Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/arvinsoepriatna/AP_Analysis_Routines_Cardiotoxicity_Microtissues
26 May 2023, 19:39:53 UTC
  • Code
  • Branches (1)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/main
    No releases to show
  • 1215bd4
  • /
  • Python_Scripts
  • /
  • LogisticRegression_CardiotoxicityAlgorithms.ipynb
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:f64103aaf615e01db690533ef4c2f8b1f147b5a3
origin badgedirectory badge Iframe embedding
swh:1:dir:b28d2d0c711972186bd58237e359cde67c393831
origin badgerevision badge
swh:1:rev:3172027cbd78883c5c6e464524afea6fa213cfad
origin badgesnapshot badge
swh:1:snp:ae9c3fb75ef9fd93e883fbae4dc0c938eb9481b4

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: 3172027cbd78883c5c6e464524afea6fa213cfad authored by bumrak on 18 May 2023, 19:50:22 UTC
Update README.md
Tip revision: 3172027
LogisticRegression_CardiotoxicityAlgorithms.ipynb
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Load libraries\n",
    "import numpy as np\n",
    "import pandas as pd\n",
    "from sklearn.linear_model import LogisticRegressionCV \n",
    "from sklearn.model_selection import train_test_split \n",
    "from sklearn.preprocessing import StandardScaler"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Logistic Regression with Experimental Data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Load experimental data \n",
    "E4031_before = pd.read_csv('experiment_data/E4031_before.dat', header=None)\n",
    "E4031_after = pd.read_csv('experiment_data/E4031_after.dat', header=None)\n",
    "Flecainide_before = pd.read_csv('experiment_data/Flecainide_before.dat', header=None)\n",
    "Flecainide_after = pd.read_csv('experiment_data/Flecainide_after.dat', header=None)\n",
    "Nifedipine_before = pd.read_csv('experiment_data/Nifedipine_before.dat', header=None)\n",
    "Nifedipine_after = pd.read_csv('experiment_data/Nifedipine_after.dat', header=None)\n",
    "TTX_before = pd.read_csv('experiment_data/TTX-mold2-before.dat', header=None)\n",
    "TTX_after = pd.read_csv('experiment_data/TTX-mold2-after.dat', header=None)\n",
    "col_names = pd.read_csv('experiment_data/DataLabels.txt').columns.tolist()\n",
    "col_names = [col[1:] for col in col_names]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Calculate metric percentage differences after compound administration\n",
    "E4031_diff = (E4031_after - E4031_before)/E4031_before\n",
    "E4031_diff.columns = col_names[:-1]\n",
    "Flecainide_diff = (Flecainide_after - Flecainide_before)/Flecainide_before\n",
    "Flecainide_diff.columns = col_names[:-1]\n",
    "Nifedipine_diff = (Nifedipine_after - Nifedipine_before)/Nifedipine_before\n",
    "Nifedipine_diff.columns = col_names[:-1]\n",
    "TTX_diff = (TTX_after - TTX_before)/TTX_before\n",
    "TTX_diff.columns = col_names[:-1]\n",
    "\n",
    "#Adjust column labeling\n",
    "E4031_diff['pharm'] = 'E4031'\n",
    "TTX_diff['pharm'] = 'TTX'\n",
    "Flecainide_diff['pharm'] = 'Flec'\n",
    "Nifedipine_diff['pharm'] = 'Nif'\n",
    "\n",
    "E4031_diff['channel_blocked'] = 'kr'\n",
    "TTX_diff['channel_blocked'] = 'na'\n",
    "Flecainide_diff['channel_blocked']  = 'nakr'\n",
    "Nifedipine_diff['channel_blocked']  = 'ca'\n",
    "\n",
    "#Concatenate datasets for all compounds\n",
    "all_data_exp = pd.concat([E4031_diff, Nifedipine_diff, TTX_diff, Flecainide_diff])\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Predictor variable names\n",
    "X_col = ['APD30', 'APD50', 'APD80', 'APDmxr', 'tri', 'rise time', 'stim delay',]\n",
    "\n",
    "#Containers for results\n",
    "test_scores = []\n",
    "channel_scores_exp = [[] for i in range(4)]\n",
    "\n",
    "for i in range(100):\n",
    "    #Divide training and test datasets\n",
    "    train_exp, test_exp = train_test_split(all_data_exp, test_size = 0.2, stratify = all_data_exp.channel_blocked)\n",
    "    \n",
    "    #Separate predictors and response variables\n",
    "    X_train_exp, y_train_exp = train_exp[X_col], train_exp['channel_blocked']\n",
    "    X_test_exp, y_test_exp = test_exp[X_col], test_exp['channel_blocked']\n",
    "    \n",
    "    #Find scaler using training dataset then apply to test dataset\n",
    "    scaler_exp = StandardScaler().fit(X_train_exp)\n",
    "    scaled_X_train_exp = scaler_exp.transform(X_train_exp)\n",
    "    scaled_X_test_exp = scaler_exp.transform(X_test_exp)\n",
    "    \n",
    "    #Cross-validate to tune model parameters\n",
    "    clf_exp = LogisticRegressionCV(Cs = 5, cv = 5, multi_class = 'multinomial').fit(scaled_X_train_exp, y_train_exp)\n",
    "    \n",
    "    #Save results \n",
    "    test_scores.append(clf_exp.score(scaled_X_test_exp, y_test_exp))\n",
    "    \n",
    "    #Obtain model performance for individual ion channels\n",
    "    for idx, channel in enumerate(['kr', 'ca', 'na', 'nakr']):\n",
    "        num = np.sum(clf_exp.predict(scaled_X_test_exp)[np.array(y_test_exp == channel)]  == channel)\n",
    "        denom = np.sum(y_test_exp == channel)\n",
    "        channel_scores_exp[idx].append(num/denom)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Mean Model Accuracy on Full Dataset:  0.9467857142857141\n",
      "Standard Deviation of Model Accuracy on Full Dataset:  0.03829763940079687\n",
      "\n",
      "Model Accuracy for Individual Ion Channels:\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Model Accuracy</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>kr</th>\n",
       "      <td>0.951429</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>ca</th>\n",
       "      <td>0.971429</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>na</th>\n",
       "      <td>0.921429</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>nakr</th>\n",
       "      <td>0.942857</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "      Model Accuracy\n",
       "kr          0.951429\n",
       "ca          0.971429\n",
       "na          0.921429\n",
       "nakr        0.942857"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Print results\n",
    "print(\"Mean Model Accuracy on Full Dataset: \", np.mean(test_scores))\n",
    "print(\"Standard Deviation of Model Accuracy on Full Dataset: \", np.std(test_scores))\n",
    "print()\n",
    "\n",
    "print(\"Model Accuracy for Individual Ion Channels:\")\n",
    "pd.DataFrame([np.mean(score) for score in channel_scores_exp], index = ['kr', 'ca', 'na', 'nakr'],\n",
    "            columns = ['Model Accuracy'])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Logistic Regression with Simulation Data- 5 Ion Channels"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "all_sims = pd.read_excel('dfsfromcardiotoxsims/fixedrisetimes25/sim_df_joined.xlsx')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "all_sims = all_sims[all_sims['APDmxr'] < 2*all_sims['APD80']]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Reserve test set\n",
    "X_col = ['APD30', 'APD50', 'APD80', 'APDmxr', 'APDtri', 'rise_time', 'delay',]\n",
    "\n",
    "test_scores_sim = []\n",
    "channel_scores = [[] for i in range(5)]\n",
    "\n",
    "for i in range(5):\n",
    "    #Divide training and test datasets\n",
    "    train, test = train_test_split(all_sims, test_size = 0.2, stratify = all_sims.channel_blocked)\n",
    "    \n",
    "    #Separate predictors and response variables\n",
    "    X_train, y_train = train[X_col], train['channel_blocked']\n",
    "    X_test, y_test = test[X_col], test['channel_blocked']\n",
    "    \n",
    "    #Find scaler using training dataset then apply to test dataset\n",
    "    scaler = StandardScaler().fit(X_train)\n",
    "    scaled_X_train = scaler.transform(X_train)\n",
    "    scaled_X_test = scaler.transform(X_test)\n",
    "\n",
    "    #Cross-validate to tune model parameters \n",
    "    clf = LogisticRegressionCV(Cs = 3, cv = 5, solver = 'sag', penalty = 'l2', \n",
    "                           multi_class = 'multinomial', max_iter = 300, \n",
    "                          tol = 1e-3).fit(scaled_X_train, y_train)\n",
    "\n",
    "    #Save results \n",
    "    test_scores_sim.append(clf.score(scaled_X_test, y_test))\n",
    "    \n",
    "    #Obtain model performance for individual ion channels\n",
    "    for idx, channel in enumerate(['kr', 'ca', 'na','ks', 'to']):\n",
    "        num = np.sum(clf.predict(scaled_X_test)[y_test == channel]  == channel)\n",
    "        denom = np.sum(y_test == channel)\n",
    "        channel_scores[idx].append(num/denom)\n",
    "    "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Print results\n",
    "print(\"Mean Model Accuracy on Full Dataset: \", np.mean(test_scores))\n",
    "print(\"Standard Deviation of Model Accuracy on Full Dataset: \", np.std(test_scores))\n",
    "print()\n",
    "\n",
    "print(\"Model Accuracy for Individual Ion Channels:\")\n",
    "pd.DataFrame([[np.mean(score) for score in channel_scores], [np.std(score) for score in channel_scores]], \n",
    "             columns = ['kr', 'ca', 'na', 'ks', 'to'],\n",
    "            index = ['Model Accuracy', 'Model SD']).T"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Logistic Regression with Simulation Data- IKr, ICa, INa Only (Mimics Experimental Data)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "all_sims_short = all_sims[all_sims.channel_blocked != 'to']\n",
    "all_sims_short = all_sims_short[all_sims_short.channel_blocked != 'ks']\n",
    "\n",
    "#Reserve test set\n",
    "X_col = ['APD30', 'APD50', 'APD80', 'APDmxr', 'APDtri', 'rise_time', 'delay',]\n",
    "\n",
    "test_scores_sim_short = []\n",
    "channel_scores_short = [[] for i in range(5)]\n",
    "\n",
    "for i in range(5):\n",
    "    #Divide training and test datasets\n",
    "    train, test = train_test_split(all_sims_short, test_size = 0.2, stratify = all_sims_short.channel_blocked)\n",
    "    \n",
    "    #Separate predictors and response variables\n",
    "    X_train, y_train = train[X_col], train['channel_blocked']\n",
    "    X_test, y_test = test[X_col], test['channel_blocked']\n",
    "    \n",
    "    #Find scaler using training dataset then apply to test dataset\n",
    "    scaler = StandardScaler().fit(X_train)\n",
    "    scaled_X_train = scaler.transform(X_train)\n",
    "    scaled_X_test = scaler.transform(X_test)\n",
    "\n",
    "    #Cross-validate to tune model parameters \n",
    "    clf = LogisticRegressionCV(Cs = 3, cv = 5, solver = 'sag', penalty = 'l2', \n",
    "                           multi_class = 'multinomial', max_iter = 300, \n",
    "                          tol = 1e-3).fit(scaled_X_train, y_train)\n",
    "\n",
    "    #Save results \n",
    "    test_scores_sim_short.append(clf.score(scaled_X_test, y_test))\n",
    "    \n",
    "    #Obtain model performance for individual ion channels\n",
    "    for idx, channel in enumerate(['kr', 'ca', 'na']):\n",
    "        num = np.sum(clf.predict(scaled_X_test)[y_test == channel]  == channel)\n",
    "        denom = np.sum(y_test == channel)\n",
    "        channel_scores_short[idx].append(num/denom)\n",
    "    "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Print results\n",
    "print(\"Mean Model Accuracy on Full Dataset: \", np.mean(test_scores_sim_short))\n",
    "print(\"Standard Deviation of Model Accuracy on Full Dataset: \", np.std(test_scores_sim_short))\n",
    "print()\n",
    "\n",
    "print(\"Model Accuracy for Individual Ion Channels:\")\n",
    "pd.DataFrame([[np.mean(score) for score in channel_scores_short[:3]], [np.std(score) for score in channel_scores_short[:3]]], \n",
    "             columns = ['kr', 'ca', 'na'],\n",
    "            index = ['Model Accuracy', 'Model SD']).T"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API