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Abstract5

Substitution is a common and popular approach to implementing name binding in definitional6

interpreters. A common pitfall of implementing substitution functions is variable capture. The7

traditional approach to avoiding variable capture is to rename variables. However, traditional8

renaming makes for an inefficient interpretation strategy. Furthermore, for applications where9

partially-interpreted terms are user facing it can be confusing if names in uninterpreted parts of10

the program have been changed. In this paper we explore two techniques for implementing capture11

avoiding substitution in definitional interpreters to avoid renaming.12
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1 Introduction18

Following Reynolds [21], a definitional interpreter is an important and frequently used method19

of defining a programming language, by giving an interpreter for the language that is written20

in a second, hopefully better understood language. The method is widely used both for21

programming language research [3, 4, 13, 18, 22] and teaching [15, 19, 23]. A commonly used22

approach to defining name binding in such interpreters is substitution. A key stumbling block23

when implementing substitution is how to deal with name capture. The issue is illustrated24

by the following untyped λ term:25

(λf. λy. (f 1) + y) (λz. y︸︷︷︸
free variable

) 2 (1)26

This term does not evaluate to a number value because y is a free variable; i.e., it is not27

bound by an enclosing λ term. However, using a naïve, non capture avoiding substitution28

strategy to normalize the term would cause f to be substituted to yield an interpreter state29

corresponding to the following (wrong) intermediate term (λy. ((λz. y) 1) + y) 2 where the30

red y is captured; that is, it is no longer a free variable.31

Following, e.g., Curry and Feys [12], Plotkin [20], or Barendregt [5], the common technique32

to avoid such name capture is to rename variables either before or during substitution (a33

process known as α-conversion [11]). For example, by renaming the λ bound variable y to r,34

we can correctly reduce term (1) to (λr. ((λz. y) 1) + r) 2.35

While a renaming based substitution strategy provides a well behaved and versatile36

approach to avoiding name capture, it has some trade-offs. For example, since renaming37

typically works by fully traversing terms, definitional interpreters that use renaming based38

substitution are typically relatively slow. Another trade-off is that renaming gives rise to39

intermediate terms whose names differ from the names in source programs. For applications40

where intermediate terms are user facing (e.g., in error messages, or in systems based41

on rewriting) this can be confusing. For this reason, definitional interpreters often use42

alternative techniques for (lazy) capture avoiding substitution, such as closures [16], de43
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23:2 Renamingless Capture-Avoiding Substitution for Definitional Interpreters

Bruijn indices [14], explicit substitutions [1], or locally nameless [9]. However, traditional44

named variable substitution is sometimes preferred because intermediate terms are easy to45

inspect and compare.46

This paper considers and explores named substitution strategies that do not rely on47

renaming variables. We explore two possible solutions to this problem, neither of which seem48

to be widely known or at least not widely used. The purpose of this paper is to increase49

awareness of these techniques. The first technique we explore is a technique that Eelco50

Visser and I were using to teach students about static scoping, by having students implement51

definitional interpreters. To this end, we used a simple renamingless substitution strategy52

which (for applications that do not perform evaluation under binders) is capture avoiding.53

The idea is to delimit and never substitute into those terms in abstract syntax trees (ASTs)54

where all substitutions that were supposed to be applied to the term, have been applied;55

e.g., terms that have been computed to normal form. For example, using b and c for this56

delimiter, an intermediate reduct of the term labeled (1) above is (λy. ( b(λz. y)c 1) + y) 2.57

Here the delimited highlighted term is closed under substitution, such that the substitution58

of y for 2 is not propagated past the delimiter; i.e., using ; to denote step-wise evaluation:59

(λf. λy. (f 1) + y) (λz. y) 260

; (λy. ( b(λz. y)c 1) + y) 261

; ( b(λz. y)c 1) + 262

; ((λz. y) 1) + 263

; y + 264
65

The result term computed by these reduction steps is equivalent to using a renaming based66

substitution function. However, the renamingless substitution strategy we used does not67

rename variables (and so preserves the names of bound variables in programs), is simple to68

implement, and is more efficient than interpreters that rename variables at run time.69

I never had the chance to discuss the novelty of the technique with Eelco. However, the70

technique we used in the course does not seem widely known or used. In this paper we71

explain and explore the technique and its limitations. The main known limitation of using72

the technique for defining interpreters is that it assumes an interpretation strategy that does73

not do evaluation under binders. For the toy language interpreters we used for teaching this74

was not a problem; for more serious languages and applications it may be.75

The second technique for capture-avoiding named substitution that we explore is an76

existing technique which we were made aware of by a reviewer of a previous version of this77

paper. The technique is due to Berkling and Fehr [7] and has similar benefits as the technique78

we used in our course: it does not rename variables and is also more efficient than interpreters79

that rename variables at run time. Furthermore, the technique does not make assumptions80

on behalf of interpretation strategy, and it supports evaluation under binders. On the other81

hand, Berkling and Fehr’s substitution technique is more involved to implement and is a82

little less efficient than the renamingless substitution strategy that we used in our course.83

The renamingless techniques we consider in this paper are not new (at least the second84

technique is not; we do not expect that the first one is either, though we have not found it in85

the literature). But we believe they deserve to be more widely known. Our contributions are:86

We describe (§ 2) a simple, renamingless substitution technique for languages with87

open terms where evaluation does not happen under binders. The meta-theory of this88

technique is left for future work, but we discuss and illustrate known limitations in terms89

of examples.90
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We describe (§ 3) an existing and more general technique [7] which has similar benefits91

and does not suffer from the same limitations. However, its implementation is a little92

more involved to implement than the simple renamingless substitution strategy, and it is93

a little less efficient.94

This paper is a literate Haskell document, available at https://github.com/casperbp/95

renamingless-capture-avoiding, and is structured as follows. § 2 describes a simple96

renamingless capture avoiding substitution strategy and its known limitations and § 397

describes Berkling-Fehr substitution which has similar benefits and fewer limitations but is98

less simple to implement. § 4 discusses related work and § 5 concludes.99

2 Renamingless Capture-Avoiding Substitution100

We present a simple technique for capture avoiding substitution, which avoids the need to101

rename bound variables. To demonstrate that the technique is about as simple to implement102

as substitution for closed terms (i.e., terms with no free variables, for which variable capture103

is not a problem), we first implement a standard substitution-based definitional interpreter104

for a language with closed, call-by-value λ expressions.105

2.1 Interpreting Closed Expressions106

Below left is a data type for the abstract syntax of a language with λs, variables, applications,107

and numbers. On the right is the substitution function for the language. The function binds108

three parameters: (1) the variable name (String) to be substituted, (2) the expression the109

name should be replaced by, and (3) the expression in which substitution happens.110

data Expr0

= Lam0 String Expr0

| Var0 String
| App0 Expr0 Expr0

| Num0 Int

subst0 :: String → Expr0 → Expr0 → Expr0

subst0 x s (Lam0 y e) | x ≡ y = Lam0 y e
| otherwise = Lam0 y (subst0 x s e)

subst0 x s (Var0 y) | x ≡ y = s
| otherwise = Var0 y

subst0 x s (App0 e1 e2) = App0 (subst0 x s e1) (subst0 x s e2)
subst0 (Num0 z) = Num0 z

111

The main interesting case is the case for Lam0. There are two sub-cases, declared using112

guards (the Boolean expressions after the vertical bar). The first sub-case is when the variable113

being substituted matches the bound variable (x ≡ y). Since the inner variable shadows114

the outer, the substitution is not propagated into the body. In the other case (otherwise),115

the substitution is propagated. This other case relies on an implicit assumption that the116

expression being substituted by x does not have y as a free variable. If we violate this117

assumption, the substitution function and interpreter interp0 on the left below is not going118

to be capture avoiding. Below right is an example invocation of the interpreter.119

interp0 :: Expr0 → Expr0

interp0 (Lam0 x e) = Lam0 x e
interp0 (Var0 ) = error "Free variable"
interp0 (App0 e1 e2) = case interp0 e1 of

Lam0 x e → interp0 (subst0 x (interp0 e2) e)
→ error "Bad application"

interp0 (Num0 z) = Num0 z

> interp0 (App0 (Lam0 "x" (Var0 "x"))
(Num0 42))

Num0 42
120
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2.2 Intermezzo: Capture-Avoiding Substitution Using Renaming121

The substitution function subst0 relies on an implicit assumption that expressions are closed;122

i.e., do not contain free variables. If we want to support open expressions (i.e., expressions123

that may contain free variables), we must take care to avoid variable capture. A traditional124

approach [20] is to rename variables during interpretation. Let subst01 be a function whose125

cases are the same as subst0, except for the Lam0 case:126

subst01 x s (Lam0 y e) | x ≡ y = Lam0 y e127

| otherwise = let z = fresh x y s e128

in Lam0 z ( subst01 x s (subst01 y (Var0 z) e) )129

Here fresh x y s e is a function that returns a fresh identifier if x 6∈ FV (e) or y 6∈ FV (s), or130

returns y otherwise. While this renaming based substitution strategy provides a relatively131

conceptually straightforward solution to the name capture problem, it requires an approach132

to generating fresh variables, and, since it performs two recursive calls to subst01, it is133

inherently less efficient than the substitution function from § 2.1—even in a lazy language134

like Haskell. Furthermore, depending on how fresh is implemented, the interpreter may135

not preserve the names of λ-bound variables. In the next section we introduce an simple136

alternative substitution strategy which does not rename or generate fresh variables, and137

which has similar efficiency as substitution for closed expressions. The substitution strategy138

is capture-avoiding for languages that do not evaluate under binders.139

2.3 Interpreting Open Expressions with Renamingless Substitution140

Let us revisit the interpretation function interp0 from § 2.1. Because our interpreter eagerly141

applies substitutions whenever it can, and because evaluation always happens at the top-level,142

never under binders, we know the following. Whenever the interpreter reaches an application143

expression e1 e2, we know that any variable that occurs free in e2 corresponds to a variable144

that was free to begin with. The same goes for the expressions resulting from interpreting145

e2. We can exploit this knowledge in our interpreter and substitution function. To this end,146

we introduce a dedicated expression form (the highlighted Clo1 constructor below) which147

delimits expressions that have been closed under substitutions such that we never propagate148

substitutions past this closure delimiter:149

data Expr1

= Lam1 String Expr1

| Var1 String
| App1 Expr1 Expr1

| Num1 Int
| Clo1 Expr1

subst1 :: String → Expr1 → Expr1 → Expr1

subst1 x s (Lam1 y e) | x ≡ y = Lam1 y e
| otherwise = Lam1 y (subst1 x s e)

subst1 x s (Var1 y) | x ≡ y = s
| otherwise = Var1 y

subst1 x s (App1 e1 e2) = App1 (subst1 x s e1) (subst1 x s e2)
subst1 (Num1 z) = Num1 z
subst1 ( Clo1 e) = Clo1 e

150

Here subst1 does not propagate substitutions into expressions delimited by Clo1 . The151

interpretation function interp1 uses Clo1 to close expressions before substituting (in the152

App1 case), thereby avoiding name capture:153

interp1 :: Expr1 → Expr1154

interp1 (Lam1 x e) = Lam1 x e155

interp1 (Var1 x) = Var1 x156
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interp1 (App1 e1 e2) = case interp1 e1 of157

Lam1 x e → interp1 (subst1 x ( Clo1 (interp1 e2)) e)158

e′
1 → App1 e′

1 (interp1 e2)159

interp1 (Num1 z) = Num1 z160

interp1 ( Clo1 e) = e161

Whereas interp0 explicitly crashes when encountering a free variable or when attempting to162

apply a non-function to a number, interp1 may return a “stuck” term in case it encounters163

a free variable or an application expression that attempts to apply a value other than164

a function. The last case of interp1 says that, when the interpreter encounters a closed165

expression, it “unpacks” the closure. This unpacking will not cause accidental capture:166

because interpretation only happens at the top-level, never under binders, unpacking can167

never cause variable capture!168

To illustrate how interp1 works, let us consider how to interpret ((λf. λy. f 0) (λz. y) 1).169

The rewrites below informally illustrate the interpretation process, where for brevity we use170

λ notation instead of the corresponding constructors in Haskell and bec instead of Clo1 e:171

interp1 ((λf. λy. f 0) (λz. y) 1)172

≡ interp1 ((λy. b(λz. y)c 0) 1)173

≡ interp1 ( b(λz. y)c 0)174

≡ y175
176

Unlike the renaming based substitution strategy discussed in § 2.2, our renamingless177

substitution strategy does not require renaming or generating fresh variables. Its efficiency is178

similar as substitution for closed expressions. It also preserves the names of binders. However,179

the renamingless substitution strategy in subst1 and interp1 relies on an assumption that180

evaluation does not happen under binders.181

2.4 Limitation: Renamingless Substitution Does Not Support182

Evaluation Under Binders183

The renamingless substitution strategy from § 2.3 assumes that the terms being closed have184

been closed under all substitutions of variables bound in the context. Interpretation strategies185

that evaluate under binders violate this assumption. For example, consider the interpreter186

given by normalize1 whose highlighted recursive call performs evaluation under a λ binder:187

normalize1 :: Expr1 → Expr1188

normalize1 (Lam1 x e) = Lam1 x ( normalize1 e )189

normalize1 (Var1 x) = Var1 x190

normalize1 (App1 e1 e2) = case normalize1 e1 of191

Lam1 x e → normalize1 (subst1 x (Clo1 (normalize1 e2)) e)192

e′
1 → App1 e′

1 (normalize1 e2)193

normalize1 (Num1 z) = Num1 z194

normalize1 (Clo1 e) = e195

Just like interp1, the normalize1 function closes off terms before substituting. However,196

because normalize1 evaluates under λ binders, closures may be prematurely unpacked, which197

may result in variable capture. For example, say we apply (λx. λy. x) to the free variable198
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y. We would expect the result of evaluating this application to contain y as a free variable.199

However, using normalize1, the free variable y is captured:200

normalize1 ((λx. λy. x) y)201

≡ normalize1 (λy. byc)202

≡ λy.normalize1 byc203

≡ λy. y204
205

The next section discusses a more general substitution strategy due to Berkling and Fehr [7]206

which does not have this limitation, which does not rename variables, and which is more207

efficient than the renaming based approach in § 2.2.208

3 Berkling-Fehr Substitution209

Motivated by how to implement a functional programming language based on Church’s210

λ-calculus [10], Berkling and Fehr [7] introduced a modified version of Church’s λ-calculus211

which uses a different kind of name binding and substitution. The key idea is to use a special212

operator (#) that acts on variables to neutralize the effect of one λ binding. For example, in213

the term λx. λx.#x the sub-term #x is a variable that references the outermost binding of214

x, whereas in λx. λy.#x the sub-term #x is a free variable.215

Berkling and Fehr’s # operator is related to De Bruijn indices [14] insofar as #nx acts216

like an index that tells us to move n binders of x outwards. Indeed, if we were to restrict217

programs in Berkling and Fehr’s calculus to use exactly one name, Berkling-Fehr substitution218

coincides with De Bruijn substitution. However, whereas De Bruijn indices can be notoriously219

difficult for humans to read (especially for beginners), Berkling-Fehr uses named variables220

such that indices only appear for substitutions that would otherwise have variable capture.221

This makes Berkling-Fehr variables easier to read for humans.222

The definitions of shifting and substitution which we summarize in this section are taken223

from the work Berkling and Fehr [7] with virtually no changes. However, the language we224

implement is slightly different: they implement a modified λ-calculus with a call-by-name225

semantics, whereas we implement the same call-by-value language as in § 2. Our purpose of226

replicating their work is two-fold: to increase the awareness of Berkling-Fehr substitution and227

its seemingly nice properties, and to facilitate comparison with the renamingless approach228

we presented in § 2.3.229

3.1 Interpreting Open Expressions with Berkling-Fehr Substitution230

Below (left) is a syntax for λ expressions similarly to earlier, but now with Berkling-Fehr231

indices (right) instead of variables, where Nat is the type of natural numbers:232

data Expr2

= Lam2 String Expr2

| Var2 Index
| App2 Expr2 Expr2

| Num2 Int

data Index = I {depth :: Nat,name :: String}233

Here the (record) data constructor I n x corresponds to an n-ary application of the special234

# operator to the name x; i.e., #nx. We will refer to the n in I n x as the depth of an235

index. As discussed above, a Berkling-Fehr index is similar to a De Bruijn index except that236

whereas a De Bruijn index tells us how many scopes to move out in order to locate a binder,237
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a Berkling-Fehr index tells us how many scopes that bind the same name to move out in order238

to locate a binder. In what follows, we will sometimes use λ notation as informal syntactic239

sugar for the constructors in Haskell above. When doing so, we use “naked” variables x as240

informal syntactic sugar for a variable at depth 0; i.e., Var2 (I 0 x).241

To define Berkling-Fehr substitution, we need a notion of shifting. Shifting is used when242

we propagate a substitution, say x 7→ e where x is a name and e is an expression, under a243

binder y. To this end, a shift increments the depth of all free occurrences of y in s by one.244

Such shifting guarantees that free occurrences of y in s are not accidentally captured.245

shift :: Index → Expr2 → Expr2246

shift i (Lam2 x e) | name i ≡ x = Lam2 x (shift (inc i) e)247

| otherwise = Lam2 x (shift i e)248

shift i (Var2 i ′) | name i ≡ name i ′
249

∧ depth i 6 depth i ′ = Var2 (inc i ′)250

| otherwise = Var2 i ′
251

shift i (App2 e1 e2) = App2 (shift i e1) (shift i e2)252

shift (Num2 z) = Num2 z253

The shift function binds an index as its first argument. The name of this index (e.g., x)254

denotes the name to be shifted. The depth of the index denotes the cut-off for the shift;255

i.e., how many #’s an x must at least be prefixed by before it is a free variable reference256

to x. For example, say we wish to shift all free references to x in the term λx. x (#x). We257

should only shift #x, not x, since x references the locally λ bound x. For this reason, the258

shift function uses a cut-off which is incremented when we move under binders by the same259

name as we are trying to shift. For example:260

shift x (λx. x (#x))261

≡ λx. (shift (#x) x) (shift (#x) (#x))262

≡ λx. x (##x)263
264

The Berkling-Fehr substitution function subst2 applies shifting to avoid variable capture265

when propagating substitutions under λ binders:266

subst2 :: Index → Expr2 → Expr2 → Expr2267

subst2 i s (Lam2 x e) | name i ≡ x = Lam2 x (subst2 (inc i) (shift (I 0 x) s) e)268

| otherwise = Lam2 x (subst2 i (shift (I 0 x) s) e)269

subst2 i s (Var2 i ′) | i ≡ i ′ = s270

| otherwise = Var2 i ′
271

subst2 i s (App2 e1 e2) = App2 (subst2 i s e1) (subst2 i s e2)272

subst2 (Num2 z) = Num2 z273

To interpret an Expr2 application e1 e2, we first interpret e1 to a function λx. e, and then274

substitute x in the body e, such that occurrences of x at a higher depth are left untouched.275

But after we have substituted the bound occurrences of x in e, the depth of the remaining276

occurrences of x in e need to be decremented. To this end, we use an unshift function which277

decrements the depth of a given name, modulo a cut-off which now tells us what depth a278

name has to strictly be larger than in order for it to be a free variable to be unshifted:279

unshift :: Index → Expr2 → Expr2280

unshift i (Lam2 x e) | name i ≡ x = Lam2 x (unshift (inc i) e)281
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| otherwise = Lam2 x (unshift i e)282

unshift i (Var2 i ′) | name i ≡ name i ′
283

∧ depth i < depth i ′ = Var2 (dec i ′)284

| otherwise = Var2 i ′
285

unshift i (App2 t1 t2 ) = App2 (unshift i t1 ) (unshift i t2 )286

unshift (Num2 z) = Num2 z287

Using unshift, we can now implement an interpreter that does evaluation under λs and that288

uses capture-avoiding substitution:289

normalize2 :: Expr2 → Expr2290

normalize2 (Lam2 x e) = Lam2 x (normalize2 e)291

normalize2 (Var2 i) = Var2 i292

normalize2 (App2 e1 e2) = case normalize2 e1 of293

Lam2 x e → unshift (I 0 x) (normalize2 (subst2 (I 0 x) (normalize2 e2) e))294

e′
1 → App2 e′

1 (normalize2 e2)295

normalize2 (Num2 z) = Num2 z296

For example, the problematic program from § 2.4 now yields a result with a free variable, as297

expected:298

normalize2 ((λx. λy. x) y) ≡ λy.#y299

3.2 Relation to Renamingless Substitution300

On the surface, the techniques involved in Berkling-Fehr substitution and our renamingless301

substitution strategy from § 2 seem rather different. A common point between the two is302

that they avoid renaming by strategically closing off certain variables to protect them from303

substitutions from lexically closer binders, and strategically reopening those variables to304

substitutions coming from lexically distant binders.305

The renamingless substitution strategy achieves this by using a syntactic and rather306

coarse-grained discipline which closes entire sub-branches over all possible substitutions.307

When the interpreter reaches a closed sub-expression, it is re-opened. As discussed, this308

discipline works well for languages that do not perform evaluation under binders. While we309

demonstrated the technique using a call-by-value language in § 2, the technique is equally310

applicable to call-by-name interpretation. But not for languages that perform evaluation311

under binders.312

Berkling-Fehr substitution uses a more fine-grained approach to strategically close off313

variables to protect them from substitutions from lexically closer binders, by shifting free314

occurrences of variables when moving under a binder. When a binder is eliminated, terms315

are unshifted. This fine-grained approach is not subject to the same limitations as the316

renamingless approach from § 2.3. Indeed, in their paper, Berkling and Fehr [7] prove that317

their notion of substitution and their modified λ-calculus is consistent with Church’s λ318

calculus. Since shifting and unshifting requires more recursion over terms than the simpler319

renamingless approach from § 2, Berkling-Fehr substitution is less efficient. However, it is320

still more efficient than the renaming approach discussed in § 2.2.321

As discussed, Berkling-Fehr substitution is closely related to De Bruijn indices, the main322

difference being that Berkling-Fehr use names and are more readable. To work around the323

readability issue with De Bruijn indices, one might also combine a named and De Bruijn324

approach where variable nodes comprise both a name and a De Bruijn index. But that leaves325
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the question of how to disambiguate programs with ambiguous name. For example, how326

do we represent the Berkling-Fehr indexed expression λx. λx.#x using this hypothetical327

combined De Bruijn/named approach? Berkling-Fehr indices seem to strike an attractive328

balance between being practical and readable.329

4 Related Work330

In this paper we explored two techniques for capture avoiding substitution that avoids331

renaming, for the purpose of implementing static name binding in languages with λs.332

The topic of evaluating λ expressions has a long and rich history. Summarizing it all is333

beyond the scope of this paper; for overviews see, e.g., the works of Barendregt [6] or334

Cardone and Hindley [8]. We discuss a few of the papers that are most closely related to the335

techniques we have described.336

In their formalization of λ calculus and type theory, McKinna and Pollack [17] consider a337

system that uses named substitution without renaming, for a particular notion of open terms.338

They consider a syntax that distinguishes two classes of names: parameters and variables.339

Variable substitution does not affect parameters, and parameter substitution does not affect340

variables. Their notion of variable substitution is defined for terms that are variable-closed,341

but which may be parameter-open. Thus, by encoding free variables as parameters, their342

system can be used to compute with open terms. However, syntactically distinguishing free343

variables this way seems to presupposes a static binding analysis. The approach we discussed344

in § 2.3 does not presuppose such static analysis.345

Our paper considers how to interpret open terms. There exist several calculi in the346

literature for evaluating open terms. Accatolli and Guerrieri [2] gives an overview of several347

of these calculi for open call-by-value, which is the class of languages that the interpreters in348

§ 2 and§ 3 interpret. In their paper, Accatolli and Guerrieri focus on the meta-theory of these349

calculi. For their meta-theoretical study they rely on an unspecified notion of capture-avoiding350

substitution. In this paper, we explore how to define such capture-avoiding substitution in a351

way that does not perform renaming. While the meta-theory of Berkling-Fehr substitution352

has been studied [7], the meta-theory of the substitution strategy in § 2.3 remains an open353

question.354

5 Conclusion355

We have discussed two techniques for implementing capture avoiding substitution in defini-356

tional interpreters in a way that does not require renaming of bound variables. One of the357

techniques relies on a coarse-grained but simple discipline for closing terms, is known to not358

support interpretation strategies that evaluate under binders, and has (to the best of our359

knowledge) not been studied meta-theoretically. The other technique is an existing technique360

from the literature. While this technique is less efficient, it is more fine-grained and so does361

is not subject to the same limitations as the first technique. It also has a well-established362

meta-theory. Neither of the two techniques seem to be widely known or at least not widely363

applied. With this work, we hope to increase awareness of these techniques.364
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