Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • 16a44b8
  • /
  • tests
  • /
  • test_profiling.py
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:f593c767eae88b4d2e5605d9d8395c45eff6fb84
directory badge Iframe embedding
swh:1:dir:dc3406cfa28082d7a1e3af3a5e9b2a2a24f7ae3d
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
test_profiling.py
# Copyright 2017 the GPflow authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import glob
import os

import numpy as np
import tensorflow as tf

import gpflow
from gpflow.test_util import GPflowTestCase


class TestProfiling(GPflowTestCase):
    def prepare(self):
        with gpflow.defer_build():
            X = np.random.rand(100, 1)
            Y = np.sin(X) + np.random.randn(*X.shape) * 0.01
            k = gpflow.kernels.RBF(1)
            return gpflow.models.GPR(X, Y, k)

    def test_profile(self):
        m = self.prepare()
        s = gpflow.settings.get_settings()
        s.profiling.dump_timeline = True
        s.profiling.output_directory = tf.test.get_temp_dir()
        s.profiling.output_file_name = 'test_trace_profile'

        with gpflow.settings.temp_settings(s):
            with gpflow.session_manager.get_session().as_default():
                m.compile()
                opt = gpflow.train.ScipyOptimizer()
                opt.minimize(m, maxiter=10)

        expected_file = os.path.join(s.profiling.output_directory,
                                     s.profiling.output_file_name + '.json')

        self.assertTrue(os.path.exists(expected_file))
        os.remove(expected_file)


    def test_autoflow(self):
        m = self.prepare()
        s = gpflow.settings.get_settings()
        s.profiling.dump_timeline = True
        s.profiling.output_directory = tf.test.get_temp_dir()
        s.profiling.output_file_name = 'test_trace_autoflow'

        with gpflow.settings.temp_settings(s):
            with gpflow.session_manager.get_session().as_default():
                m.compile()
                m.kern.compute_K_symm(m.X.read_value())

        directory = s.profiling.output_directory
        filename = s.profiling.output_file_name + '.json'
        expected_file = os.path.join(directory, filename)
        self.assertTrue(os.path.exists(expected_file))
        os.remove(expected_file)

        m.clear()
        s.profiling.output_directory = tf.test.get_temp_dir()
        m.compile()

        # TODO(@awav): CHECK IT
        # with self.assertRaises(IOError):
        #     with gpflow.settings.temp_settings(s):
        #        m.kern.compute_K_symm(m.X.read_value())

    def test_eachtime(self):
        m = self.prepare()
        s = gpflow.settings.get_settings()
        s.profiling.dump_timeline = True
        s.profiling.each_time = True
        s.profiling.output_directory = tf.test.get_temp_dir() + '/each_time/'
        name = 'test_eachtime'
        s.profiling.output_file_name = name
        with gpflow.settings.temp_settings(s):
            with gpflow.session_manager.get_session():
                m.compile()
                opt = gpflow.train.ScipyOptimizer()
                opt.minimize(m, maxiter=2)

        pattern = s.profiling.output_directory + '/{name}*.json'.format(name=name)
        for filename in glob.glob(pattern):
            os.remove(filename)

        if os.path.exists(s.profiling.output_directory):
            os.rmdir(s.profiling.output_directory)

if __name__ == "__main__":
    tf.test.main()

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API