Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • cbdbb26
  • /
  • test_merge.py
Raw File Download

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:f79a6ec94ccae6004e4338c3a2f7a534034e8bd2
directory badge Iframe embedding
swh:1:dir:cbdbb26ae74738c98efa42d41469138b9a20b5ce

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
test_merge.py
# coding: utf-8
#   This Python module is part of the PyRate software package.
#
#   Copyright 2020 Geoscience Australia
#
#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
#
#       http://www.apache.org/licenses/LICENSE-2.0
#
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.
"""
This Python module contains tests for the Merge step of PyRate.
"""
import shutil
import os
from subprocess import check_call
import itertools
import tempfile
import pytest
from pathlib import Path

import numpy as np

import pyrate.constants as C
import pyrate.core.ifgconstants as ifc
from pyrate.merge import create_png_and_kml_from_tif, los_projection_out_types
from pyrate.merge import _merge_stack, _merge_linrate, _merge_timeseries, los_projection_divisors
from pyrate.core.shared import DEM
from pyrate.core.ifgconstants import LOS_PROJECTION_OPTION
from pyrate.configuration import Configuration, write_config_file
from tests.common import manipulate_test_conf, PY37GDAL302, MEXICO_CROPA_CONF, assert_same_files_produced


@pytest.fixture(params=list(LOS_PROJECTION_OPTION.keys()))
def los_projection(request):
    return request.param


@pytest.fixture(params=[-1, 1])
def signal_polarity(request):
    return request.param


def test_los_conversion_divisors():
    """
    Unit test to check the LOS conversions for specific incidence angles
    """
    inc = [0, 30, 45, 90]  # incidence angles in degrees

    # Test pseudo-vertical
    res = [los_projection_divisors[ifc.PSEUDO_VERTICAL](np.radians(x)) for x in inc]
    exp = [1.0, 0.8660254037844387, 0.7071067811865476, 6.123233995736766e-17]
    np.testing.assert_almost_equal(res, exp, decimal=6)

    # Test pseudo-horizontal
    res = [los_projection_divisors[ifc.PSEUDO_HORIZONTAL](np.radians(x)) for x in inc]
    exp = [0.0, 0.49999999999999994, 0.7071067811865475, 1.0]
    np.testing.assert_almost_equal(res, exp, decimal=6)

    # Test line-of-sight
    res = [los_projection_divisors[ifc.LINE_OF_SIGHT](np.radians(x)) for x in inc]
    exp = [1.0, 1.0, 1.0, 1.0]
    np.testing.assert_almost_equal(res, exp, decimal=1)


@pytest.mark.mpi
@pytest.mark.slow
@pytest.mark.skipif(not PY37GDAL302, reason="Only run in one CI env")
class TestLOSConversion:
    @classmethod
    def setup_class(cls):
        tdir = Path(tempfile.mkdtemp())
        params = manipulate_test_conf(MEXICO_CROPA_CONF, tdir)
        output_conf_file = tdir.joinpath('conf.cfg')
        output_conf = tdir.joinpath(output_conf_file)
        write_config_file(params=params, output_conf_file=output_conf)
        check_call(f"mpirun -n 3 pyrate conv2tif -f {output_conf}", shell=True)
        check_call(f"mpirun -n 3 pyrate prepifg -f {output_conf}", shell=True)
        check_call(f"mpirun -n 3 pyrate correct -f {output_conf}", shell=True)
        check_call(f"mpirun -n 3 pyrate timeseries -f {output_conf}", shell=True)
        check_call(f"mpirun -n 3 pyrate stack -f {output_conf}", shell=True)

        params = Configuration(output_conf).__dict__
        cls.params = params
        cls.tdir = tdir

    @classmethod
    def teardown_class(cls):
        shutil.rmtree(cls.tdir, ignore_errors=True)

    def test_los_conversion_comparison(self):
        """
        compare outputs in each of the los projection types
        compares sine and cosine components are larger than LOS component
        assert metadata equal except
        """
        params = self.params
        all_dirs = {}
        params[C.SIGNAL_POLARITY] = -1
        for k in LOS_PROJECTION_OPTION.keys():
            params[C.LOS_PROJECTION] = k
            k_dir = Path(params[C.OUT_DIR]).joinpath(ifc.LOS_PROJECTION_OPTION[k])
            k_dir.mkdir(exist_ok=True)
            all_dirs[k] = k_dir
            self.run_with_new_params(k_dir, params)

        signal_dir = Path(params[C.OUT_DIR]).joinpath('signal_polarity_dir')
        signal_dir.mkdir(exist_ok=True)
        all_dirs[C.SIGNAL_POLARITY] = signal_dir

        params[C.SIGNAL_POLARITY] = 1
        self.run_with_new_params(signal_dir, params)

        los_proj_dir = all_dirs[ifc.LINE_OF_SIGHT]
        pseudo_ver = all_dirs[ifc.PSEUDO_VERTICAL]
        pseudo_hor = all_dirs[ifc.PSEUDO_HORIZONTAL]
        num_files = 24 if params[C.PHASE_CLOSURE] else 26  # phase closure removes 1 interferogram
        assert len(list(los_proj_dir.glob('*.tif'))) == num_files  # 12 tsincr, 12 tscuml + 1 stack rate + 1 linear rate
        signal_polarity_reversed_pseudo_hor = all_dirs[C.SIGNAL_POLARITY]

        for tif in los_proj_dir.glob('*.tif'):
            ds = DEM(tif)
            ds_ver = DEM(pseudo_ver.joinpath(tif.name))
            ds_hor = DEM(pseudo_hor.joinpath(tif.name))
            ds_hor_sig = DEM(signal_polarity_reversed_pseudo_hor.joinpath(tif.name))
            ds.open()
            ds_ver.open()
            ds_hor.open()
            ds_hor_sig.open()

            non_nans_indices = ~np.isnan(ds.data)
            # assert division by sine and cosine always yields larger components in vertical and horizontal directions
            assert np.all(np.abs(ds.data[non_nans_indices]) <= np.abs(ds_ver.data[non_nans_indices]))
            assert np.all(np.abs(ds.data[non_nans_indices]) <= np.abs(ds_hor.data[non_nans_indices]))
            assert np.all(np.abs(ds.data[non_nans_indices]) <= np.abs(ds_hor_sig.data[non_nans_indices]))
            assert np.all(ds_hor.data[non_nans_indices] == -ds_hor_sig.data[non_nans_indices])
            ds_md = ds.dataset.GetMetadata()
            assert ds_md.pop(C.LOS_PROJECTION.upper()) == ifc.LOS_PROJECTION_OPTION[ifc.LINE_OF_SIGHT]
            ds_ver_md = ds_ver.dataset.GetMetadata()
            assert ds_ver_md.pop(C.LOS_PROJECTION.upper()) == ifc.LOS_PROJECTION_OPTION[ifc.PSEUDO_VERTICAL]
            assert ds_md == ds_ver_md
            assert ds_md.pop(C.SIGNAL_POLARITY.upper()) == '-1'
            ds_hor_md = ds_hor.dataset.GetMetadata()
            ds_hor_sig_md = ds_hor_sig.dataset.GetMetadata()
            assert ds_hor_sig_md.pop(C.SIGNAL_POLARITY.upper()) != ds_hor_md.pop(C.SIGNAL_POLARITY.upper())
            assert ds_hor_sig_md == ds_hor_md
            assert ds_hor_md.pop(C.LOS_PROJECTION.upper()) == ifc.LOS_PROJECTION_OPTION[ifc.PSEUDO_HORIZONTAL]
            assert ds_hor_sig_md.pop(C.LOS_PROJECTION.upper()) == ifc.LOS_PROJECTION_OPTION[ifc.PSEUDO_HORIZONTAL]
            assert ds_md == ds_hor_md
            assert ds_md == ds_hor_sig_md

    def run_with_new_params(self, k_dir, params):
        _merge_stack(params)
        _merge_linrate(params)
        _merge_timeseries(params, 'tscuml')
        _merge_timeseries(params, 'tsincr')

        for out_type in los_projection_out_types:
            for tif in itertools.chain(Path(params[C.VELOCITY_DIR]).glob(out_type + '*.tif'),
                                       Path(params[C.TIMESERIES_DIR]).glob(out_type + '*.tif')):
                shutil.move(tif, k_dir.joinpath(tif.name))

    def test_file_creation(self, los_projection):
        params = self.params
        params[C.LOS_PROJECTION] = los_projection
        _merge_stack(params)
        _merge_linrate(params)
        _merge_timeseries(params, 'tscuml')
        _merge_timeseries(params, 'tsincr')
        # check if color map is created
        for ot in ['stack_rate', 'stack_error', 'linear_rate', 'linear_error', 'linear_rsquared']:
            create_png_and_kml_from_tif(params[C.VELOCITY_DIR], output_type=ot)
            output_color_map_path = os.path.join(params[C.VELOCITY_DIR], f"colourmap_{ot}.txt")
            assert Path(output_color_map_path).exists(), "Output color map file not found at: " + output_color_map_path

        # check if merged files are created
        for _type, ot in itertools.product(['stack_rate', 'stack_error', 'linear_rate',
                                            'linear_error', 'linear_rsquared'], ['.tif', '.png', '.kml']):
            output_image_path = os.path.join(params[C.VELOCITY_DIR], _type + ot)
            print(f"checking {output_image_path}")
            assert Path(output_image_path).exists(), f"Output {ot} file not found at {output_image_path}"

        # check los_projection metadata
        for out_type in los_projection_out_types:
            for tif in Path(params[C.TIMESERIES_DIR]).glob(out_type + '*.tif'):
                self.__check_md(los_projection, tif.as_posix())

    @staticmethod
    def __check_md(los_projection, output_image_path):
        ifg = DEM(output_image_path)
        ifg.open()
        assert ifg.dataset.GetMetadataItem(C.LOS_PROJECTION.upper()) == LOS_PROJECTION_OPTION[los_projection]

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API