/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- * vim: set ts=8 sts=4 et sw=4 tw=99: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /* Definitions related to javascript type inference. */ #ifndef jsinfer_h #define jsinfer_h #include "mozilla/MemoryReporting.h" #include "jsalloc.h" #include "jsfriendapi.h" #include "jstypes.h" #include "ds/IdValuePair.h" #include "ds/LifoAlloc.h" #include "gc/Barrier.h" #include "gc/Marking.h" #include "js/Utility.h" #include "js/Vector.h" namespace js { class TypeRepresentation; class TaggedProto { public: TaggedProto() : proto(nullptr) {} TaggedProto(JSObject *proto) : proto(proto) {} uintptr_t toWord() const { return uintptr_t(proto); } inline bool isLazy() const; inline bool isObject() const; inline JSObject *toObject() const; inline JSObject *toObjectOrNull() const; JSObject *raw() const { return proto; } bool operator ==(const TaggedProto &other) { return proto == other.proto; } bool operator !=(const TaggedProto &other) { return proto != other.proto; } private: JSObject *proto; }; template <> struct RootKind { static ThingRootKind rootKind() { return THING_ROOT_OBJECT; } }; template <> struct GCMethods { static TaggedProto initial() { return TaggedProto(); } static ThingRootKind kind() { return THING_ROOT_OBJECT; } static bool poisoned(const TaggedProto &v) { return IsPoisonedPtr(v.raw()); } }; template <> struct GCMethods { static TaggedProto initial() { return TaggedProto(); } static ThingRootKind kind() { return THING_ROOT_OBJECT; } static bool poisoned(const TaggedProto &v) { return IsPoisonedPtr(v.raw()); } }; template class TaggedProtoOperations { const TaggedProto *value() const { return static_cast(this)->extract(); } public: uintptr_t toWord() const { return value()->toWord(); } inline bool isLazy() const; inline bool isObject() const; inline JSObject *toObject() const; inline JSObject *toObjectOrNull() const; JSObject *raw() const { return value()->raw(); } }; template <> class HandleBase : public TaggedProtoOperations > { friend class TaggedProtoOperations >; const TaggedProto * extract() const { return static_cast*>(this)->address(); } }; template <> class RootedBase : public TaggedProtoOperations > { friend class TaggedProtoOperations >; const TaggedProto *extract() const { return static_cast *>(this)->address(); } }; class CallObject; /* * Execution Mode Overview * * JavaScript code can execute either sequentially or in parallel, such as in * PJS. Functions which behave identically in either execution mode can take a * ThreadSafeContext, and functions which have similar but not identical * behavior between execution modes can be templated on the mode. Such * functions use a context parameter type from ExecutionModeTraits below * indicating whether they are only permitted constrained operations (such as * thread safety, and side effects limited to being thread-local), or whether * they can have arbitrary side effects. */ enum ExecutionMode { /* Normal JavaScript execution. */ SequentialExecution, /* * JavaScript code to be executed in parallel worker threads in PJS in a * fork join fashion. */ ParallelExecution, /* * Modes after this point are internal and are not counted in * NumExecutionModes below. */ /* * MIR analysis performed when invoking 'new' on a script, to determine * definite properties. Used by the optimizing JIT. */ DefinitePropertiesAnalysis }; /* * Not as part of the enum so we don't get warnings about unhandled enum * values. */ static const unsigned NumExecutionModes = ParallelExecution + 1; template struct ExecutionModeTraits { }; template <> struct ExecutionModeTraits { typedef JSContext * ContextType; typedef ExclusiveContext * ExclusiveContextType; static inline JSContext *toContextType(ExclusiveContext *cx); }; template <> struct ExecutionModeTraits { typedef ForkJoinSlice * ContextType; typedef ForkJoinSlice * ExclusiveContextType; static inline ForkJoinSlice *toContextType(ForkJoinSlice *cx) { return cx; } }; namespace jit { struct IonScript; class IonAllocPolicy; } namespace analyze { class ScriptAnalysis; } namespace types { class TypeCompartment; class TypeSet; class TypeObjectKey; /* * Information about a single concrete type. We pack this into a single word, * where small values are particular primitive or other singleton types, and * larger values are either specific JS objects or type objects. */ class Type { uintptr_t data; Type(uintptr_t data) : data(data) {} public: uintptr_t raw() const { return data; } bool isPrimitive() const { return data < JSVAL_TYPE_OBJECT; } bool isPrimitive(JSValueType type) const { JS_ASSERT(type < JSVAL_TYPE_OBJECT); return (uintptr_t) type == data; } JSValueType primitive() const { JS_ASSERT(isPrimitive()); return (JSValueType) data; } bool isAnyObject() const { return data == JSVAL_TYPE_OBJECT; } bool isUnknown() const { return data == JSVAL_TYPE_UNKNOWN; } /* Accessors for types that are either JSObject or TypeObject. */ bool isObject() const { JS_ASSERT(!isAnyObject() && !isUnknown()); return data > JSVAL_TYPE_UNKNOWN; } inline TypeObjectKey *objectKey() const; /* Accessors for JSObject types */ bool isSingleObject() const { return isObject() && !!(data & 1); } inline JSObject *singleObject() const; /* Accessors for TypeObject types */ bool isTypeObject() const { return isObject() && !(data & 1); } inline TypeObject *typeObject() const; bool operator == (Type o) const { return data == o.data; } bool operator != (Type o) const { return data != o.data; } static inline Type UndefinedType() { return Type(JSVAL_TYPE_UNDEFINED); } static inline Type NullType() { return Type(JSVAL_TYPE_NULL); } static inline Type BooleanType() { return Type(JSVAL_TYPE_BOOLEAN); } static inline Type Int32Type() { return Type(JSVAL_TYPE_INT32); } static inline Type DoubleType() { return Type(JSVAL_TYPE_DOUBLE); } static inline Type StringType() { return Type(JSVAL_TYPE_STRING); } static inline Type MagicArgType() { return Type(JSVAL_TYPE_MAGIC); } static inline Type AnyObjectType() { return Type(JSVAL_TYPE_OBJECT); } static inline Type UnknownType() { return Type(JSVAL_TYPE_UNKNOWN); } static inline Type PrimitiveType(JSValueType type) { JS_ASSERT(type < JSVAL_TYPE_UNKNOWN); return Type(type); } static inline Type ObjectType(JSObject *obj); static inline Type ObjectType(TypeObject *obj); static inline Type ObjectType(TypeObjectKey *obj); }; /* Get the type of a jsval, or zero for an unknown special value. */ inline Type GetValueType(const Value &val); /* * Type inference memory management overview. * * Type information about the values observed within scripts and about the * contents of the heap is accumulated as the program executes. Compilation * accumulates constraints relating type information on the heap with the * compilations that should be invalidated when those types change. This data * is periodically cleared to reduce memory usage. * * GCs may clear both analysis information and jitcode. Sometimes GCs will * preserve all information and code, and will not collect any scripts, type * objects or singleton JS objects. * * The following data is cleared by all non-preserving GCs: * * - The ScriptAnalysis for each analyzed script and data from each analysis * pass performed. * * - Property type sets for singleton JS objects. * * - Type constraints and dead references in all type sets. * * The following data is occasionally cleared by non-preserving GCs: * * - TypeScripts and their type sets are occasionally destroyed, per a timer. * * - When a JSScript or TypeObject is swept, type information for its contents * is destroyed. */ /* * A constraint which listens to additions to a type set and propagates those * changes to other type sets. */ class TypeConstraint { public: /* Next constraint listening to the same type set. */ TypeConstraint *next; TypeConstraint() : next(nullptr) {} /* Debugging name for this kind of constraint. */ virtual const char *kind() = 0; /* Register a new type for the set this constraint is listening to. */ virtual void newType(JSContext *cx, TypeSet *source, Type type) = 0; /* * For constraints attached to an object property's type set, mark the * property as having been configured. */ virtual void newPropertyState(JSContext *cx, TypeSet *source) {} /* * For constraints attached to the JSID_EMPTY type set on an object, * indicate a change in one of the object's dynamic property flags or other * state. */ virtual void newObjectState(JSContext *cx, TypeObject *object) {} }; /* Flags and other state stored in TypeSet::flags */ enum { TYPE_FLAG_UNDEFINED = 0x1, TYPE_FLAG_NULL = 0x2, TYPE_FLAG_BOOLEAN = 0x4, TYPE_FLAG_INT32 = 0x8, TYPE_FLAG_DOUBLE = 0x10, TYPE_FLAG_STRING = 0x20, TYPE_FLAG_LAZYARGS = 0x40, TYPE_FLAG_ANYOBJECT = 0x80, /* Mask containing all primitives */ TYPE_FLAG_PRIMITIVE = TYPE_FLAG_UNDEFINED | TYPE_FLAG_NULL | TYPE_FLAG_BOOLEAN | TYPE_FLAG_INT32 | TYPE_FLAG_DOUBLE | TYPE_FLAG_STRING, /* Mask/shift for the number of objects in objectSet */ TYPE_FLAG_OBJECT_COUNT_MASK = 0x1f00, TYPE_FLAG_OBJECT_COUNT_SHIFT = 8, TYPE_FLAG_OBJECT_COUNT_LIMIT = TYPE_FLAG_OBJECT_COUNT_MASK >> TYPE_FLAG_OBJECT_COUNT_SHIFT, /* Whether the contents of this type set are totally unknown. */ TYPE_FLAG_UNKNOWN = 0x00010000, /* Mask of normal type flags on a type set. */ TYPE_FLAG_BASE_MASK = 0x000100ff, /* * Flags describing the kind of type set this is. * * - StackTypeSet are associated with TypeScripts, for arguments and values * observed at property reads. These are implicitly frozen on compilation * and do not have constraints attached to them. * * - HeapTypeSet are associated with the properties of TypeObjects. These * may have constraints added to them to trigger invalidation of compiled * code. * * - TemporaryTypeSet are created during compilation and do not outlive * that compilation. */ TYPE_FLAG_STACK_SET = 0x00020000, TYPE_FLAG_HEAP_SET = 0x00040000, /* Additional flags for HeapTypeSet sets. */ /* * Whether the property has ever been deleted or reconfigured to behave * differently from a normal native property (e.g. made non-writable or * given a scripted getter or setter). */ TYPE_FLAG_CONFIGURED_PROPERTY = 0x00200000, /* * Whether the property is definitely in a particular inline slot on all * objects from which it has not been deleted or reconfigured. Implies * OWN_PROPERTY and unlike OWN/CONFIGURED property, this cannot change. */ TYPE_FLAG_DEFINITE_PROPERTY = 0x00400000, /* If the property is definite, mask and shift storing the slot. */ TYPE_FLAG_DEFINITE_MASK = 0x0f000000, TYPE_FLAG_DEFINITE_SHIFT = 24 }; typedef uint32_t TypeFlags; /* Flags and other state stored in TypeObject::flags */ enum { /* * UNUSED FLAG = 0x1, */ /* If set, addendum information should not be installed on this object. */ OBJECT_FLAG_ADDENDUM_CLEARED = 0x2, /* * If set, type constraints covering the correctness of the newScript * definite properties need to be regenerated before compiling any jitcode * which depends on this information. */ OBJECT_FLAG_NEW_SCRIPT_REGENERATE = 0x4, /* * Whether we have ensured all type sets in the compartment contain * ANYOBJECT instead of this object. */ OBJECT_FLAG_SETS_MARKED_UNKNOWN = 0x8, /* Mask/shift for the number of properties in propertySet */ OBJECT_FLAG_PROPERTY_COUNT_MASK = 0xfff0, OBJECT_FLAG_PROPERTY_COUNT_SHIFT = 4, OBJECT_FLAG_PROPERTY_COUNT_LIMIT = OBJECT_FLAG_PROPERTY_COUNT_MASK >> OBJECT_FLAG_PROPERTY_COUNT_SHIFT, /* Whether any objects this represents may have sparse indexes. */ OBJECT_FLAG_SPARSE_INDEXES = 0x00010000, /* Whether any objects this represents may not have packed dense elements. */ OBJECT_FLAG_NON_PACKED = 0x00020000, /* * Whether any objects this represents may be arrays whose length does not * fit in an int32. */ OBJECT_FLAG_LENGTH_OVERFLOW = 0x00040000, /* * UNUSED FLAG = 0x00080000, */ /* Whether any objects have been iterated over. */ OBJECT_FLAG_ITERATED = 0x00100000, /* For a global object, whether flags were set on the RegExpStatics. */ OBJECT_FLAG_REGEXP_FLAGS_SET = 0x00200000, /* * UNUSED FLAG = 0x00400000, */ /* * For the function on a run-once script, whether the function has actually * run multiple times. */ OBJECT_FLAG_RUNONCE_INVALIDATED = 0x00800000, /* Flags which indicate dynamic properties of represented objects. */ OBJECT_FLAG_DYNAMIC_MASK = 0x00ff0000, /* Mask/shift for tenuring count. */ OBJECT_FLAG_TENURE_COUNT_MASK = 0x7f000000, OBJECT_FLAG_TENURE_COUNT_SHIFT = 24, OBJECT_FLAG_TENURE_COUNT_LIMIT = OBJECT_FLAG_TENURE_COUNT_MASK >> OBJECT_FLAG_TENURE_COUNT_SHIFT, /* * Whether all properties of this object are considered unknown. * If set, all flags in DYNAMIC_MASK will also be set. */ OBJECT_FLAG_UNKNOWN_PROPERTIES = 0x80000000, /* Mask for objects created with unknown properties. */ OBJECT_FLAG_UNKNOWN_MASK = OBJECT_FLAG_DYNAMIC_MASK | OBJECT_FLAG_UNKNOWN_PROPERTIES | OBJECT_FLAG_SETS_MARKED_UNKNOWN }; typedef uint32_t TypeObjectFlags; class StackTypeSet; class HeapTypeSet; class TemporaryTypeSet; /* Information about the set of types associated with an lvalue. */ class TypeSet { protected: /* Flags for this type set. */ TypeFlags flags; /* Possible objects this type set can represent. */ TypeObjectKey **objectSet; public: /* Chain of constraints which propagate changes out from this type set. */ TypeConstraint *constraintList; TypeSet() : flags(0), objectSet(nullptr), constraintList(nullptr) {} void print(); inline void sweep(JS::Zone *zone); /* Whether this set contains a specific type. */ inline bool hasType(Type type) const; TypeFlags baseFlags() const { return flags & TYPE_FLAG_BASE_MASK; } bool unknown() const { return !!(flags & TYPE_FLAG_UNKNOWN); } bool unknownObject() const { return !!(flags & (TYPE_FLAG_UNKNOWN | TYPE_FLAG_ANYOBJECT)); } bool empty() const { return !baseFlags() && !baseObjectCount(); } bool hasAnyFlag(TypeFlags flags) const { JS_ASSERT((flags & TYPE_FLAG_BASE_MASK) == flags); return !!(baseFlags() & flags); } bool configuredProperty() const { return flags & TYPE_FLAG_CONFIGURED_PROPERTY; } bool definiteProperty() const { return flags & TYPE_FLAG_DEFINITE_PROPERTY; } unsigned definiteSlot() const { JS_ASSERT(definiteProperty()); return flags >> TYPE_FLAG_DEFINITE_SHIFT; } /* Join two type sets into a new set. The result should not be modified further. */ static TemporaryTypeSet *unionSets(TypeSet *a, TypeSet *b, LifoAlloc *alloc); /* Add a type to this set using the specified allocator. */ inline bool addType(Type type, LifoAlloc *alloc, bool *padded = nullptr); /* * Add a type to this set, calling any constraint handlers if this is a new * possible type. */ inline void addType(ExclusiveContext *cx, Type type); /* Mark this type set as representing a configured property. */ inline void setConfiguredProperty(ExclusiveContext *cx); /* Get a list of all types in this set. */ typedef Vector TypeList; bool enumerateTypes(TypeList *list); /* * Iterate through the objects in this set. getObjectCount overapproximates * in the hash case (see SET_ARRAY_SIZE in jsinferinlines.h), and getObject * may return nullptr. */ inline unsigned getObjectCount() const; inline TypeObjectKey *getObject(unsigned i) const; inline JSObject *getSingleObject(unsigned i) const; inline TypeObject *getTypeObject(unsigned i) const; inline bool getTypeOrSingleObject(JSContext *cx, unsigned i, TypeObject **obj) const; /* The Class of an object in this set. */ inline const Class *getObjectClass(unsigned i) const; void setConfiguredProperty() { flags |= TYPE_FLAG_CONFIGURED_PROPERTY; } void setDefinite(unsigned slot) { JS_ASSERT(slot <= (TYPE_FLAG_DEFINITE_MASK >> TYPE_FLAG_DEFINITE_SHIFT)); flags |= TYPE_FLAG_DEFINITE_PROPERTY | (slot << TYPE_FLAG_DEFINITE_SHIFT); } bool isStackSet() { return flags & TYPE_FLAG_STACK_SET; } bool isHeapSet() { return flags & TYPE_FLAG_HEAP_SET; } /* Whether any values in this set might have the specified type. */ bool mightBeType(JSValueType type); /* * Get whether this type set is known to be a subset of other. * This variant doesn't freeze constraints. That variant is called knownSubset */ bool isSubset(TypeSet *other); /* Forward all types in this set to the specified constraint. */ void addTypesToConstraint(JSContext *cx, TypeConstraint *constraint); /* Add a new constraint to this set. */ void add(JSContext *cx, TypeConstraint *constraint, bool callExisting = true); inline StackTypeSet *toStackSet(); inline HeapTypeSet *toHeapSet(); // Clone a type set into an arbitrary allocator. TemporaryTypeSet *clone(LifoAlloc *alloc) const; bool clone(LifoAlloc *alloc, TemporaryTypeSet *result) const; protected: uint32_t baseObjectCount() const { return (flags & TYPE_FLAG_OBJECT_COUNT_MASK) >> TYPE_FLAG_OBJECT_COUNT_SHIFT; } inline void setBaseObjectCount(uint32_t count); inline void clearObjects(); }; class StackTypeSet : public TypeSet { public: StackTypeSet() { flags |= TYPE_FLAG_STACK_SET; } }; class HeapTypeSet : public TypeSet { public: HeapTypeSet() { flags |= TYPE_FLAG_HEAP_SET; } }; class CompilerConstraintList; CompilerConstraintList * NewCompilerConstraintList(); class TemporaryTypeSet : public TypeSet { public: TemporaryTypeSet() {} TemporaryTypeSet(Type type); TemporaryTypeSet(uint32_t flags, TypeObjectKey **objectSet) { this->flags = flags; this->objectSet = objectSet; JS_ASSERT(!isStackSet() && !isHeapSet()); } /* * Constraints for JIT compilation. * * Methods for JIT compilation. These must be used when a script is * currently being compiled (see AutoEnterCompilation) and will add * constraints ensuring that if the return value change in the future due * to new type information, the script's jitcode will be discarded. */ /* Get any type tag which all values in this set must have. */ JSValueType getKnownTypeTag(); bool isMagicArguments() { return getKnownTypeTag() == JSVAL_TYPE_MAGIC; } /* Whether this value may be an object. */ bool maybeObject() { return unknownObject() || baseObjectCount() > 0; } /* * Whether this typeset represents a potentially sentineled object value: * the value may be an object or null or undefined. * Returns false if the value cannot ever be an object. */ bool objectOrSentinel() { TypeFlags flags = TYPE_FLAG_UNDEFINED | TYPE_FLAG_NULL | TYPE_FLAG_ANYOBJECT; if (baseFlags() & (~flags & TYPE_FLAG_BASE_MASK)) return false; return hasAnyFlag(TYPE_FLAG_ANYOBJECT) || baseObjectCount() > 0; } /* Whether the type set contains objects with any of a set of flags. */ bool hasObjectFlags(CompilerConstraintList *constraints, TypeObjectFlags flags); /* Get the class shared by all objects in this set, or nullptr. */ const Class *getKnownClass(); /* Get the prototype shared by all objects in this set, or nullptr. */ JSObject *getCommonPrototype(); /* Get the typed array type of all objects in this set, or TypedArrayObject::TYPE_MAX. */ int getTypedArrayType(); /* Whether all objects have JSCLASS_IS_DOMJSCLASS set. */ bool isDOMClass(); /* Whether clasp->isCallable() is true for one or more objects in this set. */ bool maybeCallable(); /* Whether clasp->emulatesUndefined() is true for one or more objects in this set. */ bool maybeEmulatesUndefined(); /* Get the single value which can appear in this type set, otherwise nullptr. */ JSObject *getSingleton(); /* Whether any objects in the type set needs a barrier on id. */ bool propertyNeedsBarrier(CompilerConstraintList *constraints, jsid id); /* * Whether this set contains all types in other, except (possibly) the * specified type. */ bool filtersType(const TemporaryTypeSet *other, Type type) const; enum DoubleConversion { /* All types in the set should use eager double conversion. */ AlwaysConvertToDoubles, /* Some types in the set should use eager double conversion. */ MaybeConvertToDoubles, /* No types should use eager double conversion. */ DontConvertToDoubles, /* Some types should use eager double conversion, others cannot. */ AmbiguousDoubleConversion }; /* * Whether known double optimizations are possible for element accesses on * objects in this type set. */ DoubleConversion convertDoubleElements(CompilerConstraintList *constraints); }; inline StackTypeSet * TypeSet::toStackSet() { JS_ASSERT(isStackSet()); return (StackTypeSet *) this; } inline HeapTypeSet * TypeSet::toHeapSet() { JS_ASSERT(isHeapSet()); return (HeapTypeSet *) this; } bool AddClearDefiniteGetterSetterForPrototypeChain(JSContext *cx, TypeObject *type, jsid id); void AddClearDefiniteFunctionUsesInScript(JSContext *cx, TypeObject *type, JSScript *script, JSScript *calleeScript); /* Is this a reasonable PC to be doing inlining on? */ inline bool isInlinableCall(jsbytecode *pc); /* Type information about a property. */ struct Property { /* Identifier for this property, JSID_VOID for the aggregate integer index property. */ HeapId id; /* Possible types for this property, including types inherited from prototypes. */ HeapTypeSet types; Property(jsid id) : id(id) {} Property(const Property &o) : id(o.id.get()), types(o.types) {} static uint32_t keyBits(jsid id) { return uint32_t(JSID_BITS(id)); } static jsid getKey(Property *p) { return p->id; } }; struct TypeNewScript; struct TypeTypedObject; struct TypeObjectAddendum { enum Kind { NewScript, TypedObject }; TypeObjectAddendum(Kind kind); const Kind kind; bool isNewScript() { return kind == NewScript; } TypeNewScript *asNewScript() { JS_ASSERT(isNewScript()); return (TypeNewScript*) this; } bool isTypedObject() { return kind == TypedObject; } TypeTypedObject *asTypedObject() { JS_ASSERT(isTypedObject()); return (TypeTypedObject*) this; } static inline void writeBarrierPre(TypeObjectAddendum *type); static void writeBarrierPost(TypeObjectAddendum *newScript, void *addr) {} }; /* * Information attached to a TypeObject if it is always constructed using 'new' * on a particular script. This is used to manage state related to the definite * properties on the type object: these definite properties depend on type * information which could change as the script executes (e.g. a scripted * setter is added to a prototype object), and we need to ensure both that the * appropriate type constraints are in place when necessary, and that we can * remove the definite property information and repair the JS stack if the * constraints are violated. */ struct TypeNewScript : public TypeObjectAddendum { TypeNewScript(); HeapPtrFunction fun; /* * Template object to use for newly constructed objects. Reflects all * definite properties the object will have and the allocation kind to use * for the object. The allocation kind --- and template object itself --- * is subject to change if objects allocated with this type are given * dynamic slots later on due to new properties being added after the * constructor function finishes. */ HeapPtrObject templateObject; /* * Order in which properties become initialized. We need this in case a * scripted setter is added to one of the object's prototypes while it is * in the middle of being initialized, so we can walk the stack and fixup * any objects which look for in-progress objects which were prematurely * set with their final shape. Property assignments in inner frames are * preceded by a series of SETPROP_FRAME entries specifying the stack down * to the frame containing the write. */ struct Initializer { enum Kind { SETPROP, SETPROP_FRAME, DONE } kind; uint32_t offset; Initializer(Kind kind, uint32_t offset) : kind(kind), offset(offset) {} }; Initializer *initializerList; static inline void writeBarrierPre(TypeNewScript *newScript); }; struct TypeTypedObject : public TypeObjectAddendum { TypeTypedObject(TypeRepresentation *repr); TypeRepresentation *const typeRepr; }; /* * Lazy type objects overview. * * Type objects which represent at most one JS object are constructed lazily. * These include types for native functions, standard classes, scripted * functions defined at the top level of global/eval scripts, and in some * other cases. Typical web workloads often create many windows (and many * copies of standard natives) and many scripts, with comparatively few * non-singleton types. * * We can recover the type information for the object from examining it, * so don't normally track the possible types of its properties as it is * updated. Property type sets for the object are only constructed when an * analyzed script attaches constraints to it: the script is querying that * property off the object or another which delegates to it, and the analysis * information is sensitive to changes in the property's type. Future changes * to the property (whether those uncovered by analysis or those occurring * in the VM) will treat these properties like those of any other type object. * * When a GC occurs, we wipe out all analysis information for all the * compartment's scripts, so can destroy all properties on singleton type * objects at the same time. If there is no reference on the stack to the * type object itself, the type object is also destroyed, and the JS object * reverts to having a lazy type. */ /* Type information about an object accessed by a script. */ struct TypeObject : gc::BarrieredCell { /* Class shared by objects using this type. */ const Class *clasp; /* Prototype shared by objects using this type. */ HeapPtrObject proto; /* * Whether there is a singleton JS object with this type. That JS object * must appear in type sets instead of this; we include the back reference * here to allow reverting the JS object to a lazy type. */ HeapPtrObject singleton; /* * Value held by singleton if this is a standin type for a singleton JS * object whose type has not been constructed yet. */ static const size_t LAZY_SINGLETON = 1; bool lazy() const { return singleton == (JSObject *) LAZY_SINGLETON; } /* Flags for this object. */ TypeObjectFlags flags; /* * This field allows various special classes of objects to attach * additional information to a type object: * * - `TypeNewScript`: If addendum is a `TypeNewScript`, it * indicates that objects of this type have always been * constructed using 'new' on the specified script, which adds * some number of properties to the object in a definite order * before the object escapes. */ HeapPtr addendum; bool hasNewScript() const { return addendum && addendum->isNewScript(); } TypeNewScript *newScript() { return addendum->asNewScript(); } bool hasTypedObject() { return addendum && addendum->isTypedObject(); } TypeTypedObject *typedObject() { return addendum->asTypedObject(); } /* * Tag the type object for a binary data type descriptor, instance, * or handle with the type representation of the data it points at. * If this type object is already tagged with a binary data addendum, * this addendum must already be associated with the same TypeRepresentation, * and the method has no effect. */ bool addTypedObjectAddendum(JSContext *cx, TypeRepresentation *repr); /* * Properties of this object. This may contain JSID_VOID, representing the * types of all integer indexes of the object, and/or JSID_EMPTY, holding * constraints listening to changes to the object's state. * * The type sets in the properties of a type object describe the possible * values that can be read out of that property in actual JS objects. * Properties only account for native properties (those with a slot and no * specialized getter hook) and the elements of dense arrays. For accesses * on such properties, the correspondence is as follows: * * 1. If the type has unknownProperties(), the possible properties and * value types for associated JSObjects are unknown. * * 2. Otherwise, for any JSObject obj with TypeObject type, and any jsid id * which is a property in obj, before obj->getProperty(id) the property * in type for id must reflect the result of the getProperty. * * There is an exception for properties of singleton JS objects which * are undefined at the point where the property was (lazily) generated. * In such cases the property type set will remain empty, and the * 'undefined' type will only be added after a subsequent assignment or * deletion. After these properties have been assigned a defined value, * the only way they can become undefined again is after such an assign * or deletion. * * We establish these by using write barriers on calls to setProperty and * defineProperty which are on native properties, and by using the inference * analysis to determine the side effects of code which is JIT-compiled. */ Property **propertySet; /* If this is an interpreted function, the function object. */ HeapPtrFunction interpretedFunction; #if JS_BITS_PER_WORD == 32 uint32_t padding; #endif inline TypeObject(const Class *clasp, TaggedProto proto, bool unknown); bool hasAnyFlags(TypeObjectFlags flags) { JS_ASSERT((flags & OBJECT_FLAG_DYNAMIC_MASK) == flags); return !!(this->flags & flags); } bool hasAllFlags(TypeObjectFlags flags) { JS_ASSERT((flags & OBJECT_FLAG_DYNAMIC_MASK) == flags); return (this->flags & flags) == flags; } bool unknownProperties() { JS_ASSERT_IF(flags & OBJECT_FLAG_UNKNOWN_PROPERTIES, hasAllFlags(OBJECT_FLAG_DYNAMIC_MASK)); return !!(flags & OBJECT_FLAG_UNKNOWN_PROPERTIES); } /* * Get or create a property of this object. Only call this for properties which * a script accesses explicitly. */ inline HeapTypeSet *getProperty(ExclusiveContext *cx, jsid id); /* Get a property only if it already exists. */ inline HeapTypeSet *maybeGetProperty(jsid id); inline unsigned getPropertyCount(); inline Property *getProperty(unsigned i); /* Tenure counter management. */ /* * When an object allocation site generates objects that are long lived * enough to frequently be tenured during minor collections, we mark the * site as long lived and allocate directly into the tenured generation. */ const static uint32_t MaxJITAllocTenures = OBJECT_FLAG_TENURE_COUNT_LIMIT - 2; /* * NewObjectCache is used when we take a stub for allocation. It is used * more rarely, but still in hot paths, so pre-tenure with fewer uses. */ const static uint32_t MaxCachedAllocTenures = 64; /* Returns true if the allocating script should be recompiled. */ bool incrementTenureCount(); uint32_t tenureCount() const { return (flags & OBJECT_FLAG_TENURE_COUNT_MASK) >> OBJECT_FLAG_TENURE_COUNT_SHIFT; } bool isLongLivedForCachedAlloc() const { return tenureCount() >= MaxCachedAllocTenures; } bool isLongLivedForJITAlloc() const { return tenureCount() >= MaxJITAllocTenures; } gc::InitialHeap initialHeapForJITAlloc() const { return isLongLivedForJITAlloc() ? gc::TenuredHeap : gc::DefaultHeap; } /* Helpers */ bool addProperty(ExclusiveContext *cx, jsid id, Property **pprop); bool addDefiniteProperties(ExclusiveContext *cx, JSObject *obj); bool matchDefiniteProperties(HandleObject obj); void addPrototype(JSContext *cx, TypeObject *proto); void addPropertyType(ExclusiveContext *cx, jsid id, Type type); void addPropertyType(ExclusiveContext *cx, jsid id, const Value &value); void addPropertyType(ExclusiveContext *cx, const char *name, Type type); void addPropertyType(ExclusiveContext *cx, const char *name, const Value &value); void markPropertyConfigured(ExclusiveContext *cx, jsid id); void markStateChange(ExclusiveContext *cx); void setFlags(ExclusiveContext *cx, TypeObjectFlags flags); void markUnknown(ExclusiveContext *cx); void clearAddendum(ExclusiveContext *cx); void clearNewScriptAddendum(ExclusiveContext *cx); void clearTypedObjectAddendum(ExclusiveContext *cx); bool isPropertyConfigured(jsid id); void print(); inline void clearProperties(); inline void sweep(FreeOp *fop); size_t sizeOfExcludingThis(mozilla::MallocSizeOf mallocSizeOf) const; /* * Type objects don't have explicit finalizers. Memory owned by a type * object pending deletion is released when weak references are sweeped * from all the compartment's type objects. */ void finalize(FreeOp *fop) {} static inline ThingRootKind rootKind() { return THING_ROOT_TYPE_OBJECT; } private: inline uint32_t basePropertyCount() const; inline void setBasePropertyCount(uint32_t count); static void staticAsserts() { JS_STATIC_ASSERT(offsetof(TypeObject, proto) == offsetof(js::shadow::TypeObject, proto)); } }; /* * Entries for the per-compartment set of type objects which are the default * 'new' or the lazy types of some prototype. */ struct TypeObjectEntry : DefaultHasher > { struct Lookup { const Class *clasp; TaggedProto hashProto; TaggedProto matchProto; Lookup(const Class *clasp, TaggedProto proto) : clasp(clasp), hashProto(proto), matchProto(proto) {} #ifdef JSGC_GENERATIONAL /* * For use by generational post barriers only. Look up an entry whose * proto has been moved, but was hashed with the original value. */ Lookup(const Class *clasp, TaggedProto hashProto, TaggedProto matchProto) : clasp(clasp), hashProto(hashProto), matchProto(matchProto) {} #endif }; static inline HashNumber hash(const Lookup &lookup); static inline bool match(TypeObject *key, const Lookup &lookup); }; typedef HashSet, TypeObjectEntry, SystemAllocPolicy> TypeObjectSet; /* Whether to use a new type object when calling 'new' at script/pc. */ bool UseNewType(JSContext *cx, JSScript *script, jsbytecode *pc); bool UseNewTypeForClone(JSFunction *fun); /* * Whether Array.prototype, or an object on its proto chain, has an * indexed property. */ bool ArrayPrototypeHasIndexedProperty(CompilerConstraintList *constraints, HandleScript script); /* Whether obj or any of its prototypes have an indexed property. */ bool TypeCanHaveExtraIndexedProperties(CompilerConstraintList *constraints, TemporaryTypeSet *types); /* Persistent type information for a script, retained across GCs. */ class TypeScript { friend class ::JSScript; /* Analysis information for the script, cleared on each GC. */ analyze::ScriptAnalysis *analysis; public: /* Array of type type sets for variables and JOF_TYPESET ops. */ StackTypeSet *typeArray() const { return (StackTypeSet *) (uintptr_t(this) + sizeof(TypeScript)); } static inline unsigned NumTypeSets(JSScript *script); static inline StackTypeSet *ThisTypes(JSScript *script); static inline StackTypeSet *ArgTypes(JSScript *script, unsigned i); /* Get the type set for values observed at an opcode. */ static inline StackTypeSet *BytecodeTypes(JSScript *script, jsbytecode *pc); template static inline TYPESET *BytecodeTypes(JSScript *script, jsbytecode *pc, uint32_t *hint, TYPESET *typeArray); /* Get a type object for an allocation site in this script. */ static inline TypeObject *InitObject(JSContext *cx, JSScript *script, jsbytecode *pc, JSProtoKey kind); /* * Monitor a bytecode pushing any value. This must be called for any opcode * which is JOF_TYPESET, and where either the script has not been analyzed * by type inference or where the pc has type barriers. For simplicity, we * always monitor JOF_TYPESET opcodes in the interpreter and stub calls, * and only look at barriers when generating JIT code for the script. */ static inline void Monitor(JSContext *cx, JSScript *script, jsbytecode *pc, const js::Value &val); static inline void Monitor(JSContext *cx, const js::Value &rval); /* Monitor an assignment at a SETELEM on a non-integer identifier. */ static inline void MonitorAssign(JSContext *cx, HandleObject obj, jsid id); /* Add a type for a variable in a script. */ static inline void SetThis(JSContext *cx, JSScript *script, Type type); static inline void SetThis(JSContext *cx, JSScript *script, const js::Value &value); static inline void SetArgument(JSContext *cx, JSScript *script, unsigned arg, Type type); static inline void SetArgument(JSContext *cx, JSScript *script, unsigned arg, const js::Value &value); /* * Freeze all the stack type sets in a script, for a compilation. Returns * copies of the type sets which will be checked against the actual ones * under FinishCompilation, to detect any type changes. */ static bool FreezeTypeSets(CompilerConstraintList *constraints, JSScript *script, TemporaryTypeSet **pThisTypes, TemporaryTypeSet **pArgTypes, TemporaryTypeSet **pBytecodeTypes); static void Purge(JSContext *cx, HandleScript script); static void Sweep(FreeOp *fop, JSScript *script); void destroy(); size_t sizeOfIncludingThis(mozilla::MallocSizeOf mallocSizeOf) const { return mallocSizeOf(this); } #ifdef DEBUG void printTypes(JSContext *cx, HandleScript script) const; #endif }; class RecompileInfo; // Allocate a CompilerOutput for a finished compilation and generate the type // constraints for the compilation. Returns whether the type constraints // still hold. bool FinishCompilation(JSContext *cx, HandleScript script, ExecutionMode executionMode, CompilerConstraintList *constraints, RecompileInfo *precompileInfo); // Update the actual types in any scripts queried by constraints with any // speculative types added during the definite properties analysis. void FinishDefinitePropertiesAnalysis(JSContext *cx, CompilerConstraintList *constraints); struct ArrayTableKey; typedef HashMap,ArrayTableKey,SystemAllocPolicy> ArrayTypeTable; struct ObjectTableKey; struct ObjectTableEntry; typedef HashMap ObjectTypeTable; struct AllocationSiteKey; typedef HashMap,AllocationSiteKey,SystemAllocPolicy> AllocationSiteTable; class HeapTypeSetKey; // Type set entry for either a JSObject with singleton type or a non-singleton TypeObject. struct TypeObjectKey { static intptr_t keyBits(TypeObjectKey *obj) { return (intptr_t) obj; } static TypeObjectKey *getKey(TypeObjectKey *obj) { return obj; } static TypeObjectKey *get(JSObject *obj) { JS_ASSERT(obj); return (TypeObjectKey *) (uintptr_t(obj) | 1); } static TypeObjectKey *get(TypeObject *obj) { JS_ASSERT(obj); return (TypeObjectKey *) obj; } bool isTypeObject() { return (uintptr_t(this) & 1) == 0; } bool isSingleObject() { return (uintptr_t(this) & 1) != 0; } TypeObject *asTypeObject() { JS_ASSERT(isTypeObject()); return (TypeObject *) this; } JSObject *asSingleObject() { JS_ASSERT(isSingleObject()); return (JSObject *) (uintptr_t(this) & ~1); } const Class *clasp(); TaggedProto proto(); JSObject *singleton(); TypeNewScript *newScript(); bool unknownProperties(); bool hasFlags(CompilerConstraintList *constraints, TypeObjectFlags flags); void watchStateChangeForInlinedCall(CompilerConstraintList *constraints); void watchStateChangeForNewScriptTemplate(CompilerConstraintList *constraints); void watchStateChangeForTypedArrayBuffer(CompilerConstraintList *constraints); HeapTypeSetKey property(jsid id, JSContext *maybecx = nullptr); TypeObject *maybeType(); }; // Representation of a heap type property which may or may not be instantiated. // Heap properties for singleton types are instantiated lazily as they are used // by the compiler, but this is only done on the main thread. If we are // compiling off thread and use a property which has not yet been instantiated, // it will be treated as empty and non-configured and will be instantiated when // rejoining to the main thread. If it is in fact not empty, the compilation // will fail; to avoid this, we try to instantiate singleton property types // during generation of baseline caches. class HeapTypeSetKey { friend class TypeObjectKey; // Object and property being accessed. TypeObjectKey *object_; jsid id_; // If instantiated, the underlying heap type set. HeapTypeSet *maybeTypes_; public: HeapTypeSetKey() : object_(nullptr), id_(JSID_EMPTY), maybeTypes_(nullptr) {} TypeObjectKey *object() const { return object_; } jsid id() const { return id_; } HeapTypeSet *maybeTypes() const { return maybeTypes_; } bool instantiate(JSContext *cx); void freeze(CompilerConstraintList *constraints); JSValueType knownTypeTag(CompilerConstraintList *constraints); bool configured(CompilerConstraintList *constraints, TypeObjectKey *type); bool notEmpty(CompilerConstraintList *constraints); bool knownSubset(CompilerConstraintList *constraints, const HeapTypeSetKey &other); JSObject *singleton(CompilerConstraintList *constraints); bool needsBarrier(CompilerConstraintList *constraints); }; /* * Information about the result of the compilation of a script. This structure * stored in the TypeCompartment is indexed by the RecompileInfo. This * indirection enables the invalidation of all constraints related to the same * compilation. */ class CompilerOutput { // If this compilation has not been invalidated, the associated script and // kind of compilation being performed. JSScript *script_; ExecutionMode mode_ : 2; // Whether this compilation is about to be invalidated. bool pendingInvalidation_ : 1; public: CompilerOutput() : script_(nullptr), mode_(SequentialExecution), pendingInvalidation_(false) {} CompilerOutput(JSScript *script, ExecutionMode mode) : script_(script), mode_(mode), pendingInvalidation_(false) {} JSScript *script() const { return script_; } inline ExecutionMode mode() const { return mode_; } inline jit::IonScript *ion() const; bool isValid() const { return script_ != nullptr; } void invalidate() { script_ = nullptr; } void setPendingInvalidation() { pendingInvalidation_ = true; } bool pendingInvalidation() { return pendingInvalidation_; } }; class RecompileInfo { uint32_t outputIndex; public: RecompileInfo(uint32_t outputIndex = uint32_t(-1)) : outputIndex(outputIndex) {} bool operator == (const RecompileInfo &o) const { return outputIndex == o.outputIndex; } CompilerOutput *compilerOutput(TypeCompartment &types) const; CompilerOutput *compilerOutput(JSContext *cx) const; }; /* Type information for a compartment. */ struct TypeCompartment { /* Constraint solving worklist structures. */ /* * Worklist of types which need to be propagated to constraints. We use a * worklist to avoid blowing the native stack. */ struct PendingWork { TypeConstraint *constraint; TypeSet *source; Type type; }; PendingWork *pendingArray; unsigned pendingCount; unsigned pendingCapacity; /* Whether we are currently resolving the pending worklist. */ bool resolving; /* Number of scripts in this compartment. */ unsigned scriptCount; /* Valid & Invalid script referenced by type constraints. */ Vector *constrainedOutputs; /* Pending recompilations to perform before execution of JIT code can resume. */ Vector *pendingRecompiles; /* Table for referencing types of objects keyed to an allocation site. */ AllocationSiteTable *allocationSiteTable; /* Tables for determining types of singleton/JSON objects. */ ArrayTypeTable *arrayTypeTable; ObjectTypeTable *objectTypeTable; private: void setTypeToHomogenousArray(ExclusiveContext *cx, JSObject *obj, Type type); public: void fixArrayType(ExclusiveContext *cx, JSObject *obj); void fixObjectType(ExclusiveContext *cx, JSObject *obj); void fixRestArgumentsType(ExclusiveContext *cx, JSObject *obj); JSObject *newTypedObject(JSContext *cx, IdValuePair *properties, size_t nproperties); TypeCompartment(); ~TypeCompartment(); inline JSCompartment *compartment(); /* Add a type to register with a list of constraints. */ inline void addPending(JSContext *cx, TypeConstraint *constraint, TypeSet *source, Type type); bool growPendingArray(JSContext *cx); /* Resolve pending type registrations, excluding delayed ones. */ inline void resolvePending(JSContext *cx); /* Prints results of this compartment if spew is enabled or force is set. */ void print(JSContext *cx, bool force); /* * Make a function or non-function object associated with an optional * script. The 'key' parameter here may be an array, typed array, function * or JSProto_Object to indicate a type whose class is unknown (not just * js_ObjectClass). */ TypeObject *newTypeObject(ExclusiveContext *cx, const Class *clasp, Handle proto, bool unknown = false); /* Get or make an object for an allocation site, and add to the allocation site table. */ TypeObject *addAllocationSiteTypeObject(JSContext *cx, AllocationSiteKey key); void processPendingRecompiles(FreeOp *fop); /* Mark all types as needing destruction once inference has 'finished'. */ void setPendingNukeTypes(ExclusiveContext *cx); /* Mark a script as needing recompilation once inference has finished. */ void addPendingRecompile(JSContext *cx, const RecompileInfo &info); void addPendingRecompile(JSContext *cx, JSScript *script); /* Mark any type set containing obj as having a generic object type. */ void markSetsUnknown(JSContext *cx, TypeObject *obj); void sweep(FreeOp *fop); void sweepShapes(FreeOp *fop); void clearCompilerOutputs(FreeOp *fop); void finalizeObjects(); void addSizeOfExcludingThis(mozilla::MallocSizeOf mallocSizeOf, size_t *pendingArrays, size_t *allocationSiteTables, size_t *arrayTypeTables, size_t *objectTypeTables); }; void FixRestArgumentsType(ExclusiveContext *cxArg, JSObject *obj); struct TypeZone { JS::Zone *zone_; /* Pool for type information in this zone. */ static const size_t TYPE_LIFO_ALLOC_PRIMARY_CHUNK_SIZE = 8 * 1024; js::LifoAlloc typeLifoAlloc; /* * Bit set if all current types must be marked as unknown, and all scripts * recompiled. Caused by OOM failure within inference operations. */ bool pendingNukeTypes; /* Whether type inference is enabled in this compartment. */ bool inferenceEnabled; TypeZone(JS::Zone *zone); ~TypeZone(); void init(JSContext *cx); JS::Zone *zone() const { return zone_; } void sweep(FreeOp *fop, bool releaseTypes); /* Mark all types as needing destruction once inference has 'finished'. */ void setPendingNukeTypes(); void nukeTypes(FreeOp *fop); }; enum SpewChannel { ISpewOps, /* ops: New constraints and types. */ ISpewResult, /* result: Final type sets. */ SPEW_COUNT }; #ifdef DEBUG const char * InferSpewColorReset(); const char * InferSpewColor(TypeConstraint *constraint); const char * InferSpewColor(TypeSet *types); void InferSpew(SpewChannel which, const char *fmt, ...); const char * TypeString(Type type); const char * TypeObjectString(TypeObject *type); /* Check that the type property for id in obj contains value. */ bool TypeHasProperty(JSContext *cx, TypeObject *obj, jsid id, const Value &value); #else inline const char * InferSpewColorReset() { return nullptr; } inline const char * InferSpewColor(TypeConstraint *constraint) { return nullptr; } inline const char * InferSpewColor(TypeSet *types) { return nullptr; } inline void InferSpew(SpewChannel which, const char *fmt, ...) {} inline const char * TypeString(Type type) { return nullptr; } inline const char * TypeObjectString(TypeObject *type) { return nullptr; } #endif /* Print a warning, dump state and abort the program. */ MOZ_NORETURN void TypeFailure(JSContext *cx, const char *fmt, ...); } /* namespace types */ } /* namespace js */ #endif /* jsinfer_h */