimality equation

v (i) = min {c<¢,a>+a 3 pij<a>vz;<j>}, ies, (4)

a€A(3) 5t

where A(1) is the set of feasible actions from state ¢ in any stage and S(i, a) is the set of reachable
states. Notice that since ¢ does not appear in the equation it is possible to find an stationary policy
that is optimal.

There are various algorithms for solving the discounted cost problem. One of them is almost
implicit in equation . The algorithm is called Value Iteration and begins with some initial values
o) (1) and iteratively defines the n-th iteration value function e (7) in terms of oY (1) according
to

) = min {(Ve 3 p,-j<a>vg“><j>}7 ies.

It can be shown that for 0 < o < 1 the algorithm converges regardless of the initial function. For
further details see Bertsekas[2] or Stidham[6]. If the algorithm has stopped after N iterations ,
then the recommended policy will be

f(i):argmin{c(i,a)—i-a Z pij(a)v&N)(j)}, ieS.

acA(i) JjES(i,a)

A policy is said to be e-optimal if its corresponding value function satisfies max |vg(z) — v*(i)| < e.

If the previous algorithm stops when max \vén) (1) —véﬂfl)(iﬂ < €(l—a)/(2a)) then it can be shown

that the stationary policy m = (f, f,...) is e-optimal.

The Policy Iteration algorithm starts with a deterministic policy f(i) and through a series of
iterations find improving policies. In every iteration for a given policy f(i) its corresponding value
function is computed solving the following linear system

V(@) =cli, f(D)) +a Y py(FO) (), i€s, ()
JES(i,f(9)

where v/ (i) if the total expected discounted cost under the deterministic stationary policy m =
{f, f, f,-..}. A new policy f’ is found through the following policy-improvement step

f’(i)zargmin{C(i,f(i))Jra 5 pij<f<z'>>vf<j>}, ies.
a€A(1) j€S(i,a)

After a succession of value computation and policy improvement steps the algorithm stops when no
further improvement can be obtained. This guarantees an optimal solution instead of an e-optimal
one, but can be very time consuming to solve the systems. The discounted cost problem can also
be solved with a linear program. See [6] for details.

2.2.2 Total Cost

The value function in the total cost case is given by

v™ (i) = Ex

Zc(Xt,At)‘Xg - z] , Q€S
t=0

and the optimal value function is
v*(i) = sup v™ (%)
mell

The total cost problem can be thought of as a discounted cost with o = 1. However, the algorithms
presented do not work in this case. The policy evaluation in the policy iteration algorithm fails
since the linear system is always singular; and there is no guarantee that the value iteration
algorithm converges unless we impose some additional condition. This is due to the fact that the
total cost might be infinite. One of the conditions is to assume that there exists an absorbing
state with zero-cost and that every policy eventually reaches it. (Weaker conditions can also be
used, see [2]). This problem is also called the Stochastic Shortest Path’indexStochastic Shortest
Path problem, since since if expected total cost can be thought of as the minimal expected cost
accumulated before absorption in a graph with random costs.

2.2.3 Average Cost

In an ergodic chain that reaches stable state, the steady state probabilities are independent of the
initial state of the system. Intuitively, the average cost per stage should be a constant regardless
of the initial state. So the value function is

1
77(i) = lim —Ey,

T
Zc(Xt,At)‘Xo - z] , €S
t=0

and the optimal value function is the same for every state

g=7(i) = inf 7°(7)

The average cost per stage problem can be obtained by solving the following linear program

g:r%i;l Z Z c(i,a)xiq (6a)

i€S acAl(i)

s.t. Z Z pij(a):pia = Z Tja 7 eSS (6b)
a€A(j) {i:5€S(3,a)} a€A(7)

and Z Z Tig = 1, (6¢)

€S aC A(d)
where the solution is interpreted as

a:ia:limP{Xt:i,At:a} iGS,GGA(i).
t—0

The equation is the average cost per transition in steady state, are analogous to the
balance equations in every markovian system and is the normalization condition. The optimal
policy can be obtained after the LP has been solved as
Tiq,

771(&) == P{At = a|Xt = Z} = m
beA(7) 7

i€ S,a€ Ai)

It can be shown that for every i € S the is only one a € A(%) that is positive, so the optimal policy
is always deterministic. There is also an iterative solution based on a modification of the value
iteration algorithm. See [5] for details.

Remark 1 It may seem to the reader that the infinite horizon admits more type of cost functions
that the finite counterpart. That is not the case. The fact that the cost function depends on t, allows
us to define a discounted cost as ¢i(i,a) = a'c(i,a), and an average cost as ¢y(i,a) = Fc(i, a).

2.3 Deterministic Dynamic Programming

This is a particular case of the finite horizon problem defined earlier. When the set of reachable
states St(i, a) has only one state for all t € N, i € S, a € A, then it is clear that all the probability
of reaching this state has to be 1.0, and 0 for every other state. This would be a deterministic
transition. So it is possible to define a transition function h: S x A x N — &, that assigns to each
state and action to be taken at the given stage, a unique destination state. Under this conditions,
the Bellman equation would look like

v(i) = min {ct(z’,a) + vyt (h(i,a,t))}, 1€S,teN.
Naturally, there are also infinite horizon counterparts as in the probabilistic case.

2.4 Main modeling elements in MDP

Recall the Bellman equation . As explained before, X; and A; are the state and the action taken
at stage t respectively. The set A;(7) is the set of actions that can be taken from state i at stage t.
So the optimal action is selected only from this feasible action set, for the statement to make sense.
In the equation, the first cost is taken, and then it is added to the expected future value function.

The expected future value function is a sum over the states in S;(i,a). This is the set of
reachable states from state ¢ given that action a is taken at stage t. If this set was not defined,
then the sum would be over all the possible states S, and its value would be the same, only that
there would be many probabilities equal to zero.

As a summary, if the elements in Table [I] are clearly identified, then it is possible to say that
the Markov Decision Process has been defined.

Element Mathematical
representation
States X, e$
Actions Are A
Feasible actions Ay (7)
Reachable states Si(i,a)
Transition probabilities piji(a)
Costs c(i, a)

Table 1: Main elements

3 Framework Design

As stated before, the intention is to make this framework as easy to use as possible. An analogy
is stated between the mathematical elements presented above and the computational elements
that will be explained. There is first a general overview of the framework, and specific details of
each structure will be presented afterwards. This first part should be enough to understand the
examples.

The framework is divided in two packages. The modeling package is called jmdp, and the solving

package is jmpd.solvers. The user does not need to interact with this second one, because a standard
solver is defined for every type of problem. However, as the user gains experience he mights want
to fine-tune the solvers or even define his/her own solver by using the package jmdp.solvers.

The following steps will show how to model a problem. An inventory problem will be used.

1. Defining the states. The first thing to do when modeling a problem, is to define which will
be the states. Each state X is represented by an object or class, and the user must modify the
attributes to satisfy the needs of each problem. The class State is declared abstract and can
not be used explicitly; the user must extend class State and define his own state for each type
of problem. Once each state has been defined, a set of states S can be defined with the class
States. For example, in an inventory problem, the states are inventory levels. The following
file defines such a class. It has a constructor, and, very important implemente compareTo() to
establish a total ordering among the states. If no comparator is provided, then the sorting
will be made according to the name, which might be very inefficient in real problems.

File InvLevel.java

/%
x Created on 26/06/2004

by

package examples.jmdp;

import jmarkov.MarkovProcess;
import jmarkov.basic.PropertiesState;

[%k
x This class allows to represent a State with a songle integer.
% It’s used in many of the examples.
x @author German Riano, Andres Sarmiento. Universida de los Andes

*/

public class InvLevel extends PropertiesState {

/%

*+ Default constructor.

x @param k The level
i/

public InvLevel(int k) {
super (new int [] {k});

}
/%

* Return the inventory level
*k

x @return The level.
*/

public int getLevel () {
return prop[0];

}

@OQOverride
public String label() {
return "Level 7 4+ getLevel ();

}
e

* @see jmarkov.basic.State#computeMOPs(MarkovProcess)
Y
@Override
public void computeMOPs(MarkovProcess mp) {
// TODO Auto—generated method stub

e
* @see jmarkov.basic.State#isConsistent ()
*/
@Override
public boolean isConsistent () {
// TODO Auto—generated method stub
return true;

2. Defining the actions.The next step is to define the actions of the problem. Again, each
action A; is represented by an object called Action, and this is an abstract class that must
be extended in order to use it. In an inventory problem, the actions that can be taken from
each state are orders placed.

File Order.java

package examples.jmdp;
import jmarkov.basic.Action;

IES:

% This class represents an order in an inventory system.
x It is used in many of the Examples.

*

* @author German Riano, Andres Sarmiento

*/

public class Order extends Action {
private int size;

L

x Defualt constructor.
x @param k
o
Order (int k
size
}

@OQOverride

public String label() {
return " Order 7 + size + 7

}

public int compareTo(Action a) {
if (a instanceof Order)
return (size — ((Order) a).size);
else
throw new IllegalArgumentException (
”Comparing with different type of Action.”);

Recives the size order.

) {

Units” ;

}
e

x @Qreturn Returns the order
*/
public final int getSize() {
return size;
}

size.

3. Defining the problem. In some way, the states and actions are independent of the problem
itself. The rest of the modeling corresponds to the problem’s structure that is also represented
by an object. In this case, the object is more complex than the ones defined earlier, but it
combines the important aspects of the problem. The classes that represent the problem are
also abstract classes and must be extended in order to be used. See table for reference on
which class to extend for each type of problem.

Type of Problem Class to be extended

Finite Horizon Dynamic Programming Problem
Infinite Horizon Dynamic Programming Problem
Finite Horizon MDP
Infinite Horizon MDP

FiniteDP<S,A>
InfiniteDP<S, A
FiniteMDP<S,A>

InifiniteMDP<S,A>

Table 2: Types of Problems

public class InventoryProblem extends FiniteMDP<InvLevel ,Order>{

}

Once one of these classes is extended in a blank editor file, compilation errors will prompt
up. This doesn’t mean the user has done anything wrong, it is just a way to make sure all
the requisites are fulfilled before solving the problem. Java has a feature called generics that

allows safe type transitions. In the examples, whenever S is used, it stands for S extends State
that is the class being used to represent a state. In the same way A is the representation of
A extends Action. In the inventory example, class FiniteMDP<S,A> will be extended and the
editor will indicate the user that there are compilation errors because some methods have
not yet been implemented. This means the user must implement this methods in order to
model the problem, and also for the program to compile. It is necessary that the state and
the action that were defined earlier are indicated in the field <S,A> as state and action as
shown in the example. This will allow the methods to know that this class is using these two
as states and actions respectively.

. Feasible actions. The first of these methods is public Actions getActions(S i, int t). For a
given state ¢ this method must return the set of feasible actions .A(i) that can be taken at
stage t. Notice that the declaration of the method takes element i as of type S but in the
concrete example, the compiler knows the states that are being used are called InvLevel and
so changes the type.

public Actions getActions(InvLevel i, int t){
Actions<Order> actionSet = new ActionsCollection<Order >();
for (int n=0; n<=K-i.level; n++){

actionSet .add (new Order(n));

}

return actionSet ;

}

The example procedure returns the actions corresponding to the set {0,1,..., K — i}, the
user can declare an empty set called actionSet of type ActionsCollection<Order>, which is an
easy-to-use extension of Actions<A>. The generics use is indicating that the set will store
objects of type Order. Then for each iteration of the for cycle, create a new order and this
new action is added to the set. After adding all the actions needed, the method returns the
set of actions.

. Reachable states. The second method in the class FiniteMDP<S,A> that must be im-
plemented public States reachable(S i, A a, int t) indicates the set of reachable states S;(i,a)
from state ¢ and given that action a is taken at stage ¢ . The example shows how to de-
fine the set of states {0,1,...,a + i}. First declare an empty set called statesSet of type
StatesCollection <InvLevel> which is an easy-to-use extension of States<S>, that indicates this
set will store objects of type InvLevel. Then a for cycle adds a state for each value between 0
and a + 1.

public States reachable(InvLevel i, Order a) {
States<InvLevel> statesSet = new StatesCollection<InvLevel >();
for (int n=0;n<=a.size+i.level ;n++)
statesSet .add(new InvLevel(n));
return statesSet ;

}

. Transition Probabilities. The method public double prob(S i, S j, A a) is still pending to
be implemented and represents the transition probabilities pjj.(a).

. Costs. The final method is the one representing the cost ¢;(i,a) received by taking action
a from state i represented by the method public double immediateCost(S i, A a). Once these
methods are implemented the class should compile.

. The main method. In order to test the model and solve it, the class may also have a main
method. This is of course not necessary, since the class can be called from other classes

10

or programs provided you have been careful to declare it constructor public. The following
example shows that the name of the class extending FiniteMDP is InventoryProblem so the main
method must first declare an object of that type, with the necessary parameters determined
in the constructor method. Then the solve() method must be called from such and the
problem will call a default solver, solve the problem, store the optimal solution internally.
You can obtain information about the optimal policy and value functions by calling the
getOptimalPolicy() and getoptimalValue() methods. There is also a convenience method called
printSolution () which prints the solution in standard output.

public static void main(String args[]) {

InventoryProblem prob = new InventoryProblem (maxInventory ,
maxItemsPerOrder, truckCost, holdingCost , theta);

prob.solve ()
prob.printSolution ()

}
MDP
Solver
States
- -'| State 1 |
1
i MyProblem
; - MyState \ y
; Actions
: Solver solver
ol - ¥ Policy policy
: ! @ / States states
.1
it
! : MyAction *Actions getActions(State i)
' Policy «States reachable(State i, Action a)
N «double prob(State i, State j, Action a)
o «double immediateCost(State i, Action a)
Figure 2: Problem’s structure.
Element Mathematical Computational
representation representation
States X eS8 public class MyState extends State
Actions A e A public class MyAction extends Action
Process { Xy, A} public class MyProblem extends FiniteMDP<S,A>
Feasible actions Ay (1) public Actions getActions(S i, int t)
Reachable states Si(i,a) public States reachable(S i, A a, int t)
Transition probabilities pijt(a) public double prob(S i, S j, A a, int t)
Costs ce(i,a) public double immediateCost(S i, A a, int t)

For details on the construction of specifc sets, modifying the solver or solver options, see the
Java documentation and the Advanced Features section.

11

4 Examples

This sections shows some problems and their solution with JMDP in order to illustrate its use. The
examples cover the usage of the DP, FiniteMDP, and InfiniteMDP classes.

4.1 Deterministic inventory problem

Consider a car dealer selling identical cars. All the orders to the distributor have to be placed
on Friday eve and arrive on Monday morning before opening. The car dealer is open Monday to
Friday. Each car is bought at USD $20.000 and sold at USD$22.000. A transporter charges a fixed
fee of USD$500 per truck for carrying the cars from the distributor to the car dealer, and each
truck can carry 6 cars. The exhibit hall has space for 15 cars. If a customer orders a car and there
are not cars available, the car dealer gives him the car a soon as it gets with a USD$1000 discount.
The car dealer does not allow more than 5 pending orders of this type. Holding inventory implies
a cost of capital of 30% annually. The marketing department has handed in the following demand
forecasts, for the next 12 weeks, shown in table (3).

Weeks
t 1 (2(3/4|5|6|7|8[]9]10]| 11112
D, 10436320173 4135

Table 3: Demand forecast.

Let’s first formulate the mathematical model, and then the computational one. The parameters
in the word problem are in Table

Fixed cost per truck.

Unit cost.

Unit price.

Demand at week ¢.

Holding cost per unit per week.
Backorder cost.

Maximum exhibit hall capacity.
Maximum backorders allowed.
Truck’s capacity.

Maximum weeks to model.

Table 4: Parameters

The problem will be solved using dynamic programming to determine the appropriate amount
to order in each week in order to minimize the costs. The problem has a finite horizon and is
deterministic.

1. States. Each state X; is the inventory level at each stage ¢, where the stages are the weeks.
When there are backorders, they will be denoted as a negative inventory level. The set of
states S = {—B,...,0,..., M} are all the levels between the negative maximum backorders
adn the maximum inventory level.

2. Actions. Each action A; is the order placed in each stage t. The complete set of actions are
the orders from 0 to the addition of the maximum exhibit hall’s capacity and the maximum
backorders allowed. A = {0,...,B+ M}.

12

3. Feasible Actions. For each state ¢ the feasible actions that can be taken are those that will
not exceed the exhibit hall’s capacity. Ordering 0 is the minimum order and is feasible in
every state. The maximum order feasible is M — i, so the feasible set of actions for each state
iis A(i) ={0,..., M —i}.

4. Destination. The destination state when action a is taken from state 7 is the sum of the cars
in that state and the cars that are ordered, minus the cars that are sold. h(i,a,t) =i+a— D;.

5. Costs. Finally, the cost incured depends on various factors. The ordering cost is only charged
when the order is positive, and charged per truck. The holding cost is charged only when
there is positive stock, and the backorder cost charged only when there is negative stock.
There is finally a profit for selling each car given by the difference between price and cost.

octo =%

. . —ib ifi <0
HC(@) + BCG) = { ih ifi>0
ri(i,a) = OC(a) + HC(i) + BC(i) + (p — ¢) Dy
Now, computationally, the file would look like this.
File WagnerWhitin.java

package examples.jmdp;

import jmarkov.basic.Actions;

import jmarkov.basic.ActionsSet;

import jmarkov.basic.StatesSet;

import jmarkov.basic.exceptions.SolverException;
import jmarkov.jmdp.FiniteDP ;

import jmarkov.jmdp.solvers. FiniteSolver;

IET:
x This example solves an deterministic, dynamic lot—sizing problem, also known
* as a Wagner Whitin problem.

*

x @Qauthor Andres Sarmiento, German Riano — Universidad de Los Andes

*/

public class WagnerWhitin extends FiniteDP<InvLevel, Order> {
int lastStage , maxInventory, maxBackorders, truckSize;

double K, b, h, price, cost;
int [|] demand;

// Constructor

IEE:

* Crates a dynamic economic lot sizing problem to be solved by Wagner
* Whitin algorithm .

*

* @param initiallnventory

* Inventory at time t=0.

13

@param lastStage
the last stage of the problem
@param maxInventory
maximum physical capacity in inventory, warehouse size.
@param maxBackorders
maximum backorders allowed
@param truckSize
maximum items in each fixed cost order. Orders can be greater
than this value, but will be charged more than one fixed cost|.
@param K
fixed cost per order
@param b
unit cost per backordered item per stage
@param price
unit price for all stages
@param cost
unit costo for all stages
@param h
inventory percentual holding cost as a fraction of cost
@param demand
demand of items in each stage

¥ X X X K K K K K K K XXX X X X K K X ¥

*/

public WagnerWhitin(int initiallnventory , int lastStage, int maxInventory,

int maxBackorders, int truckSize, double K, double b, double price,
double cost, double h, int[] demand) {

super (new StatesSet<InvLevel>(new InvLevel(initiallnventory)),

lastStage);

this. maxInventory = maxInventory;

this.maxBackorders = maxBackorders;

this.truckSize = truckSize;

this .K = K;

this.b = b;

this.h = h;
this.demand = demand;
this.price = price;
this.cost = cost;
init ();

}

void init () {// This method builds all the states and the actions.
Order acts[] = new Order[this.maxInventory + maxBackorders + 1];
InvLevel ssts|[] = new InvLevel [maxInventory + maxBackorders + 1]
for (int k = 0; k < maxInventory + maxBackorders + 1; k++) {
acts [k] = new Order(k);
ssts[k] = new InvLevel(k — maxBackorders);

)

}

// states = new StatesCollection<InvLevel>(ssts);

private double holdingCost (int x) {
return (x > 0) ? h % cost *x x : 0.0;
} // holding cost

private double orderCost (int x) {

14

return (x > 0) ? Math. ceil ((double) x / truckSize) « K : 0.0;
} // Order cost

double backorderCost(int x) {
return (x < 0) ? —b % x : 0.0;
}

double lostOrderCost(int x, int t) {
return (x + maxBackorders < demand[t]) ? (price — cost)
% (demand[t] — x — maxBackorders) : 0.0;

}
IEE:

Returns the optimal cost for this level of starting inventory.

@return The optimal cost for this level of starting inventory.
@throws SolverException

*/

public double getOptimalCost(int inventory) throws SolverException {
return getOptimalValueFunction (). get (new InvLevel(inventory));

}

@Override
public double immediateCost(InvLevel i, Order a, int t) {
int s = i.getLevel ();
int o = a.getSize ();
return lostOrderCost(o, t) + orderCost (o) + holdingCost(s + o)
+ backorderCost (s + 0);
// return —2000%(Math.max(s+o—demand[t],0))+ holding(s + o, t)+
// orderCost (o, t);

3
*
% @param inventory
*
*

}

@QOverride

public double finalCost (InvLevel i) {
return 0.0;

}

@Override
public Actions<Order> feasibleActions (InvLevel i, int t) {
ActionsSet<Order> actionSet = new ActionsSet<Order >();
int min_order = Math.max(—maxBackorders — i.getLevel() + demand[t], 0);
int max_order = maxInventory — i.getLevel() + demand|[t];
for (int n = min_order; n <= max_order; n++) {
actionSet .add (new Order(n));
}

return actionSet;

}

@Override
public InvLevel destination (InvLevel i, Order a, int t) {
int o = a.getSize ();
int iLevel = i.getLevel ();
return new InvLevel(Math.max(iLevel + o — demand[t], —maxBackorders));

15

Test Program.

*
*
* @param a
* @throws Exception
y
public static void main(String a[]) throws Exception {

int lastStage = 12;

int maxInventory = 15;

int maxBackorders = 5;

int truckSize = 6;

double K = 500;

double b = 2000;

double p = 22000;

double ¢ = 20000;

double h = Math.pow (1.3, 1.0 / 52) — 1.0;

int [] demand = new int[] { 10, 4, 3, 6, 3, 2, 0, 1, 7, 3, 4, 5 };

WagnerWhitin prob = new WagnerWhitin (0, lastStage , maxInventory,
maxBackorders, truckSize, K, b, p, ¢, h, demand);

FiniteSolver<InvLevel , Order> theSolver = new FiniteSolver<InvLevel, O1
prob);

prob.setSolver (theSolver);

prob.solve ();

prob.getSolver ().setPrintValueFunction (true);

// System.out.println (theSolver.bestPolicy (initial));

prob.printSolution ();

prob.getOptimalCost (0);

4.2 Finite horizon stochastic inventory problem

Consider the car dealer in the past example. The car dealer selling identical cars. All the orders
placed to the distributor arrive on Monday morning. The car dealer is open Monday to Friday.
Each car is bought at USD $20.000 and sold at USD$22.000. A transporter charges a fixed fee of
USD$500 per truck for carrying the cars from the distributor to the car dealer, and each truck can
carry 6 cars. The exhibit hall has space for 15 cars. If a customer orders a car and there are not
cars available, the car dealer gives him the car a soon as it gets with a USD$1000 discount. The
car dealer does not allow more than 5 pending orders of this type. Holding inventory implies a cost
of capital of 30% annually. Now instead of receiving demand forecasts, marketing department has
informed that the demand follows a Poisson process.

The parameters of the problem are shown in table

The problem is a finite horizon stochastic problem. Markov Decision Processes can be used in
order to minimize the costs.

1. States. Each state X; is the inventory level at each stage ¢, where the stages are the weeks.
When there are backorders, they will be denoted as a negative inventory level. The set of
states S = {—B,...,0,..., M} are all the levels between the negative maximum backorders
adn the maximum inventory level.

2. Actions. Each action A; is the order placed in each stage t. The complete set of actions are

16

der>(

Fixed cost per truck.

Unit cost.

Unit price.

Holding cost per unit per week.
Backorder cost.

Maximum exhibit hall capacity.
Maximum backorders allowed.
Truck’s capacity.

maximum weeks to model.
Random variable that represents the weekly demand.
Demand’s mean per week t.
P{Dt = n}

P{Dt >= TL}

’§%pﬂhm§@:~@ow

Q
3

Table 5: Parameters

the orders from 0 to the addition of the maximum exhibit hall’s capacity and the maximum
backorders allowed. A ={0,...,B+ M}.

. Feasible Actions. For each state ¢ the feasible actions that can be taken are those that will
not exceed the exhibit hall’s capacity. Ordering 0 is the minimum order and is feasible in
every state. The maximum order feasible is M — ¢, so the feasible set of actions for each state
iis A(i) ={0,..., M —i}.

. Reachable States. The minimum reachable state when action a is taken from state ¢ would
be —B, when the demand is maximum (b + 4). The maximum reachable state when action a
is taken from state ¢ is ¢ when the demand is minimum (0). So the set of reachable states are
all the states ranging between these two: S;(i,a) = {—B,...,i}.

. Costs. The net profit (minus cost) obtained depends on various factors. The ordering cost is
only charged when the order is positive, and charged per truck.

octo)= [2]

The holding cost is charged only when there is positive stock, and the backorder cost charged
only when there is negative stock.

—b ifi <0

HC(z‘)+BC(i)={ ih ifi>0

17

Finally, there is an expected lost sales cost (Using © =i+ a + B):

)
ED;—a] = > (d—2)pq
d=z+1
) [e%S)
= > dpa—) apa
d=z+1 d=x+1
) 00
gle—?
=D d—g— T > pa
d=z+1 d=z+1
et 9d71679
=0
(d _ 1)| q+1
d=x+1
)
=0) pa1— TG
d=z+1
[eS)
=0 Zpd — Tqz+1
d=x

()_w(qyc _pz)

=0 qx
= 9(%: - pz) — TGz

Now, computationally, the file would look like this.

File StochasticDemand.java,

package examples.jmdp;

import jmarkov.basic.Actions;
import jmarkov.basic.ActionsSet;
import jmarkov.basic.States;
import jmarkov.basic.StatesSet;
import jmarkov.jmdp.FiniteMDP ;

//TODO explain !!

[#%

x This class belongs to the examples supplied in the package jmdp. The
objective of this file is to show as clear as possible a simple way to use
the jmdp package as a tool for solving real life problems. The complete
details of the present problems are explained in the documentation.

EE S

x @Qauthor Andres Sarmiento, German Riano — Universidad de Los Andes
ptl/blic class StochasticDemand extends FiniteMDP<InvLevel, Order> {
int lastStage , maxInventory, maxBackorders, truckSize;
double K, b, h, theta, price, cost;
double [] demandProbability , demandCumulativeProbability;

// demandProbabililty [i] = P[Demand = 1i]
// demandCDF[i] = P{Demand >= i}

// Constructor

18

*

@param initSet
Initial level of inventory of the system
@param lastStage
the last stage of the problem
@param maxInventory
maximum physical capacity in inventory, warehouse size.
@param maxBackorders
maximum backorders allowed
@param truckSize
maximum items in each fixed cost order. Orders can be greater
than this value, but will be charged more than one fixed cost|.
@param K
fixed cost per order
@param b
unit cost per backordered item per stage
@param price
unit price for all stages
@param cost
unit costo for all stages
@param h
inventory percentual holding cost as a fraction of cost
@param theta
demand mean

¥R X X K K K K K K XK X X X X X X K K K K X X X X

~

public StochasticDemand (States<InvLevel> initSet , int lastStage,
int maxInventory, int maxBackorders, int truckSize , double K,
double b, double price, double cost, double h, double theta) {
super (initSet , lastStage);

this.maxInventory = maxInventory;
this. maxBackorders = maxBackorders;
this.truckSize = truckSize;

this .K = K;

this.b = b;

this.price = price;

this.cost = cost;

this.h = h;

this.theta = theta;
// initStates ();
initializeProbabilities ();

}

double holdingCost (int x) {
double temp = (x > 0) ? h % cost * x : 0.0;
return temp;

} // holding cost

double orderCost (int x) {
double temp = (x > 0) ? Math. ceil ((new Integer(x)).doubleValue ()
/ truckSize)
* K /% + x % cost x/: 0.0;
return temp;
} // Order cost

double backorderCost(double x) {

19

return (x < 0) ? —=b * x : 0.0;

}

double lostOrderCost (int x) {
int mB = maxBackorders;
double expectedBackorders = 0;
for (int n = Math.max(x + 1, 0); n <= x + mB; n++)
expectedBackorders 4= (n — x) % demandProbability [n];

double expectedLostDemand = demandCumulativeProbability [x + mB]

* (theta — x — mB) + (x + mB) % demandProbability [x + mB];
return (price — cost) * expectedLostDemand

+ backorderCost(—expectedBackorders);

0

}

@Override

public double finalCost (InvLevel i) {
return 0.0;

}

// see documentation for the explanation for this formula

@OQOverride

public double prob(InvLevel i, InvLevel j, Order a, int t) {
int iLevel = i.getLevel();
int jLevel = j.getLevel ();
int orderSize = a.getSize ();

// with stock & demand is positive & order is feasable
if ((—maxBackorders < jLevel) && (jLevel <= orderSize + iLevel)
&& (orderSize + iLevel <= maxInventory))

return demandProbability [orderSize + iLevel — jLevel];
else if ((orderSize + iLevel <= maxInventory)
&& (jLevel =— —maxBackorders)) // End up stockless
return demandCumulativeProbability [Math.max(orderSize 4+ iLevel , 0)];
else
return 0.0;
}
@Override
public double immediateCost(InvLevel i, Order a, int t) {
int iLevel = i.getLevel ();
int orderSize = a.getSize ();
double toReturn = orderCost(orderSize)
+ holdingCost (iLevel /% 4+ orderSize x/)
+ lostOrderCost (iLevel 4+ orderSize);
return toReturn;
}
void initStates () {
InvLevel ssts[] = new InvLevel [maxInventory + maxBackorders + 1];
for (int n = 0; n <= maxInventory; n++) {
ssts [n] = new InvLevel(n);
}
for (int n = maxInventory + 1; n <= maxInventory + maxBackorders; n++)

ssts[n] = new InvLevel(n — maxInventory — maxBackorders — 1);

}

// states = new StatesCollection<InvLevel>(ssts);

20

}

void initializeProbabilities () {
demandProbability = new double[maxInventory + maxBackorders + 1];
demandCumulativeProbability = new double[maxInventory + maxBackorders
+ 10
demandProbability [0] = Math.exp(—theta);
demandCumulativeProbability [0] = 1; // P[demand >= 0]
double q = 1;
for (int i = 1; i <= maxInventory + maxBackorders; i++) {
q = demandCumulativeProbability [i — 1];
// P{demand >= i}

demandCumulativeProbability [i] = q — demandProbability[i — 1];
// P{demand = i}
demandProbability [i] = demandProbability[i — 1] * theta / i;
}
}
@Override
public Actions<Order> feasibleActions (InvLevel i, int t) {
int max = maxInventory — i.getLevel ();
Order [] vec = new Order [max + 1];
for (int n = 0; n <= max; n++) {
vec[n] = new Order(n);

return new ActionsSet<Order>(vec);

}

@Override
public States<InvLevel> reachable (InvLevel i, Order a, int t) {
StatesSet <InvLevel> statesSet = new StatesSet<InvLevel >();
for (int n = —maxBackorders; n <= i.getLevel() + a.getSize (); n++) {
statesSet .add (new InvLevel(n));
}

return statesSet;

}
/%%

% @param a Not used

* @throws Exception

*/

public static void main(String a[]) throws Exception {
int lastStage = 12;

int maxInventory = 15;
int maxBackorders = 5;
int truckSize = 6;

int K = 500;

double b = 1000;

double h = 0.0050582;// Math.pow (1.3, 1 / 52)—1;

double theta = 4;

double price = 22000;

double cost = 20000;

InvLevel initial = new InvLevel (0);

States<InvLevel> initSet = new StatesSet<InvLevel>(initial);

StochasticDemand pro = new StochasticDemand (initSet , lastStage ,
maxInventory , maxBackorders, truckSize, K, b, price, cost, h,

21

theta);
pro.solve ();
pro.getSolver ().setPrintValueFunction (true);
pro.printSolution ();

4.3 Infinite horizon stochastic inventory problem

Consider the car dealer in the past example. The car dealer selling identical cars. All the orders
placed to the distributor arrive on Monday morning. The car dealer is open Monday to Friday.
Each car is bought at USD $20.000 and sold at USD$22.000. A transporter charges a fixed fee of
USD$500 per truck for carrying the cars from the distributor to the car dealer, and each truck can
carry 6 cars. The exhibit hall has space for 15 cars. If a customer orders a car and there are not
cars available, the car dealer gives him the car a soon as it gets with a USD$1000 discount. The
car dealer does not allow more than 5 pending orders of this type. Holding inventory implies a cost
of capital of 30% annually. Now instead of receiving demand forecasts, marketing department has
informed that the demand follows a Poisson process.
The parameters of the problem are shown in table @

Fixed cost per truck.

Unit cost .

Unit price.

Holding cost per unit per week.
Backorder cost.

Maximum exhibit hall capacity.
Maximum backorders allowed.
Truck’s capacity.

Random variable that represents the weekly demand.
Demand’s mean per week t.
P{Dt = n}

qn P{Dt > ’I’L}

?%phmiwgﬁnw

Table 6: Parameters

The problem is a finite horizon stochastic problem. Markov Decision Processes can be used in
order to minimize the costs.

1. States. Each state X; is the inventory level at each stage t, where the stages are the weeks.
When there are backorders, they will be denoted as a negative inventory level. The set of
states S = {—DB,...,0,..., M} are all the levels between the negative maximum backorders
adn the maximum inventory level.

2. Actions. Each action A; is the order placed in each stage t. The complete set of actions are
the orders from 0 to the addition of the maximum exhibit hall’s capacity and the maximum
backorders allowed. A ={0,...,B+ M}.

3. Feasible Actions. For each state ¢ the feasible actions that can be taken are those that will
not exceed the exhibit hall’s capacity. Ordering 0 is the minimum order and is feasible in
every state. The maximum order feasible is M — 7, so the feasible set of actions for each state
iis A1) ={0,..., M —i}.

22

4. Reachable States. The minimum reachable state when action a is taken from state i would
be —B, when the demand is maximum (b + 7). The maximum reachable state when action a
is taken from state ¢ is ¢ when the demand is minimum (0). So the set of reachable states are
all the states ranging between these two: S¢(i,a) = {—B,...,i}.

5. Cost. The net profit obtained depends on various factors. The ordering cost is only charged
when the order is positive, and charged per truck.

a

00(a) = | 7|

The holding cost is charged only when there is positive stock, and the backorder cost charged
only when there is negative stock.

—ib if ¢ <0

HO() + BCG) = { ih ifi>0

Finally, there is an expected lost sales cost (Using =i 4+ a + B):

o0
ED;—a]t = Y (d—2)pa
d=x+1
(o) o
= Z dpg — Z Tpq
d=x+1 d=z+1
(e.) [o.¢]
gle—?
=D AT)
d=x+1 d=z+1
o0
ed—le—O
d=z+1
(e.0)
=0 Z DPd—1 — Tqz+1
d=z+1
(o]
=0 pa— i1
d=x

= Q(Qw) - 33(% - pa:)
=q.(0 —x) + xpy

Now, computationally, the file would look like this.

File InfStochasticDemand.java

package examples.jmdp;

import jmarkov.basic.Actions;

import jmarkov.basic.ActionsSet;

import jmarkov.basic.States;

import jmarkov.basic.StatesSet;

import jmarkov.basic.exceptions.SolverException;

import jmarkov.jmdp .DIMDP;

import jmarkov.jmdp.solvers. PolicylterationSolver;

import jmarkov.jmdp.solvers.RelativeValuelterationSolver;
import jmarkov.jmdp.solvers. ValuelterationSolver;

23

import Jama.Matrix;

//TODO documentar bien
IET:

*

problem. It is modeled like a discounted cost, infinite horizon, Markov
Decision Problem. Demand is assumed to be random according to a Poisson
Process distribution with given rate per period. The system is a periodic

when holding one item in stock from one period to another. There is also a
truckCost ordering cost independent of the size of the order placed. The
objective is to minimize the expected discounted long run cost.

EEE G R SR S S SR I S

@author Germén Riafio and Andres Sarmiento — Universidad de Los Andes

*

*
/
public class InfStochasticDemand extends DIMDE<InvLevel, Order> {
// Problem parameters:
private int maxInv, maxBO, truckSize;
// Cost and demand parameters:
private double truckCost, backorderCost, holdingCost, intRate, expDemand,
price, cost;
private double[] demPMF, demCDF, demandLossl;
private boolean isdisc = false;

// demPMF[i] = P{Demand = i}

// demCDF|[i] = P{Demand <= i}

// demandLossl[i] = E[(Demand — i) "+]
// Constructor

JEE:

*

@param maxInv

maximum physical capacity in inventory , warehouse size.
@param maxBO

maximum backorders allowed
@param truckSize

@param truckCost
fixed cost per order
@param backorderCost
unit cost per backordered item per stage
@param price
unit price
@param cost
unit aquistion costo
@param holdingCost
non—finantial holding cost (it does NOT include finantial
cost)
@param intRate
interest per period
@param expDemand
demand mean
@param discounted
Whether a discounted model (rather than average) is to be
used .

XX X K K K K K K XK X X X X X X K K K K XK X X X

24

This problem is a single item, periodic review, stochastic demand inventory

review problem in which an entity periodically checks the inventory level an
takes decisions according to the states he finds. There is a price of sellin
each item and a cost for buying it. Besides, there is a holding cost incurre

maximum items in each fixed cost order. Orders can be greater
than this value, but will be charged more than one fixed cost|.

0. 09

*/

@SuppressWarnings (” unchecked”)
public InfStochasticDemand (int maxInv, int maxBO, int truckSize,

double truckCost, double backorderCost, double price, double cost ,
double holdingCost , double intRate, double expDemand,
boolean discounted) {

super (new StatesSet<InvLevel >(new InvLevel (0)));

this.maxInv = maxInv;

this .maxBO = maxBO;

this.truckSize = truckSize;

this.truckCost = truckCost;

this.backorderCost = backorderCost;

this.price = price;

this.cost = cost;

this. holdingCost = holdingCost;

this.expDemand = expDemand;

// initStates ();

initializeProbabilities ();

this.isdisc = discounted;

this.intRate = intRate;

if (discounted)
setSolver (new ValuelterationSolver (this, intRate));

else
setSolver (new RelativeValuelterationSolver (this));

}

private void initializeProbabilities () {

demPMF = new double [maxInv + maxBO + 1];

demCDF = new double[maxInv + maxBO + 1];

demandLossl = new double [maxInv + maxBO + 1];

double cdf, p = Math.exp(—expDemand);

cdf = demCDF[0] = demPMF[0] = p;

demandLoss1 [0] = expDemand;

int maxlevel = maxInv + maxBO;

for (int i = 1; i <= maxlevel; i++) {
demPMF[i] = (p %= expDemand / i); // P{demand = i}
demCDF[i] = (cdf 4= p); // P{demand <= i}
demandLoss1[i] = (expDemand — i) % (1 — cdf) + expDemand * p;
/] = B[(D-1)"+]

}

@Override
public States<InvLevel> reachable (InvLevel i, Order a) {
StatesSet<InvLevel> statesSet = new StatesSet<InvLevel >();
// Available inventory upon order receival:
int maxLevel = i.getLevel () + a.getSize ();
for (int n = -maxBO; n <= maxLevel; n++) {
statesSet .add(new InvLevel(n));
}

return statesSet;

}

@Override
public double prob(InvLevel i, InvLevel j, Order a) {
int iLevel = i.getLevel ();

25

int jLevel = j.getLevel();

int orderSize = a.getSize ();
// with stock & demand is positive & order is feasable
int demand = orderSize + iLevel — jLevel;
assert (demand >= 0);
try {
if (jLevel = —maxBO)
return 1.0 — ((demand > 0) ? demCDF|[demand — 1] : 0.0);
else

// End up stockless
return demPMF[demand | ;
} catch (IndexOutOfBoundsException e) {
throw new IllegalArgumentException (
7 ’prob’ called on non—reachable state!!. i=" 4+ iLevel
+ 7, j=" + jLevel + 7, a =" + orderSize, e);

}

@Override
public Actions<Order> feasibleActions (InvLevel i) {
int max = maxInv — i.getLevel ();
Order [] vec = new Order [max + 1];
for (int n = 0; n <= max; n++) {
vec[n] = new Order(n);

return new ActionsSet<Order>(vec);

}

double holdingCost (int x) {
double totHoldCost = holdingCost 4+ ((isdisc) ? intRate % cost : 0.0);
return (x > 0) ? totHoldCost * x : 0.0;

} // holding cost

double orderCost (int x) {
return cost = truckCost * Math. ceil ((double) x / truckSize) + x * cost;
} // Order cost

double backorderCost(double x) {
return (x < 0) ? —backorderCost * x : 0.0;
}

// see documentation for the explanation for this formula
@Override
public double immediateCost(InvLevel i, Order a) {
int maxSale = i.getLevel() + a.getSize() + maxBO;
double expectedSales = expDemand — demandLossl[maxSale];
double netProfit = price * expectedSales — orderCost(a.getSize())
— holdingCost (i.getLevel()) — backorderCost(i.getLevel());
return —netProfit;

}
IEE:

* Very stupid method to see what this is doing!!

/

public void printMatrices () {
double [][] cost = new double [maxBO + maxInv + 1][maxBO + maxInv + 1];
double [][]][] prb = new double [maxBO+maxInv + 1][maxBO+maxInv + 1][maxBQ

26

M-maxInv + 1

for (InvLevel s: getAllStates()) {
int i = s.getLevel ();
for (Order o: feasibleActions(s)) {
int a = o.getSize ();
cost [i+maxBO][a] = immediateCost (new InvLevel (i), new Order(a))
for (InvLevel y:reachable(s,o0)) {
int j = y.getLevel();

prb[a][i+maxBO]|[j+maxBO] = prob(new InvLevel(i), new InvLevel(j),

new Order(a));

}

}

(new Matrix(cost)).print (8, 2);

for (int a = 0; a < maxInv; a++) {
(new Matrix(prbfa])). print (10, 6);

}

(new Matrix (new double [][] { demPMF })).print (10, 6);

(new Matrix (new double [][] { demCDF })).print (10, 6);

(new Matrix (new double [][] { demandLossl })).print (10, 6);

}
/%%

* Simple test Program.

*

% @param a

x @throws SolverException

*

/

public static void main(String a[]) throws SolverException {
int maxInventory = 15;
int maxBackorders = 5;
int truckSize = 100;// 6;
int K= 50;// 500;
double b = 600;// 1000;
double h = 80;//
double intRate = Math.pow (1.3, 1 / 52);
double theta = 4;
double price = 1000;// 22000;
double cost = 400;// 20000;

InfStochasticDemand prob = new InfStochasticDemand (maxInventory ,
maxBackorders, truckSize, K, b, price, cost, h, intRate, theta,
true);

PolicylterationSolver <InvLevel, Order> solv = new PolicylterationSolver
prob, 0.9);

prob.setSolver (solv);

prob.getSolver ().setPrintValueFunction (true);
prob.solve ();

prob.printSolution ();

//

RelativeValuelterationSolver<InvLevel , Order> solver = new RelativeValy
prob);

solver .setPrintValueFunction (true);

prob.setSolver (solver);

27

<InvLevel , |

telterationS«

prob.solve ();
prob.printSolution ();

5 Advanced Features

The sections above were intended to show an easy way to use JMDP. The package has some more
features that make it more flexible and powerful than what was shown above. This section is
intended for users that are already familiar with the previous sections and want to customize the
framework according to their specific needs.

5.1 States and Actions

The public abstract class State implements Comparable<State> is declared as an abstract class. As
an abstract class it may not be used directly but must be extended. Abstract classes can’t be used
directly and must be extended.

This class implements Comparable, which implies that objects of type State have some criterion of
order. By default the order mechanism is to order the States according to the String name property.
This is the most general case because allows states such as ”‘Active”’ or ”‘Busy”’ that don’t have
any numerical properties. It is not efficent to organize states in such a way because comparing
Strings is very slow; but this is flexible. In many cases it will be easier to represent the system state
by a vector (i1,19,...,ix) of integers. In this case, it is more efficient to compare states according
to this vector. The class StateArray is an extension of State that has a field called int[] status. This
class changes the Comparable implementation to order the states accorging to status. This is also
an abstract class and must also be extended to be used.

When State objects have to be grouped, for example when the reachable method must return a
set of reachable states, the States<S> structure is the one that handles this operation. This class
is also an abstract class and implements Iterable <S>. There is no restriction on how the user can
store the State objects as long as Iterable<S> is implemented and an public void add(S s) method
is implemented. This means the user can use an array, a list, a set or any other structures. For
beginner users, the class StatesCollection<S> was built to make a faster and easier way to store the
State objects. The StatesCollection<S> class extends States and organizes the objects in a Set from
the java. util . Collections.

It is important to use the generics in a safe mode in the States object and its extensions. The
class is declared as abstract public class States<S extends State> implements Iterable<S>. This
means that Every time a States object is declared, it must specify the type of objects stored in it.
For example: States<MyState> theSet = new StatesCollection<MyState>(); is the right way to ensure
that only objects of type MyState are stored in the object theSet. This also makes the iterator that
the class returns, to iterate over MyState objects.

The behavior of class Action is completely analogous to that of class State. The class is abstract
and must be extended to be used. The default criterion of ordering is alphabetical order of the
name attribute. But there is an ActionArray that can have an integer array stored as properties
representing the action. This objects compare themselves according to the array instead of the
name. The set of actions is called Actions<A extends Action> implements Iterable<A>. This class
does not need to have the add method implemented, but works analogously to class States<S>. For
simplicity, class ActionsCollection<A> stores the objects in a Set from java. util . Collections.

28

5.2 Decision Rules and Policies

The deterministic decision rules m; as referred in the MDP mathematical model, are functions
that assign a single action to each state. The computational object representing a decision rule
is public final class DecisionRule<S extends State, A extends Action>. Probably the most common
method used by a final user will be public A getAction(S i) which returns the Action assigned to
a State. Remember the generics structure where State and Action are only abstract classes. An
example would be: MyAction a = myDecisionR.get Action(new MyState(s));, where only extensions of
State and Action are being used.

Non stationary problems that handle various stages use a policy m = (71, 72,...,mr) that is
represented by the object public final class Policy<S extends State, A extends Action>. A Policy
stores a DecisionRule for each stage. It may be useful to get the action assigned to a state in
a particular stage using the method public A getAction(S i, int t) that used with generics could
look like this: MyAction a = pol.getAction(new Mystate(s), 0); where again State and Action are only
abstract classes that are not used explicitly.

5.3 MDP class

The MDP class is the essence of the problem modeling. This class is extended in order to represent a
Markov decision process or a dynamic programming problem. For each type of problem, a different
extension of class MDP must be extended (See table . Remember always to indicate the name of
the objects that represent the states and the actions extending State and Action respectively; these
are indicated as <S> and <A> in the class declaration.

When declaring a new class public class MyProblem extends FiniteMDP<MyState,MyAction>,
various compilation errors pop up. This doesn’t mean that something was done wrong, it is just
to remember the user that some methods must be implemented for the problem to be completely
modeled. A summary of the methods is shown on table .

Class Abstract Methods
FiniteDP<S,A > public abstract Actions<A> getActions(S i, int t)
public abstract S destination(S i, A a, int t)
public abstract double immediateCost(S i, A a, int t)
FiniteMDP<S,A> public abstract Actions<A> getActions(S i, int t)
public abstract States<S> reachable(S i, A a, int t)
public abstract double prob(S i, S j, A a, int t)
public abstract double immediateCost(S i, A a, int t)
InfiniteMDP<S,A> | public abstract Actions<A> getActions(S i)
public abstract States<S> reachable(S i, A a)
public abstract double prob(S i, S j, A a)
public abstract double immediateCost(S i, A a)

Table 7: Abstract methods.

5.4 Solver classes

The Solver class is a very general abstract class. It requires the implementing class to have a
public void solve() method that reaches a policy that is optimal for the desired problem, and stores
this policy in the Policy <S,A> policy field inside the problem. The current package has a dynamic
programming solver called FiniteSolver, a value iteration solver and a policy iteration solver. The
three of them have convenience methods printSolution () that allow the user to print the solution
in standard output or to a given PrintWriter. For larger models the user might not want to see

29

the solution in the screen, but rather extract all the information through getOptimalPolicy(), and
getOptimal ValueFunction() methods.

5.4.1 FiniteSolver

The public class FiniteSolver<S extends State, A extends Action> extends AbstractFiniteSolver is in-
tended to solve only finite horizon problems. The constructors public FiniteSolver(FiniteMDP<S,A> problem)
only receive problems modeled with FiniteMDP (or FiniteDP) classes, implying that only finite hori-

zon problems can be solved. The objective function is to minimize the total cost presented in
equation , in the mathematical model.

5.4.2 ValuelterationSolver

The public class ValuelterationSolver<S extends State, A extends Action> implements Solver is the
solver class that maximizes the discounted cost vZ presented in equation (3)) on the mathematical
model. The constructor only receives InfiniteMDP<S,A> objects as a problem parameter as shown in
public ValuelterationSolver(InfiniteMDP<S,A> problem, double discountFactor). This shows the class
in only intended to solve infinite horizon, discounted problems.

The algorithm used to solve the problem is the value iteration algorithm that consists on
applying the transformation described on equation repeatedly until the results are € apart. It
can be proved (see Stidham[6]) that the result will be e-optimal. The value functions start in 0.0 by
default, but this default can be changed using public void setInitVal(double val), and this may speed
up the convergence of the algorithm. The € is also an important criterion for the speed convergence
and may be changed from its default value in 0.0001, using public void setEpsilon(double epsilon);
a bigger e will speed up convergence but will make the approximation less accurate.

The Gauss-Seidel modification presented by Bertsekas[2] is used by default and may be deacti-
vated using public void setGaussSeidel(boolean val). This modification will cause the algorithm to
make less iterations because the value function v(7) is changing faster than without the modifica-
tion. It is also possible to activate the Error Bounds modification presented by Bertsekas[2], that is
deactivated by default. This modification changes the stopping criterion and makes each iteration
faster.

Finally, it is possible to print the final value function for each state on screen using the
public void setPrintValueFunction(boolean val) method. In some cases, for comparison purposes,
it may be useful to be able to see the time it took the algorithm to solve the problem by activating
public void setPrintProcessTime(boolean val). The two last options are deactivated by default.

5.4.3 PolicylterationSolver

The public class PolicylterationSolver is also designed to solve only infinite horizon problems and this

is restricted in the arguments of its constructor public PolicylterationSolver (InfiniteMDP<S,A> problem, double disco
that only receives InfiniteMDP<S,A> objects as an argument. This solver maximizes the discounted

cost prv™ presented in equation on the mathematical model. The solver uses the policy itera-

tion algorithm. This algorithm has a step in which a linear system of equation needs to be solved,

so the JMP[3] package is used. This class also allows to print the final value function for each state

on screen using the public void setPrintValueFunction(boolean val) method. The solving time can

be shown by activating public void setPrintProcessTime(boolean val). These two last options are

deactivated by default.

30

6 Further Development

This project is currently under development, and therefore we appreciate all the feedback we can

receive.

References

1]

2]

Bellman, Richard. Dynamic Programming. Princeton, New Jersey: Princeton University
Press, 1957.

Bertsekas, Dimitri. Dynamic Programming and Optimal Control Belmont, Mas-
sachusetts: Athena Scientific, 1995.

Bjorn-Ove, Heinsund. JMP-Sparce Matrix Library in Java, Department of Mathematics,
University of Bergen, Norway, September 2003.

Ciardo, Gianfranco. Tools for Formulating Markov Models in “Computational Probabil-
ity” edited by Winfried Grassman. Kluwer Academic Publishers, USA, 2000.

Puterman, Martin. Markov Decision Processes. John Wiley & Sons Inc.

Stidham, J. Optimal Control of Markov Chains in “Computational Probability” edited
by Winfried Grassman. Kluwer Academic Publishers, USA, 2000.

Van der Linden, Peter. Just Java. The sunsoft Press. 1996

31

Index
e-optimal,

action, [3]
action space, [3]

Bellman’s optimality equation, [3] [4]

cost, [3]

decision rule, [3]
deterministic policy,
Dynamic Programming, 2]

feasible actions, [3]
Finite Horizon Problems,

history,
horizon,

Infinite Horizon Problems,

Markov Decision Process,
Markov policy,

Object Oriented Programming,
0OP, [

policy,
Policy Iteration algorithm,

space state, [3]
stationary policy,

total expected cost,
Transition Probabilities,

value function,
Value Iteration algorithm, []

32

	Java and Object Oriented Programming
	Markov Decision Process - The Mathematical Model
	Finite Horizon Problems
	Infinite Horizon Problems
	Discounted Cost
	Total Cost
	Average Cost

	Deterministic Dynamic Programming
	Main modeling elements in MDP

	Framework Design
	Examples
	Deterministic inventory problem
	Finite horizon stochastic inventory problem
	Infinite horizon stochastic inventory problem

	Advanced Features
	States and Actions
	Decision Rules and Policies
	MDP class
	Solver classes
	FiniteSolver
	ValueIterationSolver
	PolicyIterationSolver

	Further Development

